总结不仅是对自己的一种交代,也是对他人工作的参考和借鉴。在总结中,要突出重点,简洁明了。勤奋和努力是成功的关键,但同时我们也要懂得适度的休息和放松。
北师大版三角形的面积教学设计篇一
人教版义务教育课程标准实验教科书五年级上册第84—86页。
(1)探索并掌握三角形面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。
(2)培养学生应用已有知识解决新问题的能力。
使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。
让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。
教学重点:探索并掌握三角形面积计算公式,能正确计算三角形的面积。
教学难点:三角形面积公式的探索过程。
教学关键:让学生经历操作、合作交流、归纳发现和抽象公式的过程。
教具准备:课件、平行四边形纸片、两个完全一样的三角形各三组、剪刀等。
学具准备:每个小组至少准备完全一样的直角三角形、锐角三角形、钝角三角形各两个,一个平行四边形,剪刀。
教学过程:
(屏幕出示红领巾图)
师:同学们,红领巾是什么形状的?(三角形)你会算三角形的面积吗?这节课我们一起研究、探索这个问题。(板书:三角形面积的计算)
1.寻找思路:(出示一个平行四边形)
师:(1)平行四边形面积怎样计算?(板书:平行四边形面积=底×高)
(2)观察:沿平行四边形对角线剪开成两个三角形。
师:两个三角形的形状,大小有什么关系?(完全一样)
三角形面积与原平行四边形的面积有什么关系?
师:你想用什么办法探索三角形面积的计算方法?
(指名回答,学生可能提供许多思路,只要说的合理,教师都应给予肯定、评价鼓励。)
北师大版三角形的面积教学设计篇二
使学生进一步熟悉三角形面积的计算公式,熟练地计算不同三角形的面积
内容教师活动学生活动
一、练习
二、总结一、第5题
可以通过计算解决,也可以把三角形的底和高与平行四边形逐一进行比较。教学时,重点放在后一种方法的比较上。
二、第6题
要使学生画出的三角形的面积是9平方厘米,三角形底和高的乘积应是18。因此,方格纸上画出的三角形可以分别是:底6cm,高3cm;底3cm,高6cm;底9cm,高2cm;底2cm,高9cm;底1cm,高18cm。
三、第9题
测量红领巾高时,可以启发学生把红领巾对折后再测量。
四、第10题
要使学生认识到:涂色三角形与它所在的平行四边形等底等高,所以每个涂色三角形的面积都是它所在平行四边形面积的一半。
五、思考题
每个大三角形的面积是16平方厘米;中等三角形的面积是8平方厘米;每个小三角形的面积是4平方厘米;平行四边形和小正方形的面积是8平方厘米。
通过今天的练习我们对三角形面积计算方法的运用就更加熟练了,在以后的学习生活中我们还要多用它去解决一些实际问题,达到学以至用的目的。
北师大版三角形的面积教学设计篇三
教材简析:
“三角形的面积”是一节常见的课,一般的做法是在由学生拼组后直接推导出三角形的面积计算公式。本设计最大的特点是改革了这一常见的做法,在拼组后,通过对三角形与拼成的平行四边形之间的联系的探究,指导学生直接利用这种关系尝试计算三角形的面积,在积累了一定的感性认识后,再引导学生归纳、总结三角形的面积计算公式,更能为学生所接受。
教学内容:
教学目标:
1、探索并掌握三角形的计算面积公式,能应用公式正确计算三角形的面积;
3、让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。
教学重、难点:
重点是探索并掌握三角形的面积公式,能正确计算三角形的面积。难点是理解三角形面积公式的推导过程和公式的含义。
教、学具准备:
cai课件、红领巾、每个小组准备相同的直角三角形、锐角三角形、钝角三角形各两个。
教学过程:
一、创设情境、导入新课。
1、提出问题。
2、揭示课题。
师:那我们今天就一起来研究怎样计算“三角形的面积”?(板书课题:三角形的面积)。
二、操作“转化”,推导公式。
1、寻找思路。
师:大家想想,怎样“转化”呢?可不可以用“割补”的方法呢?
2、动手“转化”。
师:看来用“割补”方法很难“转化”。那我们可不可以用拼一拼的方法来“转化”呢?老师为每个小组的同学都准备了两个完全一样的三角形,请大家拼一拼,看看能不能把三角形“转化”成一个我们已经学过的图形。开始吧。
小组合作拼组图形,教师巡视指导。
[应变预设:一般情况下学生会拼出如下几种形状,老师选择其中三个图形贴到黑板上。]。
[评析:引导学生观察三角形的不同类别,弄清拼成不同形状的原因。]。
3、尝试计算。
师:同学们真棒,大家都发现,用两个完全相同的三角形可以拼成一个平行四边形或一个长方形。现在请同学们看图1。
师:知道了平行四边形的底和高,你们能求出所拼成的平行四边形的面积吗?算一算吧。
师:算完了吗?它的面积是多大?
师:我们知道,这个平行四边形是用两个完全一样的`三角形拼成的,平行四边形的面积是20平方厘米,那这个绿色三角形的面积是多大呢?想一想,小组同学商量商量吧。
师:同学们太了不起了,开动脑筋,已经算出了这个绿色三角形的面积。
师:现在请同学们看屏幕,(课件出示,如下图)你们会计算屏幕上这个蓝色三角形(底3cm,高2cm)的面积吗?算一算。
三、应用公式,解决问题。
师:那就请大家动手量一量它的底和高吧。
师:量完了吗?请大家算一算,看看做这样一条红领巾到底需要多少红布?
[应变预设:指导学生运用公式进行正确的计算,展示学生的算式,集体订正。]。
四、联系生活,适当拓展。
[应变预设:指导运用公式进行正确的计算,,然后集体订正。]。
师:同学们,你们还能算出这三个三角形的面积吗?(课件出示如下图1:底3厘米,高4厘米;图2:底4厘米,高1.5厘米;图3:底2.5厘米,高2.8厘米)看谁算得又对又快!
四、全课总结,反思体验。
教师:这节课你们学习了什么?有哪些收获?
北师大版三角形的面积教学设计篇四
人教版五年级上册84----85页
三角形的面积是本单元教学内容的第二课时,是在学生掌握了三角形的特征以及长方形、正方形、平行四边形面积计算的基础上学习的,是进一步学习梯形面积和组合图形面积的基础,教材首先由怎样计算红领巾的面积这样一个实际问题引入三角形面积计算的问题,接着根据平行四边形面积公式推导的方法提出解决问题的思路,把三角形也转化成学过的图形,通过学生动手操作和探索,推导出三角形面积计算公式,最后用字母表示出面积计算公式,这样一方面使学生初步体会到几何图形的位置变换和转化是有规律的,另一方面有助于发展学生的空间观念。
学生在以前的学习中,初步认识了各种平面图形的特征,掌握了长方形、正方形、平行四边形的面积计算,学生学习时并不陌生,在前面的图形教学中,学生学会了运用折、剪、拼、量、算等方法探究有关图形的知识,在学习方法上也有一定的基础,教学时从学生的现实生活与日常经验出发,设置贴近生活现实的情境,通过多姿多彩的图形,把学习过程变成有趣的、充满想象和富有推理的活动。
1、引导学生用多种方法推导三角形面积的计算公式,理解长方形、平行四边形和三角形之间的内在联系。
2、通过操作使学生进一步学习用转化的思想方法解决新问题。
3、理解三角形的面积与形状无关,与底和高有关,会运用面积公式求三角形面积。
4、引导学生积极探索解决问题的策略,发展动手操作、观察、分析、推理、概括等多种能力,并培养学生的创新意识。
理解并掌握三角形面积的计算公式。
理解三角形面积的推导过程。
演示讲解、指导实践。
学法:小组合作、动手操作。
三角形卡片、多媒体课件
一、情境引入
师:同学们,我们每天都佩戴着鲜艳的红领巾,高高兴兴地来到学校学习新的知识,那你知道做一条红领巾需要多少布料呢?(不知道)我们佩戴的红领巾是什么形状的?(三角形),怎样计算三角形的面积呢?这节课我们就一起来研究三角形的计算方法(板书课题)
[设计意图]通过情境的创设,给学生提供现实的问题情境,使学生产生解决问题的欲望,积极主动地参与到学习活动之中。
二、探究新知
1、复师:回忆一下,平行四边形面积计算公式是什么?是怎么推导的?
师:我们是先把平行四边形转化成长方形,运用学过的长方形面积的计算公式,找到平行四边形与长方形之间的联系,推导出了平行四边形面积的计算公式,今天这节课,我们继续用转化的数学思想来探索三角形的面积怎样计算。
[设计意图]抓住新旧知识的生长点进行复习,检验学生对已有知识的掌握情况和转化思想的理解情况,建立起新旧知识的联系,为学习新知做好铺垫。
2、第一次操作实践
师:好,那怎样把三角形转化成我们所学过的图形呢?请同学们拿出学具袋里的各种三角形,两人一组想一想,拼一拼。(教师巡回指导)
3、交流反馈
师:同学们都拼好了,谁来说说你是怎样拼的?
北师大版三角形的面积教学设计篇五
教学内容:人教版义务教育课程标准实验教科书五年级上册第84—86页。
教学目标:
1.知识与技能:
(1)探索并掌握三角形面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。
(2)培养学生应用已有知识解决新问题的能力。
2.过程与方法:使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。
3.情感、态度与价值观:让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。
教学重点:探索并掌握三角形面积计算公式,能正确计算三角形的面积。
教学难点:三角形面积公式的探索过程。
教学关键:让学生经历操作、合作交流、归纳发现和抽象公式的过程。
教具准备:课件、平行四边形纸片、两个完全一样的三角形各三组、剪刀等。
学具准备:每个小组至少准备完全一样的直角三角形、锐角三角形、钝角三角形各两个,一个平行四边形,剪刀。
教学过程:
一、创设情境,揭示课题
(屏幕出示红领巾图)
师:同学们,红领巾是什么形状的?(三角形)你会算三角形的面积吗?这节课我们一起研究、探索这个问题。(板书:三角形面积的计算)
二、探索交流、归纳新知
1.寻找思路:(出示一个平行四边形)
师:(1)平行四边形面积怎样计算?(板书:平行四边形面积=底×高)
(2)观察:沿平行四边形对角线剪开成两个三角形。
师:两个三角形的形状,大小有什么关系?(完全一样)
三角形面积与原平行四边形的面积有什么关系?
师:你想用什么办法探索三角形面积的计算方法?
(指名回答,学生可能提供许多思路,只要说的合理,教师都应给予肯定、评价鼓励。)
北师大版三角形的面积教学设计篇六
《三角形面积》这节课的内容是在平得四边形面积计算的基础上进行教学的,主要是引导学生通过学平行四边形的面积公式推导去理解和掌握三角形面积公式。根据课程新理念,让学生自主来学习,师做适当的相应指导。因此,教学中我注重了学生动手操作,从操作中,发现问题,解决问题。
一、拼拼摆摆,动手操作,创造性的使用教材。
在教学中,我让学生动手操作,分别将三组中两个完全一样的三角形拼成一个平行四边形,并比较每个三角形与拼成的平行四边形各部分间的关系,同时在操作中向学生渗透旋转、平移的方法,让学生体验和感知三角形面积公式的推导过程。在这个过程中,学生们表现出了浓厚的兴趣,个个都很积极、很投入地动手操作,极大调动了学生思维活动。学生真正成为了学习的主体。但课堂上学生活动的时间不够多,再就是学生观察对比三角形和拼成的平行四边形底和高的关系时,表达的不够完善,这是本课中的缺憾。
二、引导学生发现问题、思考问题,培养合作精神。
在这节课中,平行四边形面积公式与三角形面积公式有何不同,是值得引导学生去发现的问题,只有发现了不同之处,才能进一步去思考、去探索研究三角形面积公式中的“除以2”是怎么来的?也才能在今后的计算中省去不必要的麻烦。在探讨这个问题时,也可以采用小组讨论的方式,在讨论中发现问题,解决问题,决不能包办代替。小组讨论既可培养学生的合作精神,又可活跃课堂气氛。
三、应用公式解决生活中的问题。
新课程非常重视学生在活动中的体验,学会运用学过的知识解决生活中的实际问题是新课改过程中的一个重要内容,尤其强调学生身临其境的体验。为了让学生运用所学三角形面积公式解决实际问题,我补充了一些生活中的实例,比如:学校要整修三角形的花坛,求整修的面积,要制作一个三角形与正方形等组合而成的宣传刊版,求刊版的面积等等,学生尝到了应用知识的快乐,课堂气氛很活跃。
此外,在这节课的教学过程中,我发现了自己平时教学方式上的不足。例如学生在回答问题时,我有时操之过急,没给足够的时间,就自己说出来了。还有就是对于重难点的突破有点儿急于求成,没有抓住课堂生成的资源给学生及时的引导,课堂逊色不少,同时使学生在后面的练习题中解决问题显得吃力。
以上就是我在这节课后做的简单的回顾,很多环节需要在今后的课堂教学中逐步完善。
北师大版三角形的面积教学设计篇七
:从不会计算的面积图形中揭示课题,激发学生的探究兴趣。
1、玩游戏,小组内交流问题。
师:刚才同学们玩了一次折一折的游戏,想不想再继续玩?(想)好,现在我们再来玩一个。请听好要求:拿出信封里面的学具,从中找出两个形状、大小完全一样的三角形拼一拼,看你能发现了什么?同时在拼时要思考以下几个问题:
(课件出示以下问题)。
a、两个完全一样的三角形能拼出什么图形?
b、拼成图形的面积你会算吗?
c、拼成的图形与原来每一个三角形有什么联系?
(学生在小组里动手拼一拼,并相互交流以上问题)。
北师大版三角形的面积教学设计篇八
三角形的面积是在学生掌握了三角形的特征以及长方形、正方形面积计算的基础上进行教学的。通过对这部分内容的教学,使学生理解并掌握三角形面积计算公式,会应用公式计算三角形的面积,同时加深三角形与长方形、正方形之间内在联系的认识,培养学生的实际操作能力。进一步发展学生的空间观念和思维能力,提高学生的数学素养。
在学习三角形的面积这一内容前,学生已经认识了三角形的特征;在学习长方形面积、正方形面积以及求组合图形的面积时,已经学会割、补、移等方法,也学会了把未知的学习问题转化为已知的问题。因此在教学三角形的面积这课时,学生已经具备了一定的知识准备和能力基础。
1、经历三角形面积公式的推导过程,理解公式的意义。
2、理解三角形的底和高与“被转化长方形”长和宽之间的关系。
3、会用三角形的面积公式计算三角形的面积。
4、培养学生运用所学知识解决简单的实际问题的能力,体验数学应用价值,使学生感受到数学就在身边。
三角形面积公式的推导。
理解三角形是同底(长)等高(宽)长方形面积的一半。
一、导入阶段
通过故事情景产生生活中三角形比较大小的问题:
1、比三角形的大小用数学语言来表达是比什么?
2、采用哪些方法可以比较呢?
小结:运用透明方格纸来比较三角形的大小是一种方法,但你感觉怎样?
二、探究阶段
(一)画三角形。
1、每个学生拿出准备好的长方形纸,按要求画三角形。
操作说明:
(1)以长方形纸的一边作为三角形的底边。
(2)以对边的任意一点作为三角形的顶点。
(3)连接顶点与对面的两个角。
(4)你画了一个什么样的三角形?
2、大组交流。
4、观察已画三角形与长方形之间的特殊关系
(二)实验
1、剪拼三角形。
操作说明:
(1)剪下你所画的三角形。
(2)将剩下部分拼到剪成的三角形中。
思考:剩下部分拼成的三角形是否与剪成的三角形一样大?
(3)填写实验报告。
2、学生完成报告后交流
(三)归纳
根据学生的实验得出结论:
一个直角三角形的面积是相应的长方形面积的一半。
一个锐角三角形的面积是相应的长方形面积的一半。
一个钝角三角形的面积是相应的长方形面积的一半。
(1)请学生用一句话来概括。
(2)用数学的方式来表示:三角形面积=相应长方形面积/2
(3)根据长方形的面积公式,推导三角形的面积公式
(4)用字母表示三角形的面积公式。
三、运用阶段:
1、教学例1
2、计算导入阶段的3个三角形的面积
(1)分别测出3个三角形的底与高,作好记录。
(2)计算出每个三角形的面积。
(3)交流。
拓展:找出下列图形中面积相等的两个三角形,为什么?
四、总结
这节课我们学习了什么?2、计算三角形面积要知道那些条件?
北师大版三角形的面积教学设计篇九
1、知识与技能:
(1)探索并掌握三角形面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。
(2)培养学生应用已有知识解决新问题的能力。
2、过程与方法:
使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。
3、情感、态度与价值观:
让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。
探索并掌握三角形面积计算公式,能正确计算三角形的面积。
三角形面积公式的探索过程。
让学生经历操作、合作交流、归纳发现和抽象公式的过程。
课件、平行四边形纸片、两个完全一样的三角形各三组、剪刀等。
每个小组至少准备完全一样的直角三角形、锐角三角形、钝角三角形各两个,一个平行四边形,剪刀。
一、创设情境,揭示课题。
(屏幕出示红领巾图)。
师:同学们,红领巾是什么形状的?(三角形)你会算三角形的面积吗?这节课我们一起研究、探索这个问题。(板书:三角形面积的计算)。
二、探索交流、归纳新知。
寻找思路:(出示一个平行四边形)。
师:
(1)平行四边形面积怎样计算?(板书:平行四边形面积=底×高)。
(2)观察:沿平行四边形对角线剪开成两个三角形。
师:两个三角形的形状,大小有什么关系?(完全一样)。
三角形面积与原平行四边形的面积有什么关系?
师:你想用什么办法探索三角形面积的计算方法?
(指名回答,学生可能提供许多思路,只要说的合理,教师都应给予肯定、评价鼓励。)。
北师大版三角形的面积教学设计篇十
教学目标:
1、在理解的基础上掌握三角形的面积计算公式,能正确计算三角形的面积。
2、通过操作、观察和比较,使学生认识转化的思想方法在研究三角形面积时的运用。
教学重点:
掌握三角形的面积计算公式,能正确计算三角形的面积。
教学难点:
培养学生分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。
课前准备:
直角三角形、锐角三角形、钝角三角形各一对,课件。
教学过程:
一、复习:
1、出示一个平行四边形。(课件)。
“这是什么图形?”“平行四边形面积计算公式是什么?”
“用字母怎样表示?”“我们在推导平行四边形面积公式时,运用了什么方法?”
“通过割补法,把平行四边形转化成了什么图形?”
2、揭示课题:“同学们周日预习的主要内容是什么?”(板书:三角形的面积)。
二、探究新知:
1、导入:
“通过预习,同学们对于三角形的面积有了一定的了解,那么,我们现在就要考查同学们预习的效果,如果有疑问,你看一看通过我们共同的努力是否把它解决了。”
“三角形的面积计算在我们没有预习前是一个陌生的知识,同学们想一想,三角形的面积计算是否可以像平行四边形那样,把它转化成我们学过的图形呢?”
2、小组学习:拼组三角形。
让学生拿起桌面上的两个直角三角形。
“这两个三角形是什么三角形?”
“它们有什么特点?”(引导学生说出“完全一样”)。
以此引导学生观察另外两组三角形。
“同学们想一想,用两个完全一样的三角形能否拼出我们学过的图形呢?而且拼出图形的面积还会计算。”
以小组为单位活动。
完成后汇报、交流。
3、通过观察、分析和计算,总结三角形面积计算公式。
“老师把用两个完全一样的三角形拼成的平行四边形放大了贴在黑板上,同学们注意观察,听老师的提问。”
“每个平行四边形的面积可以求出来吗?”“为什么?”
学生答出以后,写出每个平行四边形的底和高。
“这样能求了吗?”(板书算式)。
“如果让你求其中一个三角形的面积,怎样列式?”(板书算式)。
“通过我们上面求平行四边形和三角形的面积,同学们看一看,三角形和拼成的平行四边形有什么关系?”
引导学生说出。第二个和第三个同样讲解。
“同学们看一看,通过我们的实际操作和列式计算,我们是不是可以得出一些结论呢?”(课件出示,填空)。
“你们可以总结出三角形的面积计算公式吗?”
“底×高”求的是什么?为什么要除以2?
“计算三角形的面积必须知道几个条件?是哪几个?
4、应用计算公式解决问题。
出示例题,让学生独立计算,解答后汇报、交流。
三、巩固练习:课件出示(略)。
北师大版三角形的面积教学设计篇十一
教学目标:
1.知识与技能:
(1)探索并掌握三角形面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。
(2)培养学生应用已有知识解决新问题的能力。
2.过程与方法:
使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。
3.情感、态度与价值观:
让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。
教学重点:
探索并掌握三角形面积计算公式,能正确计算三角形的面积。
教学难点:
教学关键:
让学生经历操作、合作交流、归纳发现和抽象公式的过程。
教具准备:
课件、平行四边形纸片、两个完全一样的三角形各三组、剪刀等。
学具准备:。
每个小组至少准备完全一样的直角三角形、锐角三角形、钝角三角形各两个,一个平行四边形,剪刀。
教学过程:
一、创设情境,揭示课题。
(屏幕出示红领巾图)。
师:同学们,红领巾是什么形状的?(三角形)你会算三角形的面积吗?这节课我们一起研究、探索这个问题。(板书:三角形面积的计算)。
二、探索交流、归纳新知。
寻找思路:(出示一个平行四边形)。
师:
(1)平行四边形面积怎样计算?(板书:平行四边形面积=底×高)。
(2)观察:沿平行四边形对角线剪开成两个三角形。
师:两个三角形的形状,大小有什么关系?(完全一样)。
三角形面积与原平行四边形的面积有什么关系?
师:你想用什么办法探索三角形面积的计算方法?
(指名回答,学生可能提供许多思路,只要说的合理,教师都应给予肯定、评价鼓励。)。
北师大版三角形的面积教学设计篇十二
[设计意图]学生在平行四边形面积推导的基础上,运用转化的数学思想,通过动手操作,推导出三角形的面积公式。在操作过程中,教师把自主学习的权利还给了学生,使学生学得积极主动。在操作、观察、分析、推理、概括的过程中,培养学生的合作能力、动手能力、解决问题的能力。
活动二:除了刚才我们用的三角形面积公式推导方法外,请同学们再用剪拼的方法进行推导。
(1)小组讨论:怎样剪拼可以推导出三角形的面积公式?
(2)交流汇报(请学生展示剪拼过程)。
北师大版三角形的面积教学设计篇十三
那么,做一条红领巾必须知道什么?(面积)。
红领巾是什么形状的?(三角形)。
怎样才能算出三角形的面积呢?这节课我们就来共同探究三角形面积的计算方法。(板书课题)。
[设计意图]通过学生熟悉的情境,使学生产生解决问题的欲望,并能积极主动的投入到探究活动中。
请同学们回忆一下前面我们学过的平行四边形的面积是怎样推导出来的?(学生口述)。
活动一:
请同学们拿出准备的三角形,仿照我们推导平行四边形面积的方法,试着拼一拼,看能不能推导出三角形的面积公式。动手前,注意老师提出的这几个问题:
你选择两个怎样的三角形拼图?能拼出什么图形?拼出的图形的面积你会算吗?拼出的图形与原来的。三角形有什么联系?(屏幕出示)。
(1)学生分小组进行操作实践活动。
(2)汇报交流操作结果(请学生将自己的拼图贴于黑板上,对照拼图进行汇报交流,不完整的地方,小组内其他同学补充。教师根据学生的汇报出示相应的课件)。
拼法一:用两个完全一样的直角三角形拼成一个长方形,三角形的一条直角边(底)相当于长方形的长,另一条直角边(高)相当于长方形的宽,长方形的面积相当于三角形面积的两倍,因为长方形的面积=长宽,所以,三角形的面积=底高2。
拼法二:两个完全一样的锐角三角形拼成一个平行四边形,平行四边形的底相当于三角形的底,平行四边形的高相当于三角形的高,平行四边形的面积相当于三角形的2倍,平行四边形的面积=底高,所以三角形的面积=底高2。
学生汇报,教师板书:
平行四边形的面积=底高。
拼法三:两个完全一样的钝角三角形拼成一个平行四边形。
拼法四:两个完全一样的直角三角形还可拼成一个平行四边形。
拼法五:两个完全一样的等腰直角三角形可拼成一个正方形。
教师概括:通过动手我们发现,两个完全一样的三角形都可以拼成一个平行四边形(或长方形或正方形)这个平行四边形的底相当于三角形的底,平行四边形的高相当于三角形的高,因为每个三角形的面积等于拼成的平行四边形面积的一半,所以,推出:
[设计意图]学生在平行四边形面积推导的基础上,运用转化的数学思想,通过动手操作,推导出三角形的面积公式。在操作过程中,教师把自主学习的权利还给了学生,使学生学得积极主动。在操作、观察、分析、推理、概括的过程中,培养学生的合作能力、动手能力、解决问题的能力。
活动二:
除了刚才我们用的三角形面积公式推导方法外,请同学们再用剪拼的方法进行推导。
(1)小组讨论:怎样剪拼可以推导出三角形的面积公式?
(2)交流汇报(请学生展示剪拼过程)。
中线。
中线。
平行四边形的面积=底高。
(三角形的面积)(三角形的底)(三角形高的一半)。
活动三:
老师还会一种推导方法,叫折叠法,看哪位同学最聪明,能用这种方法推导出三角形的面积公式来。
学生思考,得出结果,汇报交流并演示折叠过程。
教师讲解,并用课件演示。
长方形的面积=长宽。
(三角形的面积)(三角形的底2)(三角形高的2)。
[设计意图]让学生体会到解决问题方法的多样性。这对有余力的学生是一种提高,进一步培养了学生的创新意识,开阔了学生的思维,使学生也体会到了学习数学的乐趣。
s=ah2(板书)。
4、公式运用。
出示例题:王阿姨计划做的红领巾的底是100㎝,高是33㎝,红领巾的面积是多少?
(1)学生尝试完成。
(2)交流做法和结果。
s=ah2。
=100332。
=33002。
=1650㎝2。
三
2、这些道路交通警示标志你认识吗?算一算一块标志牌的面积大约是多少平方分米?
176㎡。
[设计意图]通过有层次的练习,使学生能够较好的巩固所学知识,开拓思维。2小题的设计又对学生进行了交通安全教育。
今天我们学习了三角形面积的计算方法,你都有哪些收获?
北师大版三角形的面积教学设计篇十四
师:同学们,我们已经学习了平行四边形的面积公式,今天这节课我们要学习三角形的面积计算。(教师板书:三角形的面积计算)。
现在我们手上有一个三角形,(教师出示三角形)有没有办法知道它的面积呢?(学生顿时在下面议论纷纷)请拿出你们课前准备的三角形、方格纸、剪刀,每个同学可以利用你们手上的这些学具和工具,四个同学一组进行讨论,用什么办法可以求出你手上的三角形面积。
(学生熟练地四人围成一组,有一组同学刚围成一组,就急着在猜测答案:“这个三角形面积是24平方厘米。”“不对,是18平方厘米。”“这也不对,好像是12平方厘米”“我们把它放在方格纸上数一数,看看到底是多少?”另一组同学却十分安静地在议论:“把这个三角形剪开来,一小块一小块计算。”“但剪出来还有小三角形怎么办?”“这个办法也不行,那怎么办?”“我有一个办法,把它拼成平行四边形。”“怎么拼呢?”还有一组同学把三角形摆来摆去。“把它与平行四边形比看。”大约3分钟后,教师在巡视各组同学们的讨论后,发现有5组同学已经找到了答案,还有3组同学还在讨论。)。
师:同学们,刚才我在巡视时,已发现有5个小组同学已经知道了三角形的面积,现在我们一起来讨论。
师:你们是怎么知道这个答案的?
生:我们把这个三角形放到平行四边形的上面,发现它的面积是平行四边形的一半。(学生边说,边演示给大家看。如图2―3)。
图2―3。
师:你们怎么知道三角形的面积是平行四边形面积的一半呢?
生:我们刚才把平行四边形沿着对角线剪开,然后把它们叠放在一起,正好能重合。
师:这组同学说得好,答案是12平方厘米。那么还有不同方法吗?
生:我们小组有个简单办法,只要把三角形放在方格纸上,马上就可以数出这个三角形的面积。
师:那么请你在投影仪上演示一下。
生:(走到讲台边的投影仪旁,将方格纸放在投影仪上,然后放上三角形。如图2―4)因为每小方格代表1平方厘米,不满一格的都按半格算,所以我们数出来一共是12格,也就是12平方厘米。
图2―4。
师:这组同学是通过数方格得到答案,还有不同的方法吗?
生:我们小组的方法与上面二组同学不同。我们是把这个三角形剪开来,拼成一个平行四边形。(拿着剪拼的图形进行演示。如图3―5)。
图2―5。
师:那你们怎么知道剪下来的三角形一定可以拼成平形四边形呢?
生2:我们开始剪的时候,也发现拼不成平形四边形,后来剪了几次,发现只要沿着中间的一条线剪,就可以拼成平行四边形。
师:这个小组的办法不错,还有不同的方法吗?
生:我们小组也是数出来的,开始把三角形放在方格纸上,发现数不准确,有好几个答案。后来知道要把三角形的底边的两个顶点与方格纸内的小正方形顶点对齐,就数出12格。
生:在这些方法中一共有两种思路,一种是数格子,还有一种是把三角形转化成平行四边形。
师:说得好。虽然刚才有很多种不同的方法,但把这些方法整理一下,我们就可以发现这些方法的基本思路是两种:一种是数格子,通过一格一格地数,知道了三角形的面积;还有一种是转化成平行四边形,通过计算平行四边形的面积,再得出三角形的面积。
〖案例点评〗。
在本案例中,教师创设了一个学生自主探索三角形面积的平台,课前教师请学生准备了一些三角形、平行四边形、方格纸与剪刀等工具,然后向学生提出了具体的探索要求――计算手上三角形的面积。从课堂学生的表现来看,由于教师放手给学生进行探索,因此,他们探索的各种途径也是不同的,有的通过数格子获得面积,有的通过拼图知道面积,也有的通过剪拼后得到面积,这充分说明,只要放给学生进行探索,相信学生会有能力完成。
〖思考与讨论〗。
北师大版三角形的面积教学设计篇十五
1、在讨论、操作等活动中,帮助幼儿认识三角形。
2、诱发幼儿对图形的兴趣和积极投入的态度。
【活动准备】。
六幅三角形的图案,若干长短不一的纸棒。
【活动过程】。
一、情境导入:
师:今天老师带来了一个新朋友,你们看它是谁?(教师出示三角形图片)(幼:三角形)。
师:你还在哪里看到过三角形?(幼:屋顶、积木……)。
师:我们小二班里有没有三角形宝宝的?
二、感知三角形:
师:三角形宝宝十分的调皮,它很喜欢和小朋友捉迷藏,你们看看它躲在哪里?(教师出示六幅有三角形的图案,与幼儿一同寻出隐藏的三角形)。
师:这里有这么多的三角形宝宝,现在老师要给小朋友们变出一个三角形出来。小朋友们看纸上有什么?(三个点)。
师:现在老师要用这三个点变出一个三角形出来。三个小点是好朋友,它们要手拉手。(教师将三点连接)。
师:你们看到老师是怎么把三个点变出一个三角形的?(用线将三点连起来)。
师:那小朋友们猜猜看如果三个小点排成一条直线能不能变出三角形宝宝的呀?(教师将点一直线排列)教师根据幼儿猜测进行实验证明。
师:小朋友看看这些图案里的三角形和老师变出来的三角形有什么一样的地方?(引导幼儿观察三角形的共同特征,发现三角形有三条边、三个角)。
教师小结:三角形的共同特点:三角形宝宝都有三条边,三个角,而且如果小朋友也想和老师一样想用三个小圆点变出三角形宝宝,就不能让小圆点宝宝们站在一条直线上。
三、幼儿操作:
师:现在老师要请小朋友们来做魔术师,老师这里有长短不一样的小木棒,请小朋友们来帮助这个三角形宝宝变出另外一个三角形宝宝出来。
师:小朋友们给三角形宝宝找到了这么多的朋友,它可开心了。三角形宝宝说:我有这么多的三角形朋友,可我也想和小二班的小朋友做朋友,小二班的小朋友可不要忘记“我”。
师:小朋友们会不会忘记三角形宝宝呀?来给三角形宝宝说说看它是长什么样的?(引导幼儿再次记忆三角形的特征)。
【活动反思】。
本次活动目标基本完成,幼儿对于三角形的认识更加深刻。动手操作环节幼儿积极性高,三角形形状也完整。本次活动需要改进的地方是:
1、在幼儿指出图片中三角形时,教师应该及使用笔标记出来,并可做一些语言引导,帮助幼儿初步认识三角形。
2、用点画三角形时可以让幼儿自己先动手,在进行活动,不同的操作环节有助于帮助幼儿提高兴趣,加深印象。
北师大版三角形的面积教学设计篇十六
教材简析:
长方形、正方形、平行四边形、三角形和梯形,都是由三条或三条以上的线段,首尾顺序相接而组成的封闭图形。它们相互之间不仅在特征上有着密切的联系,而且在推导面积计算公式的过程中也有着密切的联系。三角形面积的计算是学生在充分认识了三角形的特征及掌握了长方形、正方形、平行四边形面积计算的基础上学习的,其公式推导的方法与平行四边形面积计算公式的推导方法有相似之处,都是将图形转化成已学过的图形,探索研究未知图形与已学图形之间的联系,从而找出面积的计算方法。几何初步知识的教学是培养学生抽象概括能力、思维能力和建立空间观念的重要途径,学生掌握了三角形面积的计算方法和获取这些知识的能力后,又为进一步学习梯形面积、圆的面积打下了良好的基础。
教学目标:
1、认知目标。
经历三角形面积计算公式的探索过程,理解三角形的面积计算公式,掌握求三角形面积的计算方法。
2、能力目标。
通过学生动手拼摆,渗透旋转、平移的数学思想,引导学生用多种方法推导公式,发散学生的思维,培养学生求异思维的能力。同时学生通过自主探索学习活动,提高实际操作、自主探索能力及运用三角形的面积公式解决实际问题的能力。
3、情感目标。
在探索学习活动中,培养实践能力,培养学生主动参与学习活动的意识、合作意识和创新意识,体会数学问题的探索性,并获得积极的情感体验和成功体验。
教学重难点:三角形面积公式推导过程。
教学媒体:多媒体课件。
教学准备:完全相同的两个直角三角形、两个锐角三角形、两个钝角三角形。
教学过程:
一、创设情景,引入探索。
师:在讲课之前,首先,谁愿意给大家说一说,你有什么爱好?
那么如果遇到花坛形状是这样普通的三角形,面积怎么计算呢?我们今天一起来研究,大家有兴趣吗?(教师板书课题:三角形面积的计算)。
二、自主探索,合作交流。
1、引导学生看大屏幕(出示不同类型的三角形),提出思考:谁来说说你看到了什么?
3、谈话启思。
请大。
4、操作探索。
(1)小组合作探索、操作。
(2)小组交流。
5、开始现场发布会,展示学生的拼摆情况。
三、尝试练习。
四、实践运用,拓展创新。
下图中哪个三角形的面积与画阴影三角形的面积相等?为什么?
你能在图中再画一个与画阴影的三角形面积相等的三角形吗?试试看?
五、质疑调节,总结延伸。
师:通过这节课的探索学习,你有什么收获?
六、布置作业,课后探索。
北师大版三角形的面积教学设计篇十七
教材简析:
“三角形的面积”是一节常见的课,一般的做法是在由学生拼组后直接推导出三角形的面积计算公式。本设计最大的特点是改革了这一常见的做法,在拼组后,通过对三角形与拼成的平行四边形之间的联系的探究,指导学生直接利用这种关系尝试计算三角形的面积,在积累了一定的感性认识后,再引导学生归纳、总结三角形的面积计算公式,更能为学生所接受。
教学内容:
苏教版标准实验教科书《数学》五年级上册p15~p16的内容,三角形的面积。
教学目标:
1、探索并掌握三角形的计算面积公式,能应用公式正确计算三角形的面积;
3、让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。
教学重、难点:
重点是探索并掌握三角形的面积公式,能正确计算三角形的面积。难点是理解三角形面积公式的推导过程和公式的含义。
教、学具准备:
cai课件、红领巾、每个小组准备相同的直角三角形、锐角三角形、钝角三角形各两个。
教学过程:
一、创设情境、导入新课。
1、提出问题。
2、揭示课题。
师:那我们今天就一起来研究怎样计算“三角形的面积”?(板书课题:三角形的面积)。
二、操作“转化”,推导公式。
1、寻找思路。
师:大家想想,怎样“转化”呢?可不可以用“割补”的方法呢?
2、动手“转化”。
师:看来用“割补”方法很难“转化”。那我们可不可以用拼一拼的方法来“转化”呢?老师为每个小组的同学都准备了两个完全一样的三角形,请大家拼一拼,看看能不能把三角形“转化”成一个我们已经学过的图形。开始吧。
小组合作拼组图形,教师巡视指导。
[应变预设:一般情况下学生会拼出如下几种形状,老师选择其中三个图形贴到黑板上。]。
[评析:引导学生观察三角形的不同类别,弄清拼成不同形状的原因。]。
3、尝试计算。
师:同学们真棒,大家都发现,用两个完全相同的三角形可以拼成一个平行四边形或一个长方形。现在请同学们看图1。
师:知道了平行四边形的底和高,你们能求出所拼成的平行四边形的面积吗?算一算吧。
师:算完了吗?它的面积是多大?
师:我们知道,这个平行四边形是用两个完全一样的三角形拼成的,平行四边形的面积是20平方厘米,那这个绿色三角形的面积是多大呢?想一想,小组同学商量商量吧。
师:同学们太了不起了,开动脑筋,已经算出了这个绿色三角形的面积。
师:现在请同学们看屏幕,(课件出示,如下图)你们会计算屏幕上这个蓝色三角形(底3cm,高2cm)的面积吗?算一算。
4、推导公式。
师:同学们,刚才大家已经尝试着求出了三个三角形的面积,大家都算得很好。那么现在你们能把三角形的面积计算公式写下来吗?先写一写,同桌同学再商量商量吧。
5、理解公式。
学生对三角形面积计算公式的理解。]。
6、用字母表示三角形的面积公式。
师:同学们,如果用a表示三角形的底,h表示三角形的高,s表示三角形的面积,你们会不会用字母表示三角形的面积公式呢?请写一写吧。
师:同学们,你们知道吗?今天我们一动手起推导出的三角形的面积计算公式,很早以前,我们的`祖先就已经发现了,请看大屏幕。(课件出示如下图,课本p85页的数学常识。)。
[评析:这样表面是介绍数学常识,但实际渗透了爱国思想教育。]。
三、应用公式,解决问题。
师:那就请大家动手量一量它的底和高吧。
师:量完了吗?请大家算一算,看看做这样一条红领巾到底需要多少红布?
[应变预设:指导学生运用公式进行正确的计算,展示学生的算式,集体订正。]。
四、联系生活,适当拓展。
[应变预设:指导运用公式进行正确的计算,,然后集体订正。]。
师:同学们,你们还能算出这三个三角形的面积吗?(课件出示如下图1:底3厘米,高4厘米;图2:底4厘米,高1.5厘米;图3:底2.5厘米,高2.8厘米)看谁算得又对又快!
四、全课总结,反思体验。
教师:这节课你们学习了什么?有哪些收获?
三角形的边教案-数学三角形边的关系教案。
北师大版三角形的面积教学设计篇十八
《义务教育课程标准实验教科书。数学》(西师版)五年级第九册。
(1)使学生理解、掌握三角形面积计算公式,并能运用它正确计算三角形的面积。
(2)通过指导实际操作,培养学生抽象、概括能力和思维的创造性,发展空间观念。
(3)使学生明白事物之间是相互联系,可以转化和变换的。
(1)导入新课时激励学生求新知——诱导自主学习。
(2)探索新知时鼓励学生自学尝试,合作讨论——进行自主学习。
(3)内化新知创新设疑,讨论质疑——创新自主学习。
(4)巩固新知时激励学生自主解答,讲解思路——巩固自主学习。
(5)教师课前准备:多媒体计算机课件,为学生每组准备两个完全一样的直角三角形、两个完全一样的等腰直角三角形,和两个完全一样的钝角三角形。
本课教学总时间为40分钟。教学过程主要围绕三角形面积公式的推导、应用来展开的。教学环节可分为情境创设、操作交流、练习反馈和全课总结。
北师大版三角形的面积教学设计篇十九
1、理解和掌握三角形的面积计算公式。
2、通过操作、观察、比较,进一步发展空间观念,提高分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。
理解和掌握怎样用两个完全一样的三角形转化成平行四边形,推导出三角形的面积计算公式。
1、若干个完全一样的按比例放大的锐角三角形、直角三角形、钝角三角形。一套多媒体课件。
2、每个学生准备一个长方形、两个平行四边形,一把剪刀。
2、解决方案:
师:要想知道三角形的面积怎样求,你想用什么方法来研究?你是怎么想到的?
(前面我们刚学过平行四边形面积的推导,是把平行四边形通过分割、平移、拼补转化成长方形研究的,所以我想到了转化的方法。板书:转化)
师:今天这节课让老师陪着大家运用转化的方法研究三角形的面积。
(一) 实验一:剪
1、师:下面让我们做几个实验,好不好?
(学生拿出准备好的一个长方形,两个平行四边形。平行四边形上画好底和高。)
2、(1)师:请大家拿出准备好的三个图形,平放在桌上,用剪刀沿虚线把它们剪开,剪开后一对一对的放在一起。(标上1、2、3号)
(3)师:通过刚才的实验我们知道一个平行四边形可以分成两个三角形,这两个三角形大小、形状怎样?你怎么知道的?(学生演示重合的过程)
师:重合了,在数学上叫“完全一样”(板书:两个完全一样)
师:现在你能用“完全一样”说一说我们剪到的`三角形吗?(学生说1号是两个完全一样的三角形,2号、3号是两个完全一样的三角形)
学生演示重合过程,课件演示剪、重合的过程。
师:谁能说一说根据刚才的实验,你想到了什么?
小结并出现字幕:一个平行四边形可以分成两个完全一样的三角形。
(4)师:这两个三角形与原来平行四边形面积相等,(课件演示两个完全一样的三角形拼成平行四边形的过程)其中一个三角形的面积和原来平行四边形的面积有什么关系?(课件闪动演示,学生回答,出现字幕:其中一个三角形的面积等于这个平行四边形面积的一半)
师:谁能完整地说一说,通过刚才的实验,你得出什么结论?看字幕说:一个平行四边形可以分成两个完全一样的三角形。其中一个三角形的面积等于这个平行四边形面积的一半。
说一说1号、2号、3号各是什么三角形?(板书:锐角三角形、直角三角形、钝角三角形)
北师大版三角形的面积教学设计篇二十
《三角形的面积》这节课是青岛版四年级教材下册28、29、30页的内容,这节课是在学生经历了平行四边形面积计算公式的推导过程之后学习的。
这节课的教学目标是:
1.经历探索三角形的面积计算公式的推导过程,掌握三角形面积的计算方法。
2.通过面积公式的推导,培养学生观察、比较及推理能力,渗透转化思想。
3.使学生明白事物之间是相互联系,可以转化和变换的。
学具准备:每人准备六张三角形(相同的锐角、直角、钝角三角形各两张)纸片。
学习重点:探索三角形面积计算公式。
学习难点:理解三角形面积公式的推导过程。
《三角形的面积》这节课在设计时是分课前预习、课堂学习和课外拓展三部分构想的。
在布置学生课前预习时,发给他们预习导引卡,让他们根据预习导引卡进行自学本节课的内容。预习导引卡中的“迁移猜想、操作转化、观察讨论、得出结论”环节给学生一个探究这节课的重难点的扶手,让学生自己通过动手就可以完成三角形的面积计算公式的推导,三道试做题,让他们对自己的预习进行自我检测,利用预习导引卡奏响课堂学习的前奏曲。
课堂学习分为五个环节进行的。首先是专项训练——面积单位间的换算练习;二是确定知识点,检查学生的预习情况;三是交流汇报,突破重难点,探究三角形的面积计算公式的推导过程;四是自主总结、质疑释疑,对本节课学习的内容进行交流、总结,让学生说出自己的遗留困惑,或者说说自己不同的想法;五是自主练习,利用三角形的面积计算公式解决一些生活中的`实际问题。
其中第三个环节:探究三角形的面积计算公式的推导过程,是这节课的重难点,让学生通过动手操作、观察讨论、最后得出结论,体验公式的推导过程,苏霍姆林斯基说:“智慧的双手能创造智慧的头脑。”让学生的小手动起来,让学生的大脑转起来。
在课堂学习过程中,学生们首先在小组内交流,然后进行全班反馈汇报,用两个完全一样的锐角三角形、直角三角形和钝角三角形可以拼成一个平行四边形,将三角形转化成学过的图形,通过动手操作发现三角形的底、高、面积和平行四边形的底、高、面积之间的关系,逐步推导出三角形的面积计算公式。通过小组的合作、交流,可以提高学生的数学思维能力,学生的情感和态度也可以得到发展。
课外拓展是让学生试着去求导圆的面积计算公式,感受数学学习是丝丝相连、环环相扣的,利用转化的思想继续数学研究。由此,把课堂学习引向课外探究。为什么把求导圆的面积计算公式作为课外拓展呢,就是因为在学习了平行四边形的面积计算和梯形的面积计算之后,有学生好奇的问我,怎样求圆形的面积?我看到了他们探究新知的欲望、我也看到了他们体验到了成功后的喜悦,他们对于新知识不再是无动于衷,而是一种主动地态度要求去探索、去深究。
以上是我的教学设想,由于我的教学经验不足,不知道自己有没有达到这个目标,我感觉本节课还存在不少问题。在此,真心希望各位老师提出宝贵意见,以便于我在今后的教学中不断改进,谢谢大家!
附:
六度:教学目标的适切度。
学生学习的参与度。
学习方式的自主度。
小组合作的有效度。
练习设计的层级度。
拓展延伸的合适度。
【本文地址:http://www.xuefen.com.cn/zuowen/9190078.html】