高三数学教学设计大全(16篇)

格式:DOC 上传日期:2023-11-10 01:08:25
高三数学教学设计大全(16篇)
时间:2023-11-10 01:08:25     小编:ZS文王

通过总结,我们可以发现自己的进步和改进的空间。如何欣赏文学作品是每个文学爱好者都需要思考的问题,下面我来分享一些文学鉴赏的技巧。通过阅读以下小编为大家整理的总结案例,相信你会对如何写好总结有更深入的认识。

高三数学教学设计篇一

三角函数的有关概念(b)。

理解任意角的概念;理解终边相同的角的意义;了解弧度的意义,并能进行弧度与角度的互化。

理解任意角三角函数(正弦、余弦、正切)的定义;初步了解有向线段的概念,会利用单位圆中的三角函数线表示任意角的正弦、余弦、正切。

终边相同的角的意义和任意角三角函数(正弦、余弦、正切)的定义。

1、角的概念是什么?角按旋转方向分为哪几类?

2、在平面直角坐标系内角分为哪几类?与终边相同的角怎么表示?

3、什么是弧度和弧度制?弧度和角度怎么换算?弧度和实数有什么样的关系?

4、弧度制下圆的弧长公式和扇形的面积公式是什么?

5、任意角的三角函数的定义是什么?在各象限的符号怎么确定?

6、你能在单位圆中画出正弦、余弦和正切线吗?

7、同角三角函数有哪些基本关系式?

1、给出下列命题:

(1)小于的角是锐角;

(2)若是第一象限的角,则必为第一象限的'角;

(3)第三象限的角必大于第二象限的角;

(4)第二象限的角是钝角;

(5)相等的角必是终边相同的角;终边相同的角不一定相等;

(6)角2与角的终边不可能相同;

2、设p点是角终边上一点,且满足则的值是。

3、一个扇形弧aob的面积是1,它的周长为4,则该扇形的中心角=弦ab长=。

4、若则角的终边在象限。

5、在直角坐标系中,若角与角的终边互为反向延长线,则角与角之间的关系是。

6、若是第三象限的角,则—,的终边落在何处?

例1、如图,分别是角的终边。

(1)求终边落在阴影部分(含边界)的所有角的集合;

(2)求终边落在阴影部分、且在上所有角的集合;

(3)求始边在om位置,终边在on位置的所有角的集合。

例2。(1)已知角的终边在直线上,求的值;

(2)已知角的终边上有一点a,求的值。

例3、若,则在第象限。

1、若锐角的终边上一点的坐标为,则角的弧度数为。

2、若,又是第二,第三象限角,则的取值范围是。

3、一个半径为的扇形,如果它的周长等于弧所在半圆的弧长,那么该扇形的圆心角度数是弧度或角度,该扇形的面积是。

4、已知点p在第三象限,则角终边在第象限。

5、设角的终边过点p,则的值为。

6、已知角的终边上一点p且,求和的值。

1、经过3小时35分钟,分针转过的角的弧度是。时针转过的角的弧度数是。

2、若点p在第一象限,则在内的取值范围是。

3、若点p从(1,0)出发,沿单位圆逆时针方向运动弧长到达q点,则q点坐标为。

4、如果为小于360的正角,且角的7倍数的角的终边与这个角的终边重合,求角的值。

高三数学教学设计篇二

教学重点:理解等比数列的概念,认识等比数列是反映自然规律的重要数列模型之一,探索并掌握等比数列的通项公式。

教学难点:遇到具体问题时,抽象出数列的模型和数列的等比关系,并能用有关知识解决相应问题。

教学过程:

一.复习准备。

1.等差数列的通项公式。

2.等差数列的前n项和公式。

3.等差数列的性质。

二.讲授新课。

引入:1“一尺之棰,日取其半,万世不竭。”

2细胞分裂模型。

3计算机病毒的传播。

由学生通过类比,归纳,猜想,发现等比数列的特点。

进而让学生通过用递推公式描述等比数列。

让学生回忆用不完全归纳法得到等差数列的通项公式的过程然后类比等比数列的通项公式。

注意:1公比q是任意一个常数,不仅可以是正数也可以是负数。

2当首项等于0时,数列都是0。当公比为0时,数列也都是0。

所以首项和公比都不可以是0。

3当公比q=1时,数列是怎么样的,当公比q大于1,公比q小于1时数列是怎么样的?

4以及等比数列和指数函数的关系。

5是后一项比前一项。

列:1,2,(略)。

小结:等比数列的通项公式。

三.巩固练习:

1.教材p59练习1,2,3,题。

2.作业:p60习题1,4。

第二课时5.2.4等比数列(二)。

教学重点:等比数列的性质。

教学难点:等比数列的通项公式的应用。

一.复习准备:

提问:等差数列的通项公式。

等比数列的通项公式。

等差数列的性质。

二.讲授新课:

1.讨论:如果是等差列的三项满足。

那么如果是等比数列又会有什么性质呢?

由学生给出如果是等比数列满足。

2练习:如果等比数列=4,=16,=?(学生口答)。

如果等比数列=4,=16,=?(学生口答)。

3等比中项:如果等比数列.那么,

则叫做等比数列的等比中项(教师给出)。

4思考:是否成立呢?成立吗?

成立吗?

又学生找到其间的规律,并对比记忆如果等差列,

5思考:如果是两个等比数列,那么是等比数列吗?

如果是为什么?是等比数列吗?引导学生证明。

6思考:在等比数列里,如果成立吗?

如果是为什么?由学生给出证明过程。

三.巩固练习:

列3:一个等比数列的第3项和第4项分别是12和18,求它的第1项和第2项。

解(略)。

列4:略:

练习:1在等比数列,已知那么。

2p61a组8。

高三数学教学设计篇三

函数的综合应用主要体现在以下几方面:

1、函数内容本身的相互综合,如函数概念、性质、图象等方面知识的综合。

2、函数与其他数学知识点的综合,如方程、不等式、数列、解析几何等方面的内容与函数的综合。这是高考主要考查的内容。

3、函数与实际应用问题的综合。

b2—1=1。

答案:a。

2、若f(x)是r上的减函数,且f(x)的图象经过点a(0,3)和b(3,—1),则不等式|f(x+1)—1|2的解集是___________________。

解析:由|f(x+1)—1|2得—2。

又f(x)是r上的减函数,且f(x)的图象过点a(0,3),b(3,—1),

高三数学教学设计篇四

等比数列的通项公式的应用。

提问:等差数列的通项公式。

等比数列的通项公式。

等差数列的性质。

1、讨论:如果是等差列的三项满足。

那么如果是等比数列又会有什么性质呢?

由学生给出如果是等比数列满足。

2、练习:如果等比数列=4,=16,=?(学生口答)。

如果等比数列=4,=16,=?(学生口答)。

3、等比中项:如果等比数列。那么,

则叫做等比数列的等比中项(教师给出)。

4、思考:是否成立呢?成立吗?

成立吗?

又学生找到其间的规律,并对比记忆如果等差列,

5、思考:如果是两个等比数列,那么是等比数列吗?

如果是为什么?是等比数列吗?引导学生证明。

6、思考:在等比数列里,如果成立吗?

如果是为什么?由学生给出证明过程。

列3:一个等比数列的第3项和第4项分别是12和18,求它的第1项和第2项。

解(略)。

列4:略:

练习:1在等比数列,已知那么。

高三数学教学设计篇五

向量作为一种运算工具,其知识体系是从实际的物理问题中抽象出来的,它在解决几何问题中的三点共线、垂直、求夹角和线段长度、确定定比分点坐标以及平移等问题中显示出了它的易理解和易操作的特点。

一、总体设想:

本节课的设计有两条暗线:一是围绕物理中物体做功,引入数量积的概念和几何意义;二是围绕数量积的概念通过变形和限定衍生出新知识――垂直的判断、求夹角和线段长度的公式。教学方案可从三方面加以设计:一是数量积的概念;二是几何意义和运算律;三是两个向量的模与夹角的计算。

二、教学目标:

知识和技能:

两个非零向量的夹角;定义;本质;几何意义。

掌握向量数量积的主要变化式:;。

过程与方法:

从物理中的物体受力做功,提出向量的夹角和数量积的概念,然后给出两个非零向量的夹角和数量积的一般概念,并强调它的本质;接着给出两个向量的数量积的几何意义,提出一个向量在另一个向量方向上的投影的概念。

给出向量的数量积的运算律,并通过例题具体地显示出来。

由数量积的定义式,变化出一些特例。

情感、态度和价值观:

使学生学会有效学习:抓住知识之间的逻辑关系。

三、重、难点:

【重点】数量积的定义,向量模和夹角的计算方法。

四、教学方案及其设计意图:

平面向量的数量积,是解决垂直、求夹角和线段长度问题的关键知识,其源自对受力物体在其运动方向上做功等物理问题的抽象。于是在引导学生学平面向量数量积的概念时,要围绕物理方面已有的知识展开,这是使学生把所学的新知识附着在旧知识上的绝好的机会。(如图)首先说明放置在水平面上的物体受力f的作用在水平方向上的位移是s,此问题中出现了两个矢量,即数学中所谓的向量,这时物体力f的所做的功为w,这里的(是矢量f和s的夹角,也即是两个向量夹角的定义基础,在定义两个向量的夹角时,要使学生明确“把向量的起点放在同一点上”这一重要条件,并理解向量夹角的范围。以此为基础引出了两非零向量a,b的数量积的概念:,是记法,是定义的实质――它是一个实数。按照推理,当时,数量积为正数;当时,数量积为零;当时,数量积为负。

向量数量积的几何意义在证明分配律方向起着关键性的作用。其几何意义实质上是将乘积拆成两部分:。此概念也以物体做功为基础给出。是向量b在a的方向上的投影。

高三数学教学设计篇六

平面向量基本定理是一节内容简单但运用困难的一节课。

对于新课引入环节,记得去年我由向量的加法法则和数乘运算引入,教师提问,学生回答;然后直接给出问题:如果是平面内的任意两个不共线的向量,那么平面内的任意向量可以由这两个向量表示吗?这就是这节课要学习的问题。而今年在重新思考之后,在引入上完全是学生在动手做,通过复习向量的加法法则和数乘运算让学生回忆旧知并为新知识做好铺垫,并且这张作图纸的功能一直贯穿整节课的学习,也让学生从直观上得到平面向量基本定理的内容作准备。在学生复述了上述知识之后,让学生在方格纸上画出,并画出,让学生感知由,通过数乘运算和向量的加法法则是可以表示出的,那么反过来已知可以由来表示吗?引出课题。应用新的设计之后的好处是让学生能够很容易的进入到本节课的学习状态中来,因为学生很明白这节课学习的主要内容,这比原来的设计方案要更加的顺畅和细致,也更加符合学生的认知水平。

对于教材的挖掘上,对于例题的结论,以前是像对一般习题一样,讲解明白后一带而过,而后发现这个结论在以后做题上有很大的用处然后再次强调,而本次我在课上就做了足够的强调,课后发现学生的作业做得很顺畅。

对于教学时间控制上,在教学中,作为老师的我常常想在这一节课中让学生能够完全掌握我所教的知识,同时也要考虑到课程的完整性,希望在各个方面都能够做到尽善尽美。我在回忆这节课的时间把握上,果真看出了一些问题,具体来说,第一:在开始的引入中对于学生作图的这一个环节上耗时太多,好多的学生已经能够很快的做出图来,而我却只看那些作图较慢的同学,这里浪费了很多的时间,其实,归因来说,还是对学生学习能力的不了解,导致了在教学中的“以偏概全”;第二:在作课堂小结时,平面向量的基本定理已经得出没有必要在进行重复,我在这里处理的不当,请一位学生又复述了一遍定理的内容,如果时间还有富余的话,这样进行可能就没有问题,但是这时距离下课仅有两分钟,再有这样的环节就不是明智之选了,因此,拖堂了几分钟。

通过这次的经历,我的教学设计可以说已经不是三易其稿了,可能也有“四易或者五易”了,但是每经过一次这样的过程就感到自己确实又进步了一些。现在再回想准备的阶段和正式上课的时候所经历的困难和迷茫到最后的成竹在胸,就感到自己所付出的都是值得的。

高三数学教学设计篇七

高三数学第一轮复习以抓基础,练基本功(主要是解题基本功)为主,注重对知识的梳理,数学方法的养成,使学生对整个高中数学知识、方法和思想有个完整的认识,形成网络。在本轮复习中应对高中数学的所有考点,涉及的解题方法进行全面的复习,使学生对每个知识点掌握到位,对数学概念的内涵和外延,公式定理的适用范围有着本质、透彻的理解,使学生切实掌握数学基本知识,基本技能和基本的数学思想方法,对基本的解题方法(解题方法的培养、训练要注重通性通法,淡化特殊技巧)能运用自如,做到稳扎稳打,基础过关,牢固。

高三数学第二轮复习以专题复习、专题训练为主,注重学生数学能力与思维水平的养成,使学生在解题方法,解题技能上达到运用自如的境界。本轮复习中对高中数学重点内容要加深加难,重点培养学生解活题、较难题、难题的能力。专题复习既要按章节进行,又要按题型进行,按章节进行内容如下:函数与导数、数列(特别是递推数列)与极限、三角函数与平面向量、不等式、直线与圆锥曲线(注意圆锥曲线与向量的结合)、立体几何、概率与统计。按题型进行内容如下:选择题解法训练,填空题解法训练,解答题解法训练,特别要注重解答题训练的质量。

本轮复习应多在知识网络的交汇处选题,强调学科内的小综合,加强对知识交汇点问题的训练,达到培养学生整合知识,能综合地运用整个高中数学思想方法解题的能力之目的。

高三数学第三轮复习以强化训练、查漏补缺为主。在本轮复习中,让学生多做模拟题,强化做题的速度与质量。同时针对第一轮、第二轮的不足进行查漏补缺,特别是在第一轮、第二轮大多数学生做不出来的题目在本轮复习中可集中让学生重做,解决学生在前面复习中暴露的问题。

具体措施建议如下:

一、处理好课本与资料的关系对资料精讲,用好用巧,但不被资料束缚手脚,牵着鼻子走,不仅老师认真钻研资料,更要引导学生在复习课本的基础上认真钻研资料,用活用巧。

二、分层教学由于数学分为文理科,且文理各有不同的层次,所以分层教学非常必要,计划对高三数学分为四层:理科a层、文科a层、理科b、c层、文科b、c层,各层实施不同的教学进度。其中理a、文a在重点抓好基础的同时适当加深难度与深度,其他层主要抓基础。

三、抓好周练每周分层出一次周练,要求周练围绕上一周所授内容命题,题量适中,难易适当,针对性强,注重基础知识与方法的反馈训练。命题的主导思想是“出活题、考基础、考能力”。在周练的基础上,每章节复习过程中印发2005年高考试题分章选解给学生课后完成。

四、集体备课俗话说:三个臭皮匠顶得一个诸葛亮。在复习中充分发挥备课组集体力量,群策群力,科学备课。每周搞好一次备课组活动,讨论教学内容与教学方法的落实、改进情况。

五、培养学生自学能力“授之以鱼,不如授之以渔”。对数学科而言,主要是对解题方法的点拨,解题思路的引导,让学生自己学会抓住题目已知条件的关键点,寻找解题的突破口。避免课堂教学“一言堂”现象,要注重课堂教学的精讲多练,注重对学生思维能力的培养。

六、培尖工作在强调名牌效应的今天,加强培尖尤其显得重要。特别是四个奥赛班,更要紧盯尖子生的学习状态。在复习过程中要选准苗子,培养他们良好的学习品质和学习习惯,培养他们较强的自学能力和应试能力,以及稳定的心理素质和良好的心态。对尖子生每次考试的试卷作好分析与针对性讲评。

七、运用现代教育技术授课。多制作课件,用课件上课,让学生体验数学知识的发生、发展过程,让课件的动感感染每一个学生,使他们感知数学的美感。

高三数学教学设计篇八

(2)能力目标:

通过对平面向量数量积定义的剖析,培养学生分析问题发现问题能力,使学生的思维能力得到训练。

(3)情感目标:

通过本节课的学习,激发学生学习数学的兴趣,体会学习的快乐。

第二部分:教法分析:

采用启发引导式与讲练相结合,并借助多媒体教学手段,使学生理解平面向量数量积的定义,理解定义之后引导学生推导数量积的性质,通过例题和练习加深学生对平面向量数量积定义的认识,初步掌握平面向量数量积定义的运用。

第三部分:教学程序设计:

完整版。

高三数学教学设计篇九

它是沟通代数、几何、三角函数的一种工具,有着极其丰富的实际背景.其教育价值主要体现在有助于学生体会数学与实际生活的联系,感受数学在解决实际问题中的作用,有助于学生认识数学内容之间的内在联系,体验、领悟数学的创造性和普遍联系性,有助于学生发展智力,提高运算、推理能力。

(1)应了解的内容:共线向量的概念,平面向量的基本定理,用平面向量的数量积处理有关长度、角度和垂直的问题。

应理解的内容:向量的概念,两个向量共线的充要条件,平面向量坐标的概念。

应掌握的内容:向量的几何表示,向量的加法与减法,实数与向量的积,平面向量的坐标运算,平面向量的数量积及几何意义,向量垂直的条件。

(2)注意处理好新旧思维矛盾。

学习向量运算与学习数的运算有类似之处:从学习顺序上看,都是先定义运算,再研究运算性质;从学习内容来看,向量运算具有与数的运算类似的良好性质。当引入向量后,运算对象扩充了,不仅仅是数的运算了,向量运算是建立在新的运算法则上,向量的运算与实数的运算不尽相同,向量不同于数量,它是一种新的量,关于数量的代数运算在向量范围内不都适用,它有一套自己的运算法则。但很多学生往往完全照搬数的运算法则,而不注意向量运算法则的特点,因此常常出错。

在教学中要注意新旧知识之间的矛盾冲突,及时让学生加以辨别、总结,利于正确理解向量的实质。例如向量的加法与向量模的加法的区别,向量的数量积与实数积的区别,在坐标表示中两个向量共线与垂直的充要条件的区别等等。

(3)注意数学思想方法的渗透。

在这一章中,从引言开始,就注意结合具体内容渗透数学思想方法。例如,从帆船在大海中航行时的位移,渗透数学建模的思想。通过介绍相等向量及有关作图的训练,渗透平移变换的思想。

由于向量具有两个明显特点——“形”的特点和“数”的特点,这就使得向量成了数形结合的桥梁,向量的坐标实际是把点与数联系了起来,进而可把曲线与方程联系起来,这样就可用代数方程研究几何问题。

高三数学教学设计篇十

尊敬的各位评委、各位老师:

大家好!

今天我说课的题目是《平面向量的数量积》。下面我将从四个方面阐述我对本节课的分析和设计。

第一部分:教学内容分析:

1、教材的地位及作用:

将平面向量引入高中课程,是现行数学教材的重要特色之一。由于向量既能体现“形”的直观位置特征,又具有“数”的良好运算性质,是数形结合和转换的桥梁。而这一切之所以能够实现,平面向量的数量积功不可没。《平面向量的.数量积》是高一数学下册第五章第六节的内容。平面向量数量积是中学数学的一个重要概念。它的性质很多,应用很广,是后面学习的重要基础。本课是第一课时,学生对概念的理解尤为重要。

2、教学目标的设定:

(1)知识目标:

高三数学教学设计篇十一

2·会进行简单的二次根式的除法运算;

4·培养学生利用二次根式的除法公式进行化简与计算的能力;

6·通过分母有理化的教学,渗透数学的简洁性·。

2·难点:二次根式的除法与商的算术平方根的关系及应用·。

从特殊到一般总结归纳的方法以及类比的方法,在学习了二次根式乘法的基础上本小节。

内容可引导学生自学,进行总结对比·。

高三数学教学设计篇十二

1、以同伴10个手指的“藏起”为情境进行10的减法算式的记录,体会减法算式在记录数量变化中的简单、便捷。

2、比较同伴间10的减法算式记录条目的多、少、一样多,体会“有顺序”的操作活动给记录带来的帮助。

3、在游戏活动反复进行中,增进幼儿对“一”、“一”等符号的理解。

4、激发幼儿对数学学习活动的兴趣。

5、引导幼儿积极与材料互动,体验数学活动的乐趣。

1、幼儿有过两两结伴进行合作运算和记录的经验。

2、教师自制10只手指分别藏起1个到9个的图片,以及对应的10的减法算式ppt课件。

3、记录纸,记号笔。

1、导入活动——手指游戏。

和幼儿一起玩他们所喜欢的手指游戏。

师:你有几个手指头?你喜欢它们吗?你会用手指头摆造型吗?这个造型要用几个手指头?

(这一环节的意义在于让孩子从对手指游戏、手指造型的自由表现中’,丰富和加深幼儿有关手指和数量的特殊表象,为接下来的数的运算活动建立“跳板”。)。

2、看“图”玩游戏——手指头,藏起来!

(1)介绍游戏玩法,激发幼儿的兴趣:老师喜欢一个“藏起来”的手指游戏。我来藏,你来猜,看看能不能猜出老师藏了几个手指头。

(2)教师演示,幼儿猜测。幼儿猜测后,教师追问:你怎么猜得这么准的呢?鼓励幼儿把自己的观察、思考用清晰的语言表达出来,比如“我知道少掉了__,它们一共是4个,所以藏起了4个”。

(5)幼儿自主看“图”游戏。

(由“藏起”的游戏,自然引发到对“少掉”的直观理解,再分别与数学符号“10”、“一”、“4”等之间建立更进一步的联系,引发幼儿自主建构“10一4”这一算式中所隐藏的数学运算意义,并通过自身的实践——也来玩“藏起”游戏,在动作表现中不断巩固和加深对减号以及减号前后数字的理解认识。这个过程必须以孩子自身的反复动作为基础建构,孩子的理解认识才能深入透彻,日后的应用也才有可能自如流畅。)。

3、“示意图”大变身——看看“?”来回答。

(2)结合情境小结“10—1=9”所表达的完整意思:原来是10个手指头,藏起了一个手指头,还剩下9个手指头。

(4)出示图片“10一4=?”,引导幼儿思考:你会回答吗?你怎么回答出来的?我们一起来检查一下。

(5)请幼儿自主出题进行运算:让你来出“题目”考考大家,你还会出些什么题目?教师根据幼儿回答及时书写算式,并引导集体中的其他幼儿及时回答。

小结:如果让你给今天我们玩的这个游戏取个名字,你说是什么游戏?(10的减法)刚才我们看到的这些“图”就是“减法算式”。

高三数学教学设计篇十三

1、通过自主探索发现乘除法之间的联系,学会用乘法口诀求商。

2、培养学生收集并处理信息,进而利用相关的信息解决问题的能力。

3、通过“用乘法口诀求商”这一发现,领略数学简捷的思维方法和广泛的应用价值。

重点:建立“用乘法口诀求商”的数学模型。

难点:拓展对“除法意义”的理解、认识和运用的空间;对纷繁复杂的信息进行恰当的选择与判断。

1、实物投影图片或持图:(1)“小熊开店”主题图;(2)“练一练”中的第1、2、3题。

2、与教学进程同步的配套录音故事。

本节课是在完成了“除法的初步认识”的基础上,设计的“用2-5的乘法口诀求商”的起始课。该教学设计以“小熊商店”里的几们顾客的问题为主要线索,通过以下活动实现教学目标。

1、创设“小熊开店”的问题情境,提出本节课的“桥梁”问题“买4辆坦克需要多少元”和核心问题“20元可以买多少辆坦克”。

2、自主探究,发现乘除法之间的联系,建立“用乘法口诀求商”的教学模型。

3、运用所建模型,解决相关的问题,并通过综合练习,体验数学的简捷思维的优势和广泛应用价值。

一、创设情境,提出问题。

师:小熊今天起个大早,原来今天是它的店第一天开张.我们来看看小熊的店里有些什么?

1、出示“小熊开店”主题图,引导学生观察。

2、学生从以下几方面交流信息:

(1)小熊商店的货架上有哪些商品?每种商品的价格是多少?

(2)来了哪几位顾客?

3、播放录音故事,提出重点问题。

(1)“星期天上午,小熊刚打开店门,就来了三位顾客,小熊热情地招呼它们:‘欢迎小猴、小猫和小狗光临我的商店。你们想买点什么呢?’小猫说:我想买4辆坦克,需要多少元钱呢?”

(2)此时学生很容易答出:5×4=20(元)或4×5=20(元),并解释这样列式和计算的理由:每辆坦克5元,买4辆要用4个5元,所以用乘法计算;再想乘法口诀“四五二十”,很快能算出是20元。

(3)大家形成一致性意见后,接着播放故事。

“小狗说:‘我也喜欢坦克,用20元钱能买几辆呢?’”

二、自主探究,建立模型。

1、学生围绕“20元可以买几辆坦克”这一关键性问题开展活动。

(1)独立思考。

(2)小组内合作交流。

(3)集体汇报。

生:因为1辆坦克5元,所以可以5元5元地数一数:1辆5元,2辆10元,3辆15元,4辆20元。20元可以买空卖4辆。

想一想20元里面有向个5,就能买几辆。用除法计算:20÷5=4(辆)。

生:把20元每5元分1份,分成了几份就能买几辆。用除法计算:20÷5=4(辆)。

生:我们是用乘法口诀,四五二十,所以20÷5=4。

2、深入研讨。

怎样才能很快算出“20÷5=4”等于几呢?

学生回答后播放故事内容。

“机灵的小猴说:‘想乘法口诀“四五二十”,4个5是20,20里面有4个5,所以20÷5=4,能买4辆。’”

从以上小猫和小狗买坦克的问题中,你发现了什么?

学生讨论后,从“乘除法的联系”和:“用乘法口诀求商”两方面汇报。

充分交流后播放智慧老人的话:“我们可以用乘法口诀很快求出4×5或5×4的积,也可以用同样的乘法口诀很快算出20÷5的商,因为乘除法的联系是十分密切的。用乘法口诀求商又快又准,真方便。”

三、运用模型,解决问题。

1、小猴的问题。

(1)继续播放故事。

“小猴又说:‘你们的问题都解决了,再来帮我算一算吧。我有12元钱,如果买铅笔盒可以买几个?如果买皮球可以买几个?’”

(2)学生经过思考,然后完成“想一想”中的第(1)、(2)题。

(3)解释与订正。

第(1)题:求12元可以买几个铅笔盒,就是求12元里面有几个4元,用除法算。12÷4=3(个),用口诀是“三四十二”。

第(2)题:求12元可以买几个皮球,就是把12元每3元分成1份,分成几份就能买几个,用除法算。12÷3=4(个)。

2、老师的问题。

买什么东西正好用完24元?

(1)学生把自己的想法说给同桌听。

(2)集体交流。

买4个布娃娃。24÷6=4(个);口诀:四六二十四。

买8个皮球。24÷3=8(个);口诀:三八二十四。

买6个铅笔盒。24÷4=6(个);口诀:四六二十四。

买3个筝。24÷8=3(个);口诀:三八二十四。

3、大家的问题。

互动活动:在小组内相互提问、解答、并说明所用的口诀。例如:

(1)18元能买几个布娃娃?

(2)20元可以买几个铅笔盒?

(3)买几个风筝正好用完32元?

四、脱离“小熊开店”的情境,进行综合练习。

1、“试一试”。

要求学生试着完成该题中的除法试题,提醒大家边想口诀边计算。

(1)学生试算。

(2)交流答案并说说所用的口诀。

2、“练一练”。

(1)小鸟回家。

出示该题图片,学生读懂题意:小鸟家的房顶上有乘法口诀,小鸟口中的卡片上有算式;算式与口诀对应连线,帮小鸟回家。

学生独立完成。

集体交流订正。

(2)蚂蚁搬家。

出示该题图片,学生读懂题意。

情境:蚂蚁要搬新家,需要用小车拉米。

条件:有27粒米,每只蚂蚁只能拉3粒。

问题:几保蚂蚁才能一次搬完?

思路引导。

把27粒米,每3粒分1份,看分成了几份,就需要几只蚂蚁。

看27里面有几个3。

学生独立完成。

交流与订正。

(3)动物赛跑。

出示该题图片,读懂题意。

马、鹿、羊赛跑,小老鼠当目线员。

要算完5道除法式题才能闯线,谁算得又对又快,谁就是冠军。

学生分成3人小组进行活动,自主选择所扮角色。

交流与订正,为冠军鼓掌祝贺。

如果时间许可,交换所扮角色,继续比赛。

五、课堂总结。

学生自己总结这节课的知识、技能、情感等方面的收获和体验。

六、布置作业。

高三数学教学设计篇十四

1、培养学生初步的应用意识和解决问题的能力。

2、了解奥运会知识,体验学习乐趣,总结学习方法,学生从而达到愿学、乐学、会学、善学的境界。

运用知识解决奥运会比赛项目的数学问题,提高计算能力。

灵活解决问题和位置的猜测。

观察、发现法。

小黑板。

一、温故互查。

1、搜集有关奥运的数学信息,并与同学习小组的同学交流。

2、应用所学的知识,试着解决奥运会上的“射击项目”的数学问题。小组合作完成。

二、情景导入呈现目标。

同学们,在2004年的雅典奥运会,我国取得了骄人的成绩,当五星红旗在奥运的赛场上徐徐升起,当嘹亮的国歌声在你耳边响起,作为一名中国人你们激动吗……”出示主题图,引入新课,出示本节课的教学目标。产生质疑,引入新课。

三、探究新知。

1、做课本第79页的“田径项目”中的数学问题,并将自己的想法在小组内交流。

2、想一想刘翔用的时间少了多少秒?

3、小组汇报交流。

四、课堂总结。

通过本节课学习,有什么收获?独立思索小组交流总结方法教师点拨。

五、当堂训练。

完成80页“跳水”“射击”中的数学问题。

独立做,最后小组内订正。个别题全班解决。

六、知识拓展。

下面是校达标运动会上50米短跑男生成绩记录表。姓名李明胡军郑浩王乐乐陆兵。

成绩(秒)9.238.989.019.119.05。

(1)根据表中的信息,你能提出什么数学问题并解答?

(2)和你好朋友比赛一下,并记录下来。

高三数学教学设计篇十五

第一章第三节 三角函数的诱导公式(一)

一、指导思想与理论依据

数学是一门培养人的思维,发展人的思维的重要学科。因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。因此本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。在教学手段上,则采用多媒体辅助教学,将抽象问题形象化,使教学目标体现的更加完美。

二.教材分析

三角函数的诱导公式是普通高中课程标准实验教科书(人教a版)数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六).本节是第一课时,教学内容为公式(二)、(三)、(四).教材要求通过学生在已经掌握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发现任意角 与 、 、 终边的对称关系,发现他们与单位圆的交点坐标之间关系,进而发现他们的三角函数值的关系,即发现、掌握、应用三角函数的诱导公式公式(二)、(三)、(四).同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求.为此本节内容在三角函数中占有非常重要的地位.

三.学情分析

本节课的授课对象是本校高一(1)班全体同学,本班学生水平处于中等偏下,但本班学生具有善于动手的良好学习习惯,所以采用发现的教学方法应该能轻松的完成本节课的教学内容.

四.教学目标

(1).基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式;

(4).个性品质目标:通过诱导公式的学习和应用,感受事物之间的普通联系规律,运用化归等数学思想方法,揭示事物的本质属性,培养学生的唯物史观.

五.教学重点和难点

1.教学重点

理解并掌握诱导公式.

2.教学难点

正确运用诱导公式,求三角函数值,化简三角函数式.

六.教法学法以及预期效果分析

“授人以鱼不如授之以鱼”, 作为一名老师,我们不仅要传授给学生数学知识,更重要的是传授给学生数学思想方法, 如何实现这一目的,要求我们每一位教者苦心钻研、认真探究.下面我从教法、学法、预期效果等三个方面做如下分析.

1.教法

数学教学是数学思维活动的教学,而不仅仅是数学活动的结果,数学学习的目的不仅仅是为了获得数学知识,更主要作用是为了训练人的思维技能,提高人的思维品质.

在本节课的教学过程中,本人以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式,还给学生“时间”、“空间”, 由易到难,由特殊到一般,尽力营造轻松的学习环境,让学生体味学习的快乐和成功的喜悦.

2.学法

“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,很多课堂教学常常以高起点、大容量、快推进的做法,以便教给学生更多的知识点,却忽略了学生接受知识需要时间消化,进而泯灭了学生学习的兴趣与热情.如何能让学生最大程度的消化知识,提高学习热情是教者必须思考的问题.

在本节课的教学过程中,本人引导学生的学法为思考问题、共同探讨、解决问题 简单应用、重现探索过程、练习巩固。让学生参与探索的全部过程,让学生在获取新知识及解决问题的方法后,合作交流、共同探索,使之由被动学习转化为主动的自主学习.

3.预期效果

本节课预期让学生能正确理解诱导公式的发现、证明过程,掌握诱导公式,并能熟练应用诱导公式了解一些简单的化简问题.

七.教学流程设计

(一)创设情景

1.复习锐角300,450,600的三角函数值;

2.复习任意角的三角函数定义;

3.问题:由 ,你能否知道sin2100的值吗?引如新课.

设计意图

自信的鼓励是增强学生学习数学的自信,简单易做的题加强了每个学生学习的热情,具体数据问题的出现,让学生既有好像会做的心理但又有迷惑的茫然,去发掘潜力期待寻找机会证明我能行,从而思考解决的办法.

(二)新知探究

1. 让学生发现300角的终边与2100角的终边之间有什么关系;

2.让学生发现300角的终边和2100角的终边与单位圆的交点的坐标有什么关系;

2100与sin300之间有什么关系.

设计意图

由特殊问题的引入,使学生容易了解,实现教学过程的平淡过度,为同学们探究发现任意角 与 的三角函数值的关系做好铺垫.

(三)问题一般化

探究一

1.探究发现任意角 的终边与 的终边关于原点对称;

2.探究发现任意角 的终边和 角的终边与单位圆的交点坐标关于原点对称;

3.探究发现任意角 与 的三角函数值的关系.

设计意图

(四)练习

利用诱导公式(二),口答下列三角函数值.

(1). ;(2). ;(3). .

喜悦之后让我们重新启航,接受新的挑战,引入新的问题.

(五)问题变形

1.探究任意角 与 的三角函数又有什么关系;

2.探究任意角 与 的三角函数之间又有什么关系.

设计意图

诱导公式(三)、(四)

给出本节课的课题

三角函数诱导公式

设计意图

标题的后出,让学生在经历整个探索过程后,还回味在探索,发现的成功喜悦中,猛然回头,哦,原来知识点已经轻松掌握,同时也是对本节课内容的小结.

(六)概括升华

的三角函数值,等于 的同名函数值,前面加上一个把 看成锐角时原函数值的符合.(即:函数名不变,符号看象限.)

设计意图

简便记忆公式.

(七)练习强化

求下列三角函数的值:(1)sin(-1000 ); (2). co.

设计意图

本练习的设置重点体现一题多解,让学生不仅学会灵活运用应用三角函数的诱导公式,还能养成灵活处理问题的良好习惯.这里还要给学生指出课本中的“负角”化为“正角”是针对具体负角而言的.

学生练习

化简: .

设计意图

重点加强对三角函数的诱导公式的综合应用.

(八)小结

1.小结使用诱导公式化简任意角的三角函数为锐角的步骤.

2.体会数形结合、对称、化归的思想.

3.“学会”学习的习惯.

(九)作业

1.课本p-27,第1,2,3小题;

2.附加课外题 略.

设计意图

加强学生对三角函数的诱导公式的记忆及灵活应用,附加题的设置有利于有能力的同学“更上一楼”.

(十)板书设计:(略)

八.课后反思

对本节内容在进行教学设计之前,本人反复阅读了课程标准和教材,针对教材的内容,编排了一系列问题,让学生亲历知识发生、发展的过程,积极投入到思维活动中来,通过与学生的互动交流,关注学生的思维发展,在逐渐展开中,引导学生用已学的知识、方法予以解决,并获得知识体系的更新与拓展,收到了一定的预期效果,尤其是练习的处理,让学生通过个人、小组、集体等多种解难释疑的尝试活动,感受“观察——归纳——概括——应用”等环节,在知识的形成、发展过程中展开思维,逐步培养学生发现问题、探索问题、解决问题的能力和创造性思维的能力,充分发挥了学生的主体作用,也提高了学生主体的合作意识,达到了设计中所预想的目标。

然而还有一些缺憾:对本节内容,难度不高,本人认为,教师的干预(讲解)还是太多。在以后的教学中,对于一些较简单的内容,应放手让学生多一些探究与合作。随着教育改革的深化,教学理念、教学模式、教学内容等教学因素,都在不断更新,作为数学教师要更新教学观念,从学生的全面发展来设计课堂教学,关注学生个性和潜能的发展,使教学过程更加切合《课程标准》的要求。用全新的理论来武装自己,让自己的课堂更有效。

高三数学教学设计篇十六

1、结合“摆筷子”的具体情境,经历编制2的乘法口诀的过程,进一步体会编制乘法口诀的方法。

2、掌握2的乘法口诀,会用已学过的乘法口诀进行乘法计算,掌握并能够熟练地运用。从而去解决简单的实际问题。

3、让学生尽快喜欢编制乘法口诀。

教学重点:编制并掌握2的乘法口诀。

教学难点:探索记忆2的乘法口诀的方法。

1、使学生通过操作、探究、合作交流来学习新知。

2、让学生经历2的乘法口诀的学习过程。

3、让学生在数学活动中获取新知,并结合统计的初步知识让学生对比、探究、交流,提高学生学习的主动性。愿意自己编口诀。

4、让学生经历自我修正、自我实现的过程。

一、创设情境,激趣导入。

师:老师听说,咱们班有许多同学都会做简单的家务活了,你们的爸爸妈妈好高兴啊!谁来介绍一下你常做哪些家务活呢?(板书课题:做家务)

二、活动探究,获取新知。

师:小明是怎么摆的?我们用小棒,帮他摆一摆好吗?(要求边摆边数)

师:你摆了几双筷子?几根筷子?

师:说说你是怎么数的。说意义 例:一双筷子有2根两双就是2个2,列式(到小组中一起列在卡片上)

2、师:能不能一边摆一边填上4页的表格?组织学生交流订正:

摆一双筷子怎样列乘法算式?摆2双,3双,4双……会吗?

3、组织学生独立列式后交流汇报

4、 编口诀

师:这些算式有什么特点?

你们能根据这9个乘法算式编出对应的2的乘法口诀吗?(先自己编写在书上 然后同桌订正)

设计说明:通过独立思考编出口诀,再和小组里的同学交流,形成共识,最后有在反思中巩固知识。使每一个学生都能有效地参与探索5的乘法口诀的过程。

5、整理2的乘法口诀。

三、规律探究。

师:2的乘法口诀中藏着许多秘密呢,等着你们去发现呢?快读读去寻找吧!(生自由读找)好谁先来说说你的发现。

1、 相邻的两句口诀的得数相差2,

2、 口诀里都是小的数在前面,

3、 得数都是双数

四、巩固应用。

1、 游戏:找朋友。教师出示乘法口诀,由桌子上有乘法算式的同学将算式将相应的算式举起来,其他同学判断。(全体参与,很好的练习方式。)

2、 p15第4题。

板书设计:

做家务

1×2=2 2×2=4 2×3=6 2×4=8

一二得二 二二得四 二三得六 二四得八

2×5=10 2×6=12 2×7=14 2×8=16

二五一十 二六十二 二七十四 二八十六

2×9=18 二九十八

【本文地址:http://www.xuefen.com.cn/zuowen/9993803.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档