专业大数据课设的心得体会(案例15篇)

格式:DOC 上传日期:2023-10-30 21:25:19
专业大数据课设的心得体会(案例15篇)
时间:2023-10-30 21:25:19     小编:笔砚

“心得体会是在一段时间内对所经历的事情、所获得的经验进行总结和概括的一种文学形式,它可以帮助我们更好地认识自己、总结经验、提高思考能力。”在撰写心得体会时,要注意用简练、生动的语言,使读者更易于理解和接受。小编特意整理了一些精选的心得体会范文,希望对大家的写作有所帮助和借鉴。

大数据课设的心得体会篇一

近年来,“大数据”这个概念突然火爆起来,成为业界人士舌尖上滚烫的话题。所谓“大数据”,是指数据规模巨大,大到难以用我们传统信息处理技术合理撷取、管理、处理、整理。“大数据”概念是“信息”概念的3.0版,主要是对新媒体语境下信息爆炸情境的生动描述。

我们一直有这样的成见:信息是个好东西。对于人类社会而言,信息应该多多益善。这种想法是信息稀缺时代的产物。由于我们曾吃尽信息贫困和蒙昧的苦头,于是就拼命追逐信息、占有信息。我们甚至还固执地认为,占有的信息越多,就越好,越有力量。但是,在“大数据’时代,信息不再稀缺,这种成见就会受到冲击。信息的失速繁衍造成信息的严重过剩。当超载的信息逼近人们所能承受的极限值时,就会成为一种负担,我们会不堪重负。

信息的超速繁殖源自于信息技术的升级换代。以互联网为代表的新媒体技术打开了信息所罗门的瓶子,数字化的信息失速狂奔,使人类主宰信息的能力远远落在后面。美国互联网数据中心指出,互联网上的数据每两年翻一番,目前世界上的90%以上数据是近几年才产生的。,数字存储信息占全球数据量的四分之一,另外四分之三的信息都存储在报纸、胶片、黑胶唱片和盒式磁带这类媒介上。,只有7%是存储在报纸、书籍、图片等媒介上的模拟数据,其余都是数字数据。到,世界上存储的数据中,数字数据超过98%。面对数字数据的大量扩容,我们只能望洋兴叹。

“大数据”时代对人类社会的影响是全方位的。这种影响究竟有多大,我们现在还无法预料。哈佛大学定量社会学研究所主任盖瑞·金则以“一场革命”来形容大数据技术给学术、商业和政府管理等带来的变化,认为“大数据”时代会引爆一场“哥白尼式革命”:它改变的不仅仅是信息生产力,更是信息生产关系;不仅是知识生产和传播的内容,更是其生产与传播方式。

我们此前的知识生产是印刷时代的产物。它是15世纪古登堡时代的延续。印刷革命引爆了人类社会知识生产与传播的“哥白尼式革命”,它使得知识的生产和传播突破了精英、贵族的垄断,开启了知识传播的大众时代,同时,也确立了“机械复制时代”的知识生产与传播方式。与印刷时代相比,互联网新媒体开启的“大数据”时代,则是一场更为深广的革命。在“大数据”时代,信息的生产与传播往往是呈几何级数式增长、病毒式传播。以互联网为代表的媒介技术颠覆了印刷时代的知识生产与传播方式。新媒体遍地开花,打破了传统知识主体对知识生产与传播的垄断。新媒体技术改写了静态、单向、线性的知识生产格局,改变了自上而下的知识传播模式,将知识的生产与传播抛入空前的不确定之中。在“大数据”时代,我们的知识生产若再固守印刷时代的知识生产理念,沿袭此前的知识生产方式,就会被远远地甩在时代后面。

(节选自2013.2.22《文汇读书周报》,有删改)

大数据课设的心得体会篇二

随着大数据时代的到来,大数据分析技术在各行各业都得以广泛应用。为了适应这个时代的需求,我产生了对大数据的浓厚兴趣,并决定投身于大数据学习之中。在大数据求学的过程中,我积累了丰富的知识和经验,并且获得了一些宝贵的心得体会。在此,我将分享我对大数据学习的理解和心得,希望能够对其他有兴趣于此领域的人有所帮助。

首先,我意识到大数据学习是一个全新的挑战和机遇。在学习过程中,我发现这个领域涉及的知识非常广泛,包括数据收集、处理、存储、分析等方方面面。考虑到大数据的规模和复杂性,我意识到单一的学科知识是不足以应对的。因此,我要不断地扩展自己的知识面,并且理解不同学科之间的联系和相互作用。通过不断地学习和实践,我发现大数据学习不仅需要应用数学、计算机科学等学科的知识,还需要具备良好的跨学科能力和创新思维。

其次,我学会了如何从大数据中发现有价值的信息。大数据时代,数据的规模和速度都呈爆炸式增长,但真正有价值的信息往往隐藏在大数据背后。在学习大数据分析的过程中,我学会了如何通过使用不同的数据分析工具和技术,从大数据中发现有意义的模式和规律。例如,通过数据挖掘技术,我可以从海量数据中找出隐藏的关联关系;通过机器学习算法,我可以构建预测模型,提供高精度的预测和决策支持。这些技术和工具不仅可以帮助企业发现新的商机,还可以为决策者提供科学依据,帮助其做出更准确的决策。

第三,在大数据学习的过程中,我认识到数据安全和隐私保护的重要性。大数据的快速发展和广泛应用给个人隐私带来了新的挑战。在大数据分析中,我们往往需要使用大量的个人数据来训练和验证模型。但如果这些数据不得体地被使用或泄露,将会对个人隐私造成严重的威胁。因此,我们必须始终牢记数据安全和隐私保护的原则,采取相应的技术和措施来保护个人数据的安全。同时,我们还要加强对数据使用的监管和规范,以确保数据在使用过程中得到合法和合理的处理。

第四,我发现学习大数据的过程是一个与他人合作和交流的过程。在大数据分析中,我们往往需要利用不同来源的数据、不同领域的知识和不同背景的专业人士进行合作。通过与他人的合作和交流,我们可以更好地理解和解决问题,同时也能够不断提高自己的能力和水平。因此,我们要具备良好的团队合作和沟通能力,能够与他人有效地合作、共同完成项目和达成目标。同时,我们还要学会倾听和尊重他人的意见和观点,尊重团队中每个成员的贡献,共同实现团队的目标。

最后,我深刻认识到学习大数据是一个持续不断的过程。在大数据领域,技术和知识的更新速度非常快,新的技术和工具不断涌现。因此,我们必须不断地学习和更新自己的知识和技能,跟上时代的步伐。除了不断地学习新的知识和技术,我们还需要关注行业的最新发展动态,了解市场的需求和趋势。只有不断学习和持续进步,才能在激烈的竞争中立于不败之地,并为未来的发展奠定良好的基础。

总之,大数据求学的过程是一次又一次的学习与挑战,我从中收获了很多宝贵的经验和体会。大数据学习需要我们不断地学习和实践,具备跨学科能力和创新思维,发现有价值的信息,关注数据安全和隐私保护,以及与他人合作和交流。在学习大数据的过程中,我们应该坚持学习的原则,不断提高自己的能力和水平,为未来的发展做好准备。只有如此,才能不断适应大数据时代的需求,为社会和企业提供更优质的数据分析服务。

大数据课设的心得体会篇三

随着数字化时代的到来,大数据已逐渐成为政务管理的重要手段。政府可以通过收集、分析和利用大数据,为政策制定、资源配置和服务优化等方面提供有力支撑。大数据技术的应用,已成为政府有力的助手,改变了政府运行方式,提升了政府服务效能,促进了政府与公民之间的联系和交流。

第二段:大数据在政府决策上的作用

政府需要面对许多复杂的问题,大数据技术的应用能够为政府决策提供实时、准确的信息和数据支持。政府可以以大数据技术为依托,通过数据挖掘、分析和模拟等手段,对社会、经济、环境等方面进行深入探索,进而提炼出有效的决策方案。同时,大数据技术的应用可以帮助政府调整政策,优化民生服务,提升政府的形象和信誉。

第三段:大数据在政府管理中的应用

政府管理需要处理大量的数据信息,信息数量庞大且多样化。大数据技术的应用,可以帮助政府建立数据中心,通过数据采集、分类、存储、共享和加工等方式,实现对数据的精细管理。通过数据的精细管理,政府能够更高效地运营和管理政府服务,优化公共资源配置,提升效能。

第四段:大数据在政府服务中的应用

在政府服务中大数据有着广泛而深远的应用。比如,在社会保障领域,政府可以利用大数据技术实现对各类社会保障信息的分析,以便更好地管控和优化社会保障服务。在城市管理中,大数据可为政府提供精准的交通流量、环境质量、城市治理问题等信息,以便制定更加有效的城市管理政策。大数据技术的应用,将会推动政府服务的质量与效率,更好地满足公民日益增长的各种需求。

第五段:大数据技术应用面临的挑战

大数据技术的应用,还面临着安全、隐私等方面的挑战。政府在使用大数据技术时必须保证数据的安全和保密,防止数据泄露、滥用、篡改等问题的发生。同时,政府还需考虑合规性和道德等方面的问题,确保数据的合法性与道德性。只有在解决好这些问题,政府才能充分发挥大数据技术的应用潜力,更好地服务公民。

总结:

大数据技术的应用,对政府服务、政策制定、资源配置等方面都有非常重要的意义。同时,使用大数据技术,也存在多重挑战,政府应该注重解决这些挑战,才能更好地利用大数据服务于公民。在数字时代,随着大数据技术的不断发展和应用,政府将会以更加高效的方式运行和管理,为公民带来更加精准、便捷的服务。

大数据课设的心得体会篇四

随着信息技术的快速发展,政府机构越来越多地利用大数据来管理和实施政策。政务大数据已经成为现代政府决策和执行的重要工具。在我近期的实习经历中,我有幸参与了一个政务大数据项目,从中获得了很多宝贵的经验和体会。在这篇文章中,我将分享我对政务大数据的认识和体会。

首先,政务大数据可以提高政府决策的准确性和效率。政府决策需要大量的数据来支持,这些数据来自各个部门和渠道。传统的数据收集和整理方式非常耗时和复杂,往往导致决策者无法及时获得足够的信息来做出准确的判断。而政务大数据则可以通过数十家部门和机构共享信息库,实时地汇集和分析庞大的数据,为决策者提供准确的信息和快速的分析。这种高效的决策过程使得政府能够更好地应对复杂的社会问题。

其次,政务大数据可以帮助政府提供更好的公共服务。政府部门需要通过大数据技术对公共服务进行规划和优化。通过分析大数据,政府可以了解公众的需求和偏好,进而调整和改进服务的内容和方式。例如,在医疗保健领域,政府可以通过政务大数据了解人口的健康状况和疾病发展趋势,进而调整医疗资源的配置和医疗政策的制定,以提供更好的医疗服务。政务大数据的运用可以让政府的公共服务更加贴近民众需求,提高民众的获得感和满意度。

此外,政务大数据也可以提高政府的监督和治理能力。政府的权力需要社会监督,以确保政府行使权力的合法性和公正性。政务大数据可以为公众提供政府工作的透明度和监督渠道。通过公开政府相关的大数据信息,公众可以更好地了解政府的决策和执行过程,监督政府的行为。同时,政务大数据还可以帮助政府打击腐败和执法不公,通过数据分析和比对,提高治理的公正和效率。

然而,政务大数据的运用也面临一些挑战和隐患。首先是数据安全和隐私问题。政务大数据涉及大量的个人隐私和敏感信息,在数据采集和存储过程中需要确保数据的安全性和保密性。政府需要建立完善的数据安全措施和法律法规框架,保护公民的隐私权和信息安全。其次是数据质量和数学模型的问题。政务大数据分析的结果和决策的准确性很大程度上依赖于数据的质量和数学模型的正确性。政府需要投入足够的资源和人才来确保数据的准确性和分析的科学性。

政务大数据是信息时代的必然产物,它为政府的决策和治理提供了前所未有的机遇和挑战。通过有效地运用政务大数据,政府可以提高决策的准确性和效率,提供更好的公共服务,并增强社会的监督和治理能力。然而,政务大数据的运用也需要解决数据安全、个人隐私和数据质量等问题。我相信,随着技术的进一步发展和以人为本的原则的贯彻,政务大数据将为政府和公众带来更多的利益和成果。

大数据课设的心得体会篇五

随着大数据时代的到来,数据成为企业和个人获取信息和分析趋势的主要手段。然而,数据的数量和质量对数据分析的影响不能忽视。因此,在数据分析之前,数据预处理是必须的。数据预处理的目的是为了清理,转换,集成和规范数据,以便数据分析师可以准确地分析和解释数据并做出有效的决策。

二、数据清理

数据清理是数据预处理的第一个步骤,它主要是为了去除数据中的异常,重复,缺失或错误的数据。一方面,这可以帮助分析师得到更干净和准确的数据,另一方面,也可以提高数据分析的效率和可靠性。在我的工作中,我通常使用数据可视化工具和数据分析软件帮助我清理数据。这些工具非常强大,可以自动检测错误和异常数据,同时还提供了人工干预的选项。

三、数据转换

数据转换是数据预处理的第二个步骤,其主要目的是将不规则或不兼容的数据转换为标准的格式。例如,数据集中的日期格式可能不同,需要将它们转换为统一的日期格式。这里,我使用了Python的pandas库来处理更复杂的数据集。此外,我还经常使用Excel公式和宏来转换数据,这些工具非常灵活,可以快速有效地完成工作。

四、数据集成和规范化

数据集成是将多个不同来源的数据集合并成一个整体,以便进行更全面的数据分析。但要注意,数据的集成需要保证数据的一致性和完整性。因此,数据集成时需要规范化数据,消除数据之间的差异。在工作中,我通常使用SQL来集成和规范化数据,这使得数据处理更加高效和精确。

五、总结

数据预处理是数据分析过程中不可或缺的一步。只有经过数据预处理的数据才能够为我们提供准确和可靠的分析结果。数据预处理需要细心和耐心,同时,数据分析师也需要具备丰富的经验和技能。在我的实践中,我发现,学习数据预处理的过程是很有趣和有价值的,我相信随着数据分析的不断发展和应用,数据预处理的作用将越来越受到重视。

大数据课设的心得体会篇六

随着信息技术的飞速发展,现代社会中产生了大量的数据,而这些数据需要被正确的收集、处理以及存储。这就是大数据数据预处理的主要任务。数据预处理是数据分析、数据挖掘以及机器学习的第一步,这也就意味着它对于最终的数据分析结果至关重要。

第二段: 数据质量问题

在进行数据预处理的过程中,数据质量问题是非常常见的。比如说,可能会存在数据重复、格式不统一、空值、异常值等等问题。这些问题将极大影响到数据的可靠性、准确性以及可用性。因此,在进行数据预处理时,我们必须对这些问题进行全面的识别、分析及处理。

第三段: 数据筛选

在进行数据预处理时,数据筛选是必不可少的一步。这一步的目的是选择出有价值的数据,并剔除无用的数据。这样可以减小数据集的大小,并且提高数据分析的效率。在进行 数据筛选时,需要充分考虑到维度、时间和规模等方面因素,以确保所选的数据具有合适的代表性。

第四段: 数据清洗

数据清洗是数据预处理的核心环节之一,它可以帮助我们发现和排除未知数据,从而让数据集变得更加干净、可靠和可用。其中,数据清洗涉及到很多的技巧和方法,比如数据标准化、数据归一化、数据变换等等。在进行数据清洗时,需要根据具体情况采取不同的方法,以确保数据质量的稳定和准确性。

第五段: 数据集成和变换

数据预处理的最后一步是数据集成和变换。数据集成是为了将不同来源的数据融合为一个更综合、完整的数据集合。数据变换,则是为了更好的展示、分析和挖掘数据的潜在价值。这些数据变换需要根据具体的研究目标进行设计和执行,以达到更好的结果。

总结:

数据预处理是数据分析、数据挖掘和机器学习的基础。在进行预处理时,需要充分考虑到数据质量问题、数据筛选、数据清洗以及数据集成和变换等方面。只有通过这些环节的处理,才能得到满足精度、可靠性、准确性和可用性等要求的数据集合。

大数据课设的心得体会篇七

Hadoop作为大数据领域中的重要工具,其开源的特性和高效的数据处理能力越来越得到广泛的应用。在实际应用中,我们对Hadoop的使用也逐步深入,从中汲取了许多经验和教训。在此,我会从搭建Hadoop集群、数据清洗、分析处理、性能优化和可视化展示五个方面分享一下我的心得体会。

一、搭建Hadoop集群

搭建Hadoop集群是整个数据处理的第一步,也是最为关键的一步。在这一过程中,我们需要考虑到硬件选择、网络环境、安全管理等方面。过程中的任何一个小错误都可能会导致整个集群的崩溃。基于这些考虑,我们需要进行详细的规划和准备,进行逐步的测试和验证,确保能够成功地搭建起集群。

二、数据清洗

Hadoop的数据处理能力是其最大的亮点,但在实际应用中,数据的质量也是决定分析结果的关键因素。在进行数据处理之前,我们需要对数据进行初步的清洗和预处理。这包括在数据中发现问题和错误,并将其纠正,以及对数据中的异常值进行排除。通过对数据的清洗和预处理,我们可以提高数据的质量,确保更加准确的分析结果。

三、分析处理

Hadoop的大数据处理能力在这一阶段得到了最大的展示。在进行分析处理时,我们首先需要确定分析目标,并对数据进行针对性的处理。数据处理的方式包括数据切分、聚合、过滤等。我们还可以利用MapReduce、Hive、Pig等工具进行分析计算。在处理过程中,我们还需要注意对数据的去重、筛选、转换等方面,从而得到更为准确的结果。

四、性能优化

在使用Hadoop进行数据处理的过程中,内存的使用是其中重要的方面。我们需要在数据处理时对内存使用进行优化,提高算法的效率。在数据读写和网络传输等方面,我们也需要尽可能地提高其效率,来增强Hadoop的处理能力。这一方面需要的是合理的调度策略、良好的算法实现、有效的系统测试等方面的支持。

五、可视化展示

通过对数据的处理和分析,我们需要对获得的结果进行展示。在这一方面,我们可以使用Hadoop提供的一系列Web界面进行展示,同时还可以利用一些可视化工具将数据进行图像化处理。通过这些方式,我们可以更加直观地观察到数据分析的结果,从而更好地应用到实际业务场景中。

总之,Hadoop的应用已逐渐地从科技领域异军突起,成为处于大数据领域变革前沿的重要工具。在实际应用中,我从搭建Hadoop集群、数据清洗、分析处理、性能优化和可视化展示五个方面体会到了很多经验和教训,不断地挑战和改进我们的技术与思路,才能更好地推动Hadoop的应用发展。

大数据课设的心得体会篇八

近年来,随着技术的进步和互联网的发展,大数据已经成为了我们生活中不可或缺的一部分。大数据的应用已经渗透到了各行各业,给我们的生活带来了巨大的变化。在与大数据打交道的过程中,我深深地感受到了大数据带来的“信息之海”给我们带来的便利和挑战。在这个过程中,我逐渐形成了自己的大数据基础心得体会。

首先,了解数据的重要性。数据是大数据的基础,对于每一项工作来说都起到至关重要的作用。在与大数据的日常工作中,我深刻认识到了数据对于决策的重要性。通过对数据的分析和挖掘,可以为决策者提供有力的支持,帮助他们做出正确的判断。因此,了解数据的重要性,懂得如何使用数据,对于我们在大数据中的工作起到了关键的作用。

其次,注重数据的质量和准确性。在与大数据打交道的过程中,我注意到了数据质量的重要性。数据的质量和准确性直接影响到数据的分析结果和决策的正确性。因此,我们在处理数据的过程中应该注重数据的质量和准确性,确保数据的完整性和准确性。只有数据质量和准确性达到一定的标准,我们才能够准确地进行数据分析和挖掘。

第三,善于使用数据分析工具。在大数据处理的过程中,数据分析工具是我们的得力助手。通过善于使用数据分析工具,我们可以更快速、准确地处理大数据,并发现数据背后的规律和趋势。因此,掌握和使用好数据分析工具是我们在大数据工作中需要具备的技能之一。通过不断的学习和实践,我渐渐熟练掌握了一些常见的数据分析工具,并能够灵活运用它们处理大数据。

第四,与团队合作,共同攻克难题。大数据处理往往需要多个人的共同努力才能完成,在与大数据的工作中,我深刻地认识到了团队合作的重要性。与优秀的团队一起工作,可以汇集更多的智慧和资源,加快问题解决的速度。通过与团队的合作,我们可以不断地探索问题的本质,找出最佳的解决方案。因此,我积极主动地与团队成员合作,共同攻克大数据处理中的各种难题。

最后,不断学习和提升自己的能力。大数据的发展日新月异,新的技术和方法层出不穷。在与大数据的工作中,我意识到了不断学习和提升自己的重要性。只有不断学习和适应新的技术和方法,我们才能够保持在大数据领域的竞争力。因此,我积极参加相关的培训和学习,提升自己的专业知识和技能,不断完善自己的能力。

总之,通过与大数据的日常工作,我深刻认识到了数据的重要性和质量的重要性。善于使用数据分析工具和与团队合作,共同攻克难题,也是在大数据工作中需要具备的能力。不断学习和提升自己的能力,也是在大数据工作中必不可少的一环。大数据给我们提供了更多的机会和挑战,通过不断总结经验和提升能力,我们才能更好地适应和应对这个不断发展的大数据时代。

大数据课设的心得体会篇九

这本书里主要介绍的是大数据在现代商业运作上的应用,以及它对现代商业运作的影响。

《大数据时代》这本书的结构框架遵从了学术性书籍的普遍方式。也既,从现象入手,继而通过对现象的解剖提出对这一现象的解释。然后在通过解释在对未来进行预测,并对未来可能出现的问题提出自己看法与对策。

下面来重点介绍《大数据时代》这本书的主要内容。

《大数据时代》开篇就讲了google通过人们在搜索引擎上搜索关键字留下的数据提前成功的预测了20__年美国的h1n1的爆发地与传播方向以及可能的潜在患者的事情。google的预测比政府提前将近一个月,相比之下政府只能够在流感爆发一两个周之后才可以弄到相关的数据。同时google的预测与政府数据的相关性高达97%,这也就意味着google预测数据的置信区间为3%,这个数字远远小于传统统计学上的常规置信区间5%!而这个数字就是大数据时代预测结果的相对准确性与事件的可预测性的最好证明!通过这一事以及其他的案例,维克托提出了在大数据时代“样本=总体”的思想。我们都知道当样本无限趋近于总体的时候,通过计算得到的描述性数据将无限的趋近于事件本身的性质。而之前采取的“样本总体”的做法很大程度上无法做到更进一步的描述事物,因为之前的时代数据的获取与存储处理本身有很大的难度只导致人们采取抽样的方式来测量事物。而互联网终端与计算机的出现使数据的获取、存储与处理难度大大降低,因而相对准确性更高的“样本=总体”的测算方式将成为大数据时代的主流,同时大数据时代本身也是建立在大批量数据的存储与处理的基础之上的。

接下来,维克多又通过了ibm追求高精确性的电脑翻译计划的失败与google只是将所有出现过的相应的文字语句扫描并储存在词库中,所以无论需要翻译什么,只要有联系google词库就会出现翻译,虽然有的时候的翻译很无厘头,但是大多数时候还是正确的,所以google的电脑翻译的计划的成功,表明大数据时代对准确性的追求并不是特别明显,但是相反大数据时代是建立在大数据的基础住上的,所以大数据时代追求的是全方位覆盖的数字测度而不管其准确性到底有多高,因为大量的数据会湮埋少数有问题的数据所带来的影响。同时大量的数据也会无限的逼近事物的原貌。

之后,维克托又预测了一个在大数据时代催生的重要职业——数据科学家,这是一群数学家、统计学与编程家的综合体,这一群人将能够从获取的数据中得到任何他们想要的结果。换言之,只要数据充足我们的一切外在的与内在的我们不想让他人知道的东西都见会在这一群家伙的面前展现得淋漓尽致。所以为了避免个人隐私在大数据时代被这一群人利用,维克托建议将这一群人分为两部分,一部分使用数据为商业部门服务,而另一群人则负责审查这一些人是否合法的获得与应用数据,是否侵犯了个人隐私。

无论如何,大数据时代将会到来,不管我们接受还是不接受!

我觉得《大数据时代》这本书写的很好,很值得一读。因为会给我们很多启发,比如你在相关的社交网站发表的言论或者照片都很有可能被“数据科学家”们利用,从而再将相关数据卖给各大网店。不过,事实就是我们将会成为被预测被引诱的对象。所以说,小心你在网上留下的痕迹。

我喜欢这本书是因为它给我展现了一个新的世界。

大数据心得体会篇2

大数据课设的心得体会篇十

大数据讲座学习心得

大数据时代已经悄然到来,如何应对大数据时代带来的挑战与机遇,是我们当代大学生特别是我们计算机类专业的大学生的一个必须面对的严峻课题。大数据时代是我们的一个黄金时代,对我们的意义可以说就像是另一个“80年代”。在讲座中秦永彬博士由一个电视剧《大太监》中情节来深入浅出的简单介绍了“大数据”的基本概念,并由“塔吉特”与“犯罪预测”两个案例让我们深切的体会到了“大数据”的对现今这样一个信息时代的不可替代的巨大作用。

在前几年本世纪初的时候,世界都称本世纪为“信息世纪”。确实在计算机技术与互联网技术的飞速发展过后,我们面临了一个每天都可以“信息爆炸”的时代。打开电视,打开电脑,甚至是在街上打开手机、pda、平板电脑等等,你都可以接收到来自互联网从世界各地上传的各类信息:数据、视频、图片、音频……这样各类大量的数据累积之后达到了引起量变的临界值,数据本身有潜在的价值,但价值比较分散;数据高速产生,需高速处理。大数据意味着包括交易和交互数据集在内的所有数据集,其规模或复杂程度超出了常用技术按照合理的成本和时限捕捉、管理及处理这些数据集的能力。遂有了“大数据”技术的应运而生。

现在,当数据的积累量足够大的时候到来时,量变引起了质变。“大数据”通过对海量数据有针对性的分析,赋予了互联网“智商”,这使得互联网的作用,从简单的数据交流和信息传递,上升到基于海量数据的分析,一句话“他开始思考了”。简言之,大数据就是将碎片化的海量数据在一定的时间内完成筛选、分析,并整理成为有用的资讯,帮助用户完成决策。借助大数据企业的决策者可以迅速感知市场需求变化,从而促使他们作出对企业更有利的决策,使得这些企业拥有更强的创新力和竞争力。这是继云计算、物联网之后it产业又一次颠覆性的技术变革,对国家治理模式、对企业的决策、组织和业务流程、对个人生活方式都将产生巨大的影响。后工业社会时代,随着新兴技术的发展与互联网底层技术的革新,数据正在呈指数级增长,所有数据的产生形式,都是数字化。如何收集、管理和分析海量数据对于企业从事的一切商业活动都显得尤为重要。大数据时代是信息化社会发展必然趋势,我们只有紧紧跟随时代发展的潮流,在技术上、制度上、价值观念上做出迅速调整并牢牢跟进,才能在接下来新一轮的竞争中摆脱受制于人的弱势境地,才能把握发展的方向。

首先,“大数据”究竟是什么?它有什么用?这是当下每个人初接触“大数据”都会有的疑问,而这些疑问在秦博士的讲座中我们都了解到了。“大数据”的“大”不仅是单单纯纯指数量上的“大”,而是在诸多方面上阐释了“大”的含义,是体现在数据信息是海量信息,且在动态变化和不断增长之上。同时“大数据”在:速度(velocity)、多样性(variety)、价值密度(value)、体量(volume)这四方面(4v)都有体现。其实“大数据”归根结底还是数据,其是一种泛化的数据描述形式,有别于以往对于数据信息的表达,大数据更多地倾向于表达网络用户信息、新闻信息、银行数据信息、社交媒体上的数据信息、购物网站上的用户数据信息、规模超过tb级的数据信息等。

一、学习总结

1. 大数据的定义

采用某些技术,从技术中获得洞察力,也就是bi或者分析,通过分析和优化实现

对企业未来运营的预测。

二、心得体会

在如此快速的到来的大数据革命时代,我们还有很多知识需要学习,许多思维需要转变,许多技术需要研究。职业规划中,也需充分考虑到大数据对于自身职业的未来发展所带来的机遇和挑战。当我们掌握大量数据,需要考虑有多少数字化的数据,又有哪些可以通过大数据的分析处理而带来有价值的用途?在大数据时代制胜的良药也许是创新的点子,也许可以利用外部的数据,通过多维化、多层面的分析给我们日后创业带来价值。借力,顺势,合作共赢。

一、什么是大数据?

百度百科中是这么解释的:大数据(big data),指无法在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产。我最开始了解大数据是从《大数据时代》了解到的。

大数据在几年特别火爆,不知道是不是以前没关注的原因,从各种渠道了解了大数据以后,就决定开始学习了。

二、开始学习之旅

在科多大数据学习这段时间,觉得时间过的很快,讲课的老师,是国家大数据标准制定专家组成员,也是一家企业的大数据架构师,老师上课忒耐心,上课方式也很好,经常给我们讲一些项目中的感受和经验,果然面对面上课效果好!

如果有问题,老师会一直讲到你懂,这点必须赞。上课时间有限,我在休息时间也利用他们的仿真实操系统不断的练习,刚开始确实有些迷糊,觉得很难学,到后来慢慢就入门了,学习起来就容易多了,坚持练习,最重要的就是坚持。

大数据课设的心得体会篇十一

随着信息技术的不断发展,金融行业也逐渐开始关注大数据的应用。金融大数据,指的是以金融行业为对象的庞大数据集合,对于金融市场的分析和决策起到了重要的作用。在过去的几年里,我有幸参与了一家金融科技公司的金融大数据项目,在这个过程中,我积累了一些心得体会。本文将从数据收集、数据分析、数据应用、隐私保护以及行业发展的角度,谈谈我对金融大数据的一些思考。

首先,数据收集是金融大数据应用的基础。金融行业的数据主要来自于传统的交易数据、市场数据以及用户数据。例如,交易数据可以包括股票、外汇、债券等各种交易的价格、成交量和交易时间等信息。市场数据则可以包括市场指数、利率和汇率等信息。而用户数据则涵盖了客户的个人信息、消费行为以及风险承受能力等。对于金融大数据项目来说,要做好数据收集工作,就必须建立完善的数据采集系统,保证数据的准确性和完整性。

其次,数据分析是金融大数据应用的核心。金融大数据项目的目的是通过对大量的数据进行分析,发现规律和趋势,为金融市场的决策提供更准确的依据。在进行数据分析时,常用的方法有统计分析、机器学习和深度学习等。通过这些方法,可以挖掘出隐藏在数据中的关联关系,发现市场的规律和异常情况。同时,数据分析也需要结合专业知识和经验,才能找到有意义的结果,避免过度拟合和误导性分析。

数据应用是金融大数据发挥价值的关键。在金融大数据项目中,数据应用主要分为两个方面。一方面,数据可以用于辅助金融市场的决策。通过对市场的预测和风险评估,可以帮助投资者做出更明智的决策,减少损失。另一方面,数据还可以用于开发金融科技产品和服务。通过对大量的用户数据进行分析,可以发现用户的需求和行为特征,开发出更符合用户需求的金融产品和服务。这样既可以提高用户满意度,也可以增加公司的竞争力。

隐私保护是金融大数据项目需要面对的重要问题。金融大数据项目处理的数据通常是用户的敏感信息,包括个人隐私和金融交易记录等。因此,在进行数据采集和分析时,必须要遵守相应的法律和规定,保护用户的隐私权益。同时,也需要建立安全的数据存储和传输系统,防止数据被泄露和滥用。只有做好隐私保护工作,才能获得用户的信任,推动金融大数据的应用和发展。

最后,金融大数据的应用和发展离不开金融行业的支持和合作。金融行业是金融大数据的主要应用场景,只有得到金融机构的支持和合作,才能够更好地将数据应用于金融市场。而金融机构也可以通过引入金融大数据技术,提高自身的竞争力和服务水平。因此,需要建立起金融机构、科技公司和监管部门之间的密切合作关系,共同推动金融大数据的应用和创新。

总之,金融大数据是金融行业向数字化、智能化发展的重要趋势。通过对金融大数据的收集、分析以及应用,可以为金融市场的决策提供更准确和有效的依据。然而,在金融大数据的应用和发展过程中,也需要注意隐私保护和行业合作等问题。只有充分发掘和应用金融大数据的潜力,才能推动金融行业的创新与发展。

大数据课设的心得体会篇十二

随着信息技术的高速发展,大数据已经成为了新时代的热词之一。大数据不仅在各行各业产生了深远的影响,也正在改变我们的生活方式和思维方式。在我个人的学习和工作中,我也逐渐认识到了大数据的重要性。下面我将分享我在认识大数据过程中的一些心得体会。

首先,认识大数据让我意识到了数据的重要性。在过去,我们常常会听到“信息是力量”的说法,但是真正意识到数据的力量远远超出了我的想象。大数据可以追踪和分析庞大的数据集,发现隐藏在背后的规律和趋势,从而为决策提供价值的指导。只有对数据的采集、管理和分析有清晰的认识,并能够灵活运用,我们才能够在这个数据驱动的时代中立于不败之地。

其次,认识大数据让我明白了数据隐私和安全的重要性。大数据时代的到来,我们的个人信息正被不断地采集和使用。我们的每一次网上购物、每一次浏览新闻都留下了我们的个人信息。而这些信息也有可能会被滥用或泄露。因此,我们不仅需要加强个人信息的保护意识,也需要完善相关的法律法规和技术手段,确保数据的安全性和隐私性。

第三,认识大数据让我认识到了数据的智能化应用带来的机遇和挑战。大数据并不仅仅是海量的数据集合,更是实现智能决策和创新的基础。通过大数据的分析和挖掘,我们可以发现新的商业机会和市场趋势,推动创新和升级。然而,与之相应的是,我们也面临着更大的挑战,如数据治理、数据质量、数据分析等。因此,我们需要继续学习和掌握新的技术和工具,以适应大数据时代的发展。

第四,认识大数据让我意识到了数据共享和开放的重要性。大数据的力量并不仅仅体现在单一的机构或个人,而是通过数据的共享与开放,形成更大的价值网络。只有在完善的数据共享和协作机制下,各方才能共同利用数据,促进跨界合作和创新。因此,政府、企业和个人应该共同努力,建立起互信互利的数据共享机制,为数据的开放和利用搭建坚实的桥梁。

最后,认识大数据让我明白了自身发展的重要性。随着大数据时代的来临,对于从业者来说,掌握大数据技术和方法是必不可少的。因此,在认识大数据的过程中,我也意识到了自身的不足,并且加强了自身的学习和提升。不仅要学习数据分析、数据挖掘等相关的专业知识,还需要具备与他人合作和沟通的能力,以适应大数据时代的需求。

综上所述,认识大数据是一个渐进的过程,他让我对数据的重要性、数据隐私和安全、数据智能化应用的机遇和挑战、数据共享和开放,以及自身发展等方面有了更深入的认识和理解。我相信,在不断学习和探索的过程中,我会更好地应对大数据时代的挑战,创造更多的价值。

大数据课设的心得体会篇十三

一、平台搭建

描述小组在完成平台安装时候遇到的问题以及如何解决这些问题的,要求截图加文字描述。

问题一:在决定选择网站绑定时,当时未找到网站绑定的地方。解决办法:之后小组讨论后,最终找到网站绑定的地方,点击后解决了这个问题。

问题二:当时未找到tcp/ip属性这一栏

解决办法:当时未找到tcp/ip属性这一栏,通过老师的帮助和指导,顺利的点击找到了该属性途径,启用了这一属性,完成了这一步的安装步骤。

问题三:在数据库这一栏中,当时未找到“foodmartsaledw”这个文件

问题四:在此处的sql server的导入和导出向导,这个过程非常的长。

解决办法:在此处的sql server的导入和导出向导,这个过程非常的长,当时一直延迟到了下课的时间,小组成员经讨论,怀疑是否是电脑不兼容或其他问题,后来经问老师,老师说此处的加载这样长的时间是正常的,直到下课后,我们将电脑一直开着到寝室直到软件安装完为止。

问题五:问题二:.不知道维度等概念,不知道怎么设置表间关系的数据源。关系方向不对

解决办法:百度维度概念,设置好维度表和事实表之间的关系,关系有时候是反的——点击反向,最后成功得到设置好表间关系后的数据源视图。(如图所示)

这个大图当时完全不知道怎么做,后来问的老师,老师边讲边帮我们操作完成的。

问题六:由于发生以下连接问题,无法将项目部署到“localhost”服务器:无法建立连接。请确保该服务器正在运行。若要验证或更新目标服务器的名称,请在解决方案资源管理器中右键单击相应的项目、选择“项目属性”、单击“部署”选项卡,然后输入服务器的名称。”因为我在配置数据源的时候就无法识别“localhost”,所以我就打开数据库属性页面:图1-图2 图一:

图二:

解决办法:解决办法: 图2步骤1:从图1到图2后,将目标下的“服务器” 成自己的sql server服务器名称行sql servermanagement studio可以)步骤2:点确定后,选择“处理”,就可以成功部署了。

问题七:无法登陆界面如图:

解决方法:尝试了其他用户登陆,就好了

二、心得体会

(1)在几周的学习中,通过老师课堂上耐心细致的讲解,耐心的指导我们如何一步一步的安装软件,以及老师那些简单清晰明了的课件,是我了解了sql的基础知识,学会了如何创建数据库,以及一些基本的数据应用。陌生到熟悉的过程,从中经历了也体会到了很多感受,面临不同的知识组织,我们也遇到不同困难。

理大数据的规模。大数据进修学习内容模板:

linux安装,文件系统,系统性能分析 hadoop学习原理

大数据飞速发展时代,做一个合格的大数据开发工程师,只有不断完善自己,不断提高自己技术水平,这是一门神奇的课程。

2、在学习sql的过程中,让我们明白了原来自己的电脑可以成为一个数据库,也可以做很多意想不到的事。以及在学习的过程中让我的动手能力增强了,也让我更加懂得了原来电脑的世界是如此的博大精深,如此的神秘。通过这次的学习锻炼了我们的动手能力,上网查阅的能力。改善了我只会用电脑上网的尴尬处境,是电脑的用处更大。让我们的小组更加的团结,每个人对自己的分工更加的明确,也锻炼了我们的团结协作,互帮互助的能力。

3、如果再有机会进行平台搭建,会比这一次的安装更加顺手。而在导入数据库和报表等方面也可以避免再犯相同的错误,在安装lls时可以做的更好。相信报表分析也会做的更加简单明了有条理。

总结

,大数据时代是信息化社会发展必然趋势,在大学的最后一学期里学习了这门课程是我们受益匪浅。让我们知道了大数据大量的存在于现代社会生活中,随着新兴技术的发展与互联网底层技术的革新,数据正在呈指数级增长,所有数据的产生形式,都是数字化。如何收集、管理和分析海量数据对于企业从事的一切商业活动都显得尤为重要。

大数据时代是信息化社会发展必然趋势,我们只有紧紧跟随时代的发展才能在以后的工作生活中中获得更多的知识和经验。

三、

结语

大数据课设的心得体会篇十四

“大数据”概念早在1980年就有国外的学者提出,可是最近几年才广泛受到大家的关注。当“大数据”这个概念传到中国的时候,瞬间引起了轰动。随即,各种有关“大数据”的资料和书籍充斥的我们的视野。随意打开某个电子商务平台图书类页面,在搜索框中搜索“大数据”三个字,就会出现好多本有关“大数据”的书籍。可是,有一个很有趣的现象就是:几乎所有的平台上,出现的第一本关于“大数据”的书籍一定是《大数据时代》。一点进去,这本书推荐栏里的第一句话就是:迄今为止全世界最好的一本大数据专著。同时,为这本书做推荐的都是各行业的精英领袖。所有“大数据”方面的书籍也是这本书销量最高,评价最好。

我从来不会因为哪本书畅销和很多人推荐就盲目跟风的去看一本书。因为我知道通常在这种情况下选择一本书,整个阅读的体会和感受是无法遵从自己的内心的,整个过程都很容易夹杂着别人对这本书的感受。所以通常我读书的节奏大多都是跟不上“潮流”的,但往往经过风雨洗礼之后沉淀下来的都是精华。坦白讲,阅读这本书的初衷并不是因为我想从书中获取到多少大数据方面的精华,只是很想知道对于这么一个很直白的名词,作者是怎么写出这么厚的一本书的。这种初衷或许很无知和幼稚,可就是这种“愚蠢”的好奇心,让我更透彻的看到书中的精华。

在看《大数据时代》这本书之前,我的所有读后感都是集中在书籍给了我什么思考。对于这本书的读后感,除了观点碰撞之外,我还会加上大部分个人看这本书的体会。因为这本书,已经完全让我模糊了大多数人口中的“全世界最好的书”是一种什么标准。也许《大数据时代》真的无法承载那么高的赞美!

大数据时代的入门书

看完这本书,我随意调查了一些阅读过这本书并且给这本书绝对好评的朋友。询问他们这本书好在哪里?大多数的回答是说《大数据时代》这本书让对大数据一无所知的他们了解了大数据这个概念,同时通过很多案例说明原来大数据能有这么大的用处,影响会有这么大!仅此而已。我看完这本书最大的感受是这本书分为上、下两部分。前120多页为上部分,后120多页为下部分。之所以说《大数据时代》是一本关于大数据的入门书,是因为这本书用了前面120多页的篇幅反复的强调大数据的出现对社会发展影响很大,并且要人们转变小数据时代惯有的思想。所以整本书的前半部分就强调大数据时代的三个转变:1、大数据利用所有的数据,而不再仅仅依靠一小部分数据,不再依赖于随机采样。2、大数据数据多,不再热衷于追求精确性,也不再期待精确性。3、大数据时代不再热衷于寻找因果关系,而是追求相关关系。所以整个上半部分没什么可详说的。我们重点聊聊本书的后半部分。

既然一直都在强调大数据对我们的意义,总要有具体体现。整本书中,我感触最大的一个案例就是某公司通过分析大数据发现:新品发布的时候,旧一代的产品可能会出现短暂的价格上涨。因为人们在心理上就认为新产品的推出,旧产品就会便宜,从而就会提高购买量。这个发现和我们平常的心理是完全违背的,而且如果不用数据来证明,直接讲道理给大家可能还是无法相信。这就是大数据对我们很多传统思维的颠覆。一旦涉及到思维的改变,往往就会引起整个社会的大变动。

大数据这个概念的出现,让大数据逐渐发展形成一条价值链。在这条价值链上,数据本身、技能和思维是最重要的环节。随着互联网技术的发展,越来越多的公司都能收集到大量的数据,这些数据也会越来越公开。可是在这些公司中,不是所有的公司都有从数据中提取价值或者用数据催生创新思想的技能。于是就会出现以下两种公司,一种是掌握了专业技能但不一定拥有数据或者提出数据创新性用途才能的公司,另一种就是拥有超前思维,懂得怎样挖掘数据的新价值的创新公司。短时间内,我们可能会感觉拥有创新思维,懂得挖掘出数据新价值的大数据思维是最重要的。可是等到产业成熟之后,所有人都知晓了大数据的意义,所有人便开始挖掘自己的大数据思维。同时,随着科技的进步,掌握大数据技术的也将成为常态。所以到后来,整个价值链的核心环节还是回到了数据本身。而到那时候,大数据的公开性也就越来越小。

在大谈完大数据对人类发展的积极意义之后,作者也考虑到大数据时代的风险。这一部分是作者脑洞大开的精彩之处,同时也是最荒谬的一部分。书中说大数据时代将要惩罚未来犯罪,这样可以在嫌疑人在可能犯罪之前就把犯罪行为给防止。这样的社会,大数据俨然已经延伸到了我们每个人生活的点滴。几乎我们在生活中所做的一切都在大数据的“监控”之下,我想到那时候,别说我们每个人的隐私已经没有的了,严重一点可以说是我们可能连人都不算了。在我们人的社会属性中,自由权利是一项很重要的指标。通过大数据惩罚人的未来犯罪已经否定了人的自由选择能力和人的行为责任自负。同时,由于数据是永久保存,大数据预测也是通过每个人之前的数据来判断,所以大数据同样也否定了人的求善心理。还有,从现在各种大数据预测的结果来看,很多发言人都说大数据不是百分百的准确。所以利用大数据来判断人的行为发展已经违背了大数据不追求精确性的特征,这也是书中自相矛盾的地方。

对于一个新事物,如果能让大家了解这个事物并且对此产生兴趣,这已经算是一本不错的入门书了。

大数据时代的心灵鸡汤

从小到大,鸡汤对于我们来说一直都挺珍贵的。身体虚弱了,喝点鸡汤能够补充营养。心灵受伤了,看点心灵鸡汤可以鼓舞人心。可是近几年,人们生活水平提高了,营养富余,鸡汤已经不是人们补营养的期待了。同样,心灵鸡汤也是如此。

心灵鸡汤其实是一个很虚伪的东西。很多人都被心灵鸡汤诱人的外表给迷惑。在我看来,心灵鸡汤很大的一个特征就是:立人的志,但是就不告诉你实现志的方法。很多人每次在失意的时候就喜欢看心灵鸡汤,希望能得到慰藉。看完后也觉得醍醐灌顶,感觉整个世界都亮了。但又有几个人想过喝完这些鸡汤之后你除了看似重拾梦想,你还获得了什么?你知道怎么去做吗?《大数据时代》就是这样一本书。整本书从头到尾都在向读者讲述大数据的意义,当然期间也会用相应的案例来证明大数据确实有这样的能力。但是,整本书从没有涉及到技术层面的问题。或许对于大数据这种依靠互联网技术的新事物,即使向读者讲技术,也没有几个人看得懂,可是整本书没有一点关于大数据思维的技能引导。给出的案例中只有少数案例向读者讲述了这个公司为什么要利用大数据来解决这种问题,大多数都只是告诉读者国外某家公司运用大数据得出了某种结论。同时,在本书中文译作者写的序里,强调自己翻译这本著作的一大优点是可以结合国内的案例来分析书中的理论,结果,看到最后一页都没有看到一个国内企业关于大数据运用的案例。

之所以我称之为“心灵鸡汤”,还有一个原因就是作者在书中大讲特讲的大数据的作用,事实上按照现在的经济发展水平和社会文明发展程度是很难实现的。书中很多时候的理论都是要建立在社会各项文明都发展健全的基础上才能实现。

大数据的“传销手册”

看到这个标题,大家可能会觉得我夸大其词,受到如此多人好评的书怎么是“传销手册”呢?对于这个表达,我只想说两点:1、此说法仅代表我个人观点,是否认同是个人问题。2、此说法主要针对本书的上部分。

我们都知道传销组织在发展下线的前期是要花大力气去培训的,也就是洗脑。而对于一个陌生又很难以理解的事物,最好的“洗脑”方式就是重复。《大数据时代》这本书就是运用这种方式,前半部分为了让读者能够接受“大数据”这个概念,作者反反复复提醒读者大数据不是随机采样、不追求精确和不寻找因果关系。同时用很多看似很通俗易懂其实看完后还是不知道说了什么的案例来让人信服大数据的作用。书中的后半部分虽然也是用这种方式来感染读者,可后半部分中作者的畅想和对大数据的威胁分析还是对读者有一些实质意义的,所以后半部分的“传销”影响就不是很重要。

大数据时代是未来的趋势,这谁都不会否认。大数据改造了我们的生活,改变着我们的世界。不管它是以一种什么样的姿态面向世界,它都没有错,因为大数据只是一种工具。但当人类开始质疑甚至恐惧大数据的时候,人类就该思考自己是否利用好这个好工具了。

大数据心得体会篇4

大数据课设的心得体会篇十五

《大数据时代》心得体会

信息时代的到来,我们感受到的是技术变化日新月异,随之而来的是生活方式的转变,我们这样评论着的信息时代已经变为曾经。如今,大数据时代成为炙手可热的话题。

信息和数据的定义。维基百科解释:信息,又称资讯,是一个高度概括抽象概念,是一个发展中的动态范畴,是进行互相交换的内容和名称,信息的界定没有统一的定义,但是信息具备客观、动态、传递、共享、经济等特性却是大家的共识。数据:或称资料,指描述事物的符号记录,是可定义为意义的实体,它涉及到事物的存在形式。它是关于事件之一组离散且客观的事实描述,是构成信息和知识的原始材料。数据可分为模拟数据和数字数据两大类。数据指计算机加工的“原料”,如图形、声音、文字、数、字符和符号等。从定义看来,数据是原始的处女地,需要耕耘。信息则是已经处理过的可以传播的资讯。信息时代依赖于数据的爆发,只是当数据爆发到无法驾驭的状态,大数据时代应运而生。

在大数据时代,大数据时代区别与转变就是,放弃对因果关系的渴求,而取而代之关注相关关系。也就是说只要知道“是什么”,而不需要知道“为什么”。数据的更多、更杂,导致应用主意只能尽量观察,而不是倾其所有进行推理。小数据停留在说明过去,大数据用驱动过去来预测未来。数据的用途意在何为,与数据本身无关,而与数据的解读者有关,而相关关系更有利于预测未来。大数据更多的体现在海量非结构化数据本身与处理方法的整合。大数据更像是理论与现实齐头并进,理论来创立处理非结构化数据的方法,处理结果与未来进行验证。大数据是在互联网背景下数据从量变到质变的过程。小数据时代也即是信息时代,是大数据时代的前提,大数据时代是升华和进化,本质是相辅相成,而并非相离互斥。

数据未来的故事。数据的发展,给我们带来什么预期和启示?金融业业天然有大数据的潜质。客户数据、交易数据、管理数据等海量数据不断增长,海量机遇和挑战也随之而来,适应变革,适者生存。我们可以有更广阔的学习空间、可以有更精准的决策判断能力这些都基于数据的收集、整理、驾驭、分析能力,基于脱颖而出的创新思维和执行。因此,建设“数据仓库”,培养“数据思维”,养成“数据治理”,创造“数据融合”,实现“数据应用”才能拥抱“大数据”时代,从数据中攫取价值,笑看风云变换,稳健赢取未来。

一部似乎还没有写完的书

——读《大数据时代》有感及所思

读了《大数据时代》后,感觉到一个大变革的时代将要来临。虽然还不怎么明了到底要彻底改变哪些思维和操作方式,但显然作者想要“终结”或颠覆一些传统上作为我们思维和生存基本理论、方法和方式。在这样的想法面前,我的思想被强烈震撼,不禁战栗起来。“在小数据时代,我们会假象世界是怎样运作的,然后通过收集和分析数据来验证这种假想。”“随着由假想时代到数据时代的过渡,我们也很可能认为我们不在需要理论了。”书中几乎肯定要颠覆统计学的理论和方法,也试图通过引用《连线》杂志主编安德森的话“量子物理学的理论已经脱离实际”来“终结”量子力学。对此我很高兴,因为统计学和量子力学都是我在大学学习时学到抽筋都不能及格的课目。但这两个理论实在太大,太权威,太基本了,我想我不可能靠一本书就能摆脱这两个让我头疼一辈子的东西。作者其实也不敢旗帜鲜明地提出要颠覆它们的论点,毕竟还是在前面加上了“很可能认为”这样的保护伞。

有偏见”,跟作者一起先把统计学和量子力学否定掉再说。反正我也不喜欢、也学不会它们。

当我们人类的数据收集和处理能力达到拍字节甚至更大之后,我们可以把样本变成全部,再加上有能力正视混杂性而忽视精确性后,似乎真的可以抛弃以抽样调查为基础的统计学了。但是由统计学和量子力学以及其他很多“我们也很可能认为我们不再需要的”理论上溯,它们几乎都基于一个共同的基础——逻辑。要是不小心把逻辑或者逻辑思维或者逻辑推理一起给“不再需要”的话,就让我很担心了!《大数据时代》第16页“大数据的核心就是预测”。逻辑是——描述时空信息“类”与“类”之间长时间有效不变的先后变化关系规则。两者似乎是做同一件事。可大数据要的“不是因果关系,而是相关关系”,“知道是什么就够了,没必要知道为什么”,而逻辑学四大基本定律(同一律、矛盾律、排中律和充足理由律)中的充足理由律又“明确规定”任何事物都有其存在的充足理由。且逻辑推理三部分——归纳逻辑、溯因逻辑和演绎逻辑都是基于因果关系。两者好像又是对立的。在同一件事上两种方法对立,应该只有一个结果,就是要否定掉其中之一。这就是让我很担心的原因。

可我却不能拭目以待,像旁观者一样等着哪一个“脱颖而出”,因为我身处其中。问题不解决,我就没法思考和工作,自然就没法活了!

更何况还有两个更可怕的事情。

其二:人和机器的根本区别在于人有逻辑思维而机器没有。《大数据时代》也担心“最后做出决策的将是机器而不是人”。如果真的那一天因为放弃逻辑思维而出现科幻电影上描述的机器主宰世界消灭人类的结果,那我还不如现在就趁早跳楼。

都是在胡说八道,所谓的担心根本不存在。但问题出现了,还是解决的好,不然没法睡着觉。自己解决不了就只能依靠专家来指点迷津。

所以想向《大数据时代》的作者提一个合理化建议:把这本书继续写下去,至少加一个第四部分——大数据时代的逻辑思维。

合纤部 车民

2013年11月10日

一、学习总结

采用某些技术,从技术中获得洞察力,也就是bi或者分析,通过分析和优化实现

对企业未来运营的预测。

二、心得体会

在如此快速的到来的大数据革命时代,我们还有很多知识需要学习,许多思维需要转变,许多技术需要研究。职业规划中,也需充分考虑到大数据对于自身职业的未来发展所带来的机遇和挑战。当我们掌握大量数据,需要考虑有多少数字化的数据,又有哪些可以通过大数据的分析处理而带来有价值的用途?在大数据时代制胜的良药也许是创新的点子,也许可以利用外部的数据,通过多维化、多层面的分析给我们日后创业带来价值。借力,顺势,合作共赢。

【本文地址:http://www.xuefen.com.cn/zuowen/5451650.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档