精选平方差公式教案及板书设计(通用17篇)

格式:DOC 上传日期:2023-10-30 04:59:13
精选平方差公式教案及板书设计(通用17篇)
时间:2023-10-30 04:59:13     小编:字海

教案是教师与学生之间的桥梁,帮助他们实现教学目标。教案编写时,应加强对学生的评估和反馈,及时调整教学策略和方法。合理有序地编写教案,可以使教学过程更加顺利。

平方差公式教案及板书设计篇一

本节课是围绕“引导学生有效预习”的课题设计的,通过预设的问题引发学生思考,在学生的预习基础上回答相关的'问题,产生对整式的乘法、提公因式法和公式法的对比。

让学生充分自主的对知识产生探究,同时利用数形结合的思想验证平方差公式;再通过质疑的方式加深对平方差公式结构特征的认识,有助于让学生在应用平方差公式行分解因式时注意到它的前提条件;通过例题练习的巩固,让学生把握教材,吃透教材,让学生更加熟练、准确,起到强化、巩固的作用,让学生领会换元的思想,达到初步发展学生综合应用的能力。

二、教材分析

本节课是运用提公因式法后公式法的第一课时——用平方差公式法分解因式。它是整式乘法的平方差公式的逆向应用,它是解高次方程的基础,在教材中具有重要的地位。在教材的处理上以学生的自主探索为主,在原有用平方差公式进行整式乘法计算的知识的基础上充分认识分解因式。明确因式分解是乘法公式的一种恒等变形,让学生学会合情推理的能力,同时也培养了学生爱思考,善交流的良好学习惯。

三、学情分析

四、教学目标

(一)知识与技能

1.掌握运用平方差公式分解因式的方法。

2.掌握提公因式法、平方差公式分解因式的综合应用。

(二)过程与方法

1.经历探究分解因式方法的过程,体会整式乘法与分解因式之间的联系。

2.通过乘法公式:(a+b)(a-b)=a2-b2逆向变形,进一步发展观察、归纳、类比、概括等能力,发展有条理地思考及语言表达能力。

3.通过活动4,将高次偶数指数向下次指数的转达化,培养学生的化归思想。

4.通过活动1,发现并归纳出因式分解的又一方法:逆用整式乘法的平方差公式,得到a2-b2=(a+b)(a-b)。

5.通过活动4,让学生自己发现问题,提出问题,然后解决问题,体会在解决问题的过程中与他人合作的重要性。

(三)情感与态度

1.通过探究平方差公式,让学生获得成功的体验,锻炼克服困难的意志,建立自己信心。

平方差公式教案及板书设计篇二

本节课是围绕“引导学生有效预习”的课题设计的,通过预设的问题引发学生思考,在学生的预习基础上回答相关的问题,产生对整式的乘法、提公因式法和公式法的对比。

让学生充分自主的对知识产生探究,同时利用数形结合的思想验证平方差公式;再通过质疑的方式加深对平方差公式结构特征的认识,有助于让学生在应用平方差公式行分解因式时注意到它的前提条件;通过例题练习的巩固,让学生把握教材,吃透教材,让学生更加熟练、准确,起到强化、巩固的作用,让学生领会换元的思想,达到初步发展学生综合应用的能力。

本节课是运用提公因式法后公式法的第一课时——用平方差公式法分解因式。它是整式乘法的平方差公式的逆向应用,它是解高次方程的基础,在教材中具有重要的地位。在教材的处理上以学生的自主探索为主,在原有用平方差公式进行整式乘法计算的知识的基础上充分认识分解因式。明确因式分解是乘法公式的一种恒等变形,让学生学会合情推理的能力,同时也培养了学生爱思考,善交流的良好学习惯。

(一)知识与技能

1.掌握运用平方差公式分解因式的方法。

2.掌握提公因式法、平方差公式分解因式的综合应用。

(二)过程与方法

1.经历探究分解因式方法的过程,体会整式乘法与分解因式之间的联系。

2.通过乘法公式:(a+b)(a-b)=a2-b2逆向变形,进一步发展观察、归纳、类比、概括等能力,发展有条理地思考及语言表达能力。

3.通过活动4,将高次偶数指数向下次指数的转达化,培养学生的化归思想。

4.通过活动1,发现并归纳出因式分解的又一方法:逆用整式乘法的平方差公式,得到a2-b2 =(a+b)(a-b)。

5.通过活动4,让学生自己发现问题,提出问题,然后解决问题,体会在解决问题的过程中与他人合作的重要性。

(三)情感与态度

1.通过探究平方差公式,让学生获得成功的体验,锻炼克服困难的意志,建立自己信心。

平方差公式教案及板书设计篇三

(1)(x+1)(x-1)=_____,

(2)(+2)(-2)=_____,

(3)(2x+1)(2x-1)=____,

(4)(+3z)(-3z)=_____.

(1)(x+1)(1+x),

(2)(2x+)(-2x),

(3)(a-b)(-a+b),

(4)(-a-b)(-a+b)

帮助学生理解公式的特征,掌握公式的特征是正确运用公式的关键,除了掌握公式的特征外还有必要理解公式中的字母a、b具有广泛的含义,几字母a、b可以表示具体的数、也可以表示单项式或多项式,由于学生的认知能力有一个过程,教学中应由易到难逐步安排学习这方面的内容。

平方差公式教案及板书设计篇四

(l)(2)(3)(4)

学生活动:学生分组讨论,选代表解答.

练习三

甲的计算过程是:原式

乙的计算过程是:原式

丙的计算过程是:原式

丁的计算过程是:原式

(2)想一想,与相等吗?为什么?

与相等吗?为什么?

学生活动:观察、思考后,回答问题.

练习四

运用乘法公式计算:

(l)(2)

(3)(4)

(四)总结、扩展

这节课我们学习了乘法公式中的完全平方公式.

引导学生举例说明公式的结构特征,公式中字母含义和运用公式时应该注意的问题.

八、布置作业

p1331,2.(3)(4).

参考答案

略.

平方差公式教案及板书设计篇五

1.经历探索平方差公式的过程,会推导平方差公式;

2.能利用平方差公式进行简单的运算。

在探索平方差公式的过程中,发展学生的符号感和推理能力。在计算的过程中发现规律,并能用符号表达,体会数学语言的严谨与简洁。

激发学习数学的兴趣,鼓励学生自己探索,培养学生的合作意识与创新能力。

重点

平方差公式的推导和运用

难点

平方差公式的结构特点和灵活运用。

一、复习导入

1.回顾多项式乘多项式的法则。

2.创设情境:你能快速地口算下列式子的值吗?

(1);(2).

师生共同想办法,想到能否把数转化成较整的数?

变形成:,

再试试把它当成多项式乘法来算算,有什么发现?

继续用你发现的方法算算,,,成功了吗?

我们把这个有趣的结论整理并推广,就可以得到今天要学习的一个乘法公式,平方差公式。

二、新课讲解

探究新知

1.观察相乘的两个多项式有什么特点?运算的结果有什么特点?

讨论交流后总结出:两个数的和与这两个数的差的积,等于这两个数的平方差。

2.把式子里具体的数换成字母表示的数,结论还成立吗?

3.从上面的计算中你有什么发现呢?

引导学生发现对于不同形式的两个数,都有它们的和与它们的差的积都等于它们的平方差!用公式表示就是:,这里字母是任意形式的两个数。这个公式叫做平方差公式。

4.你能通过演算推导出平方差公式吗?

最终得到平方差公式:

平方差公式的理解应用

下列多项式乘法中,能用平方差公式计算的是_______________(填写序号)

(1);(2);(3);

(4);(5);(6).

学生分组讨论交流,归纳什么情况下可以使用平方差公式。通过讨论,对平方差公式的理解达到一个新的高度:所谓两数和、两数差,从多项式的角度来看,就是有一项相同(),有一项相反(和),只要相乘的两个多项式具备这样的特点,都可以用平方差公式计算。不难判断,上面的式子中(2)、(5)、(6)都可以用平方差公式计算。

三、典例剖析

例1运用平方差公式计算:

师生共同解答,教师板书。初学运用时要写清楚步骤。

例2运用平方差公式计算:

学生解答,关注学生是否理解平方差公式,能否正确识别乘法公式里的。

例3.计算:

学生解答,教师巡视,关注学生能否合理变形,灵活运用公式计算。

四、课堂练习

1.下面各式的计算对不对?如果不对,应怎样改正?

(1);

2.运用平方差公式计算:

(1);(2);

(3);(4).

3.计算:

(1);(2);

教师要注意发现学生的错误,组织学生对错误进行分析,对于第1题可以引导学生分析导致错误的原因。

五、小结

师生共同回顾平方差公式的结构特点,体会公式的作用,交流计算的经验。教师对课堂上学生掌握不够牢固的知识进行辨析、强调与补充,学生也可以谈一谈个人的学习感受。

六、布置作业

p50第1、6题

平方差公式教案及板书设计篇六

1、使学生理解和掌握平方差公式,并会用公式进行计算;

2、注意培养学生分析、综合和抽象、概括以及运算能力,培养应用数学的意识;

3、在紧张而轻松地教学氛围内,进一步激发学生的学习兴趣热情。

重点是掌握公式的结构特征及正确运用公式。难点是公式推导的理解及字母的广泛含义。

以教师的精讲、引导为主,辅以引导发现、合作交流。

(一)创设问题情境,引入新课

1、你会做吗?

(1)(x+1)(x—1)=_____=()()

(3)(3x+2)(3x—2)= _____=()()

2、能否用简便方法运算:×(这里需要用到平方差公式,设疑激发学生兴趣。)

(二)探索规律,归纳平方差公式

交流上面第1题的答案,引导学生进一步思考:

(合作交流,探究新知:两数之和与这两数之差相乘时,积是二项式。这是因为具备这样特点的两个二项式相乘,积的四项中,会出现互为相反数的两项,合并这两项的结果为零,于是就剩下两项了。而它们的积等于这两个数的平方差。)

我们把(a+b)(a—b)=a—b叫做乘法的平方差公式。再遇到类似形式的多项式相乘时,就可以直接运用公式进行计算。(在此基础上,让学生用语言叙述公式,并让学生熟记。)

(三)尝试探究

(四)巩固练习

1、运用平方差公式计算:

(l)(x+a)(x—a)

(2)(m+n)(m—n)(3)(a+3b)(a—3b)

(4)(1—5y)(l+5y)(5)998×1002

(6)395×405

2、直接写出答案:

(l)(—a+b)(a+b)

(2)(a—b)(b+a)

(3)(—a—b)(—a+b)

(4)(a—b)(—a—b)(5)999×1001

(6)×(让学生独立完成,互评互改。)

(五)小结

1.什么是平方差公式?

2.运用公式要注意什么?

(1)要符合公式特征才能运用平方差公式;

(2)有些式子表面不能应用公式,但实质能应用公式,要注意分清a、b。

(学生回答,教师总结)

(六)作业

p106习题1—5题

教学反思

通过精心备课,本节课在教学中是比较成功的。成功之处在于整个教学流程环环相扣,层层递进,抓住了学生思维这条主线,遵循由浅入深,由特殊到一般的认知规律,引起学生的兴趣。使他们能够积极参与其中,同时,使他们的思维得到了锻炼和发展。不足之处:时间安排不是很合理,前松后紧。课堂上没有给更多的学生提供展示自己思考结果的机会,过于注重“收”,而“放”不够。

平方差公式教案及板书设计篇七

平方差公式是多项式乘法运算中一个重要的公式,是特殊的多项式与多项式相乘的一种简便计算。通过复习多项式乘以多项式的计算导入新课,为探究新知识奠定基础。在重难点处设计问题:“观察以上3个算式的特点和运算结果的特点,对比等号两边代数式的结构,你发现了什么?”让学生发现规律并尝试运用自己的语言来描述。

问题提出后,学生能积极进行分组讨论、交流,各组小组长阐述自己小组讨论的结果。大多数的学生能找出规律,说出大概意思,但是无法用精准的语言完整的描述出来,语言表达无条理、含糊。针对这种情况,在以后的课堂教学过程中要注意加强对学生的逻辑思维能力和语言表达能力的.培养。最后经过师生的共同努力,得出了平方差公式以及公式的特征。

在例题展示环节中,我通过2道例题的运算,训练学生正确应用公式进行计算,体会公式在简化运算中的作用。实践练习的设计,使学生从不同角度认识平方差公式,进一步加强学生对公式的理解。在运用公式时,学生基本掌握运用平方差公式的步骤:首先要判断算式是否符合平方差公式特征,然后再寻找算式中的a,b项,最后运用平方差公式运算。

拓展延伸环节中,学生通过寻找算式中的a,b项,慢慢发现a,b项不仅可以代表数,也可以代表单项式、多项式等代数式,这样设计可以进一步深化学生对字母含义的理解。在学生独立完成练习和堂测中,经过巡视,我发现近三分之一的学生对较复杂的多项式不能准确找出a,b项,特别是b项代表多项式时,负数去括号时出错较多。

最后通过设计递进式的问题串,引导学生自己一步步总结出本节课所学的知识内容,从而培养他们的归纳总结和语言表达能力。

本节课采用学习小组讨论、交流的学习方式,让学优生带动学困生,整体教学效果良好,学生基本掌握平方差公式的运用,对于较复杂的a、b项的运算,在自习课上将加强练习。

平方差公式教案及板书设计篇八

1、了解完全平方公式的特征,会用完全平方公式进行因式分解.

2、通过整式乘法逆向得出因式分解方法的过程,发展学生逆向思维能力和推理能力.

3、通过猜想、观察、讨论、归纳等活动,培养学生观察能力,实践能力和创新能力.

学习建议教学重点:

平方差公式教案及板书设计篇九

教学目标:

一、 知识与技能

1、 参与探索平方差公式的过程,发展学生的推理能力 2、 会运用公式进行简单的乘法运算。

二、 过程与方法

1、 经历探索过程,学会归纳推导出某种特种特定类型乘法并用简单的

数学式子表达出,即给出公式。

2、 在探索过程的教学中,培养学生观察、归纳的能力,发展学生的符

号感和语言描述能力。

三、 情感与态度

以探索、归纳公式和简单运用公式这一数学情景,加深学生的体验,增加学习数学和使用的信心。培养学生由观察-发现-归纳-验证-使用这一数学方法的逐步形成.

教学重点: 公式的简单运用

教学难点: 公式的推导

教学方法: 学生探索归纳与教师讲授结合

课前准备:投影仪、幻灯片

平方差公式教案及板书设计篇十

一、说教材

本节课选自人教版八年级上册第15章第二节内容,它是在学生已经掌握了多项式乘法之后,自然过渡到具有特殊形式的多项式的乘法,是从一般到特殊的认知规律的典型范例。对它的学习和研究,不仅给出了特殊的多项式乘法的简便算法,而且为以后的因式分解、分式的化简等内容奠定了基础,同时也为学习完全平方公式的学习提供了方法。因此,中公教育专家认为,平方差公式作为初中阶段的第一个公式,在教学中具有很重要地位。

二、说学情

学生已熟练掌握了幂的运算和整式乘法,但在进行多项式乘法运算时常常会出现符号错误及漏项等问题;另外,数学公式中字母具有高度概括性、广泛应用性,鉴于八年级学生的认知水平,理解上有困难。因此,我们把教学难点定为:理解平方差公式的。结构特征,灵活应用平方差公式。

三、说教学目标

基于对教材的理解和分析,我在教学中以学生为主体,以学生的学为根本,我把本课的目标定位为:

知识与技能目标:了解平方差公式产生的背景,理解平方差公式的意义,掌握平方差公式的结构特征,并能灵活运用平方差公式解决问题。

过程与方法目标:经历平方差公式产生的探究过程,培养观察、猜想、归纳、概括、推理的能力和符号感,感受利用转化、数形结合等数学思想方法解决实际问题的策略。

情感态度与价值观目标:通过探究平方差公式,形成学习数学公式的一般套路,体会成功的喜悦,培养团结协助的意识,增强学生学数学、用数学的兴趣。

教学重点:理解平方差公式的意义,掌握平方差公式的结构特征。

教学难点:运用平方差公式解决问题。

四、说教法、学法

课堂是学生学习的主阵地,真正做到把课堂还给学生,因而我采取的的教学模式定为:三先两主动,即让学生先说话、先动手、先总结,让学生主动提问、主动探索。学习方法:学生积极参与、大胆猜想、合作交流和自主探索。

五、说教学过程

(一)创设情景,引入新课

数学课标强调:“数学来源于实际生活”,为了体现这一思想,我设计了一个实际问题。这里只提供情境,刺激学生主动提出问题,因为“提出问题”比“解决问题”更重要。这个以生活实例创设的情境,不仅激发学生的求知兴趣,又为平方差公式的引人服务,更为说明平方差公式的几何意义做好铺垫。

(二)合作交流,探求新知

首先,我用情境中一道题目,并再安排了两个练习,通过对特殊的多项式与多项式相乘的计算,既复习了旧知,又为下面学习习近平方差公式作了铺垫,让学生感受从一般到特殊的认识规律,引出乘法公式----平方差公式。

顺势鼓励学生用自己的语言归纳表述,总结出公式,从而提高学生的语言组织与表达能力。

然后,教师通过分析公式的本质特征使学生掌握公式,在认清公式的结构特征的基础上,

进一步剖析a、b的广泛含义,抓住了概念的核心,使学生在公式的运用中能得心应手,起到事半功倍的效果。

最后,用学生最喜欢的拼图游戏,引导学生从“形”的角度认识平方差公式的几何意义,再次验证了猜想。渗透了数形结合的思想,让学生体会到代数与几何的内在联系,引导学生学会从多角度、多方面来思考问题。

(三)巩固深化,内化新知

总结出平方差公式后,我先设计两个简单练习题。通过练习,使学生加深对平方差公式结构特点的认识和理解,进一步掌握平方差公式的本质特征和运用平方差公式必须具备的条件。

然后设计了三个例题。例1和例2是教材上的内容,例3是我设计的一道实际问题。

例1有两道小题,其中设计第(1)题,然后学生完成。第(2)题学生板演,师生共同纠错。例2有两道小题,先让学生尝试练习,出错后教师及时纠正,使学生认识深刻。第一题体现了转化的思想和数式通性;另一题是平方差公式与一般多项式乘法的综合,强调不能用公式的仍按多项式乘法法则进行。

例3运用平方差公式解决实际问题,体现了数学来源于生活,服务于生活,学生感受到学习数学的价值,设计此题与平方差公式的几何意义相吻合,加深学生对平方差公式的理解。

(四)反馈练习,巩固新知

练习题的设计有梯度,从基础应用公式入手,到拓展提高。加强基本知识和基本技能训练,使不同水平的学生学习都有收获,体现出“人人学有用的数学”。

在练习的基础上,教师归纳总结,提升学习理念。

(五)当堂练习

这部分给出两类练习题

设计意图(第一类题是完全平方公式的直接应用,通过实例,使学生进一步体会到完全平方公式中字母a,b的含义是很广泛的,它可以是数,也可以是整式)(第二道题直接给出一些同学的错误认识,强调错误原因并引导学生走出误区)

(六)课堂小结

设计意图:(让学生回想本节课的主要内容完全平方公式,教师再次强调并指出易错点和需注意的地方公式中项数、符号、字母及其指数。)

(七)布置作业

作业分必做题和选做题两部分

设计意图:(必做题巩固本节课知识,让学生熟练应用公式。选做题为下节课的学习做铺垫,同时分层布置作业也满足了不同层次学生的要求)

平方差公式教案及板书设计篇十一

本课的学习目的主要是熟练掌握整式的运算,并且这些知识是以后学习分式、根式运算以及函数等知识的基础,同时也是学习物理、化学等学科及其他科学技术不可或缺的数学工具。而本节是整式乘法中乘法公式的首要内容,学生只有熟练掌握了包括平方差公式在内的乘法公式及它的推导过程,才能实现本节乃至本章作为数学工具的重要作用。因此,在教学安排上,我选择从学生熟悉的求多边形面积入手,遵循从感性认识上升为理性思维的认知规律,得出抽象的。概念,并在多项式乘法的基础上,再次推导公式,使原本枯燥的数学概念具有一定的实际意义和说理性;之后安排了一系列的例题和练习题,把新知运用到实战中去,解决简单的实际问题,这样既调动了学生学习的主动性,又锻炼了思维,整个过程由浅入深,在对所得结论不断观察、讨论、分析中,加深对概念的理解,增强学生应用知识解决问题的能力,从而达到较好的授课效果。

数学是一门抽象的学科,但数学是来源于实际生活的。因此,数学教育的目的是将数学运用到实际生活中去,让学生深切感受到数学是有价值的科学,来源于生活,是其他科学的基础。本节公式中字母的含义对学生来讲很抽象,是本节的难点,也是学生运用公式解决实际问题的最大障碍,通过巩固练习,让学生逐步体会,为今后学习其他乘法公式做好准备。乘法公式的逆用就是因式分解的重要方法,因此,在本节补充练习中,已经开始渗透这部分知识,为后面学习因式分解做好铺垫。

但是,我在教本章内容时却始终感到困惑。本以为这一章很简单,由于教材安排存在一定问题,如将同底数幂乘法、幂的乘方、积的乘方、单项式乘以单项式、单项式乘以多项式、多项式乘以多项式这么多的内容安排在一起,造成学生没掌握好、消化好,知识间相互混淆,设置了障碍。所以很多学生出现下列错误(3x?2)(3x?2)?3x象我们想象中掌握的那么好。

本章教材编者在此安排不太合理,没有考虑到学生的认知规律,不利于学生很好掌握,所以,我感觉以后上这章的时候不能按照教材课时安排走。否则还会出现今天的问题。

平方差公式教案及板书设计篇十二

1、使学生了解运用公式法分解因式的意义;

2、使学生掌握用平方差公式分解因式

重点:掌握运用平方差公式分解因式。

难点:将单项式化为平方形式,再用平方差公式分解因式;

学习方法:归纳、概括、总结

创设问题情境,引入新课

在前两学时中我们学习了因式分解的定义,即把一个多项式分解成几个整式的积的形式,还学习了提公因式法分解因式,即在一个多项式中,若各项都含有相同的因式,即公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式。

如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,只要我们记住因式分解是多项式乘法的相反过程,就能利用这种关系找到新的因式分解的方法,本学时我们就来学习另外的一种因式分解的方法——公式法。

1、请看乘法公式

(a+b)(a-b)=a2-b2(1)

左边是整式乘法,右边是一个多项式,把这个等式反过来就是

a2-b2=(a+b)(a-b)(2)

利用平方差公式进行的因式分解,第(2)个等式可以看作是因式分解中的平方差公式。

a2-b2=(a+b)(a-b)

2、公式讲解

如x2-16

=(x)2-42

=(x+4)(x-4)。

9m2-4n2

=(3m)2-(2n)2

=(3m+2n)(3m-2n)

例1、把下列各式分解因式:

例2、把下列各式分解因式:

(1)9(m+n)2-(m-n)2;(2)2x3-8x.

补充例题:判断下列分解因式是否正确。

(1)(a+b)2-c2=a2+2ab+b2-c2.

(2)a4-1=(a2)2-1=(a2+1)(a2-1)。

1、教科书习题

2、分解因式:x4-16x3-4x4x2-(y-z)2

3、若x2-y2=30,x-y=-5求x+y

平方差公式教案及板书设计篇十三

教学目标:

一、知识与技能

1、参与探索平方差公式的过程,发展学生的推理能力2、会运用公式进行简单的`乘法运算。

二、过程与方法

1、经历探索过程,学会归纳推导出某种特种特定类型乘法并用简单的

数学式子表达出,即给出公式。

2、在探索过程的教学中,培养学生观察、归纳的能力,发展学生的符

号感和语言描述能力。

三、情感与态度

以探索、归纳公式和简单运用公式这一数学情景,加深学生的体验,增加学习数学和使用的信心。培养学生由观察-发现-归纳-验证-使用这一数学方法的逐步形成.

教学重点:公式的简单运用

教学难点:公式的推导

教学方法:学生探索归纳与教师讲授结合

课前准备:投影仪、幻灯片

平方差公式教案及板书设计篇十四

学习目标:

1、能推导平方差公式,并会用几何图形解释公式;

2、能用平方差公式进行熟练地计算;

3、经历探索平方差公式的推导过程,发展符号感,体会“特殊——一般——特殊”的认识规律.

学习重难点:

重点:能用平方差公式进行熟练地计算;

难点:探索平方差公式,并用几何图形解释公式.

学习过程:

一、自主探索

1、计算:(1)(m+2)(m-2)(2)(1+3a)(1-3a)

(3)(x+5y)(x-5y)(4)(y+3z)(y-3z)

2、观察以上算式及其运算结果,你发现了什么规律?再举两例验证你的发现.

3、你能用自己的语言叙述你的发现吗?

4、平方差公式的特征:

(1)、公式左边的两个因式都是二项式。必须是相同的两数的和与差。或者说两个二项式必须有一项完全相同,另一项只有符号不同。

(2)、公式中的a与b可以是数,也可以换成一个代数式。

二、试一试

平方差公式教案及板书设计篇十五

一、教学目标:

1、使学生理解和掌握平方差公式,并会用公式进行计算;

2、注意培养学生分析、综合和抽象、概括以及运算能力,培养应用数学的意识;

在紧张而轻松地教学氛围内,进一步激发学生的学习兴趣热情。

3、二、重点、难点:

重点是掌握公式的结构特征及正确运用公式。难点是公式推导的理解及字母的广泛含义。

三、教学方法

以教师的精讲、引导为主,辅以引导发现、合作交流。

四、教学过程

(一)创设问题情境,引入新课

1、你会做吗?

(1)(x+1)(x-1)=_____=()()

(3)(3x+2)(3x-2)=_____=()()

2、能否用简便方法运算:59.8×60.2(这里需要用到平方差公式,设疑激发学生兴趣。)

(二)探索规律,归纳平方差公式

交流上面第1题的答案,引导学生进一步思考:

(合作交流,探究新知:两数之和与这两数之差相乘时,积是二项式。这是因为具备这样特点的两个二项式相乘,积的四项中,会出现互为相反数的两项,合并这两项的结果为零,于是就剩下两项了。而它们的积等于这两个数的平方差。)

我们把(a+b)(a-b)=a-b叫做乘法的平方差公式。再遇到类似形式的多项式相乘时,就可以直接运用公式进行计算。(在此基础上,让学生用语言叙述公式,并让学生熟记。)

(三)尝试探究

例1计算:

(1)(2x+y)(2x-y)

(2)(-5a+3b)(-5a-3b)

解:(2x+y)(2x-y)

解:(-5a+3b)(-5a-3b)

=(2x)-y=(-5a)-(3b)=4x-y=25a-3b

(教师引导学生分析题目条件是否符合平方差公式特征,并让学生说出本题中a,b分别表示什么。)

例2用平方差计算:

(1)99×101

(2)59.8×60.222

222

解:99×101

解:59.8×60.2=(100+1)(100-1)

=(60+0.2)(60-0.2)

=(100)-(1)

=(60)-(0.2)2

2=9999

=3599.96(教师引导,学生发现,运用平方差公式进行计算。)

(四)巩固练习

1、运用平方差公式计算:

(l)(x+a)(x-a)

(2)(m+n)(m-n)(3)(a+3b)(a-3b)

(4)(1-5y)(l+5y)(5)998×1002

(6)395×4052、直接写出答案:

(l)(-a+b)(a+b)

(2)(a-b)(b+a)

(3)(-a-b)(-a+b)

(4)(a-b)(-a-b)(5)999×1001

(6)39.8×40.2(让学生独立完成,互评互改.)

(五)小结

1.什么是平方差公式?

2.运用公式要注意什么?

(1)要符合公式特征才能运用平方差公式;

(2)有些式子表面不能应用公式,但实质能应用公式,要注意分清a、b。

(学生回答,教师总结)

(六)作业

p106习题1-5题

七、板书设计:

《平方差公式》

平方差公式:(a+b)(a-b)=a-b例1计算:

(1)(2x+y)(2x-y)

(2)(-5a+3b)(-5a-3b)

解:(2x+y)(2x-y)

解:(-5a+3b)(-5a-3b)

=(2x)-y=(-5a)-(3b)=4x-y=25a-3b例2用平方差计算:

(1)99×101

(2)59.8×60.2

解:99×101

解:59.8×60.2=(100+1)(100-1)

=(60+0.2)(60-0.2)

=(100)-(1)

=(60)-(0.2)2

22222

=9999

=3599.96

教学反思

通过精心备课,本节课在教学中是比较成功的。成功之处在于整个教学流程环环相扣,层层递进,抓住了学生思维这条主线,遵循由浅入深,由特殊到一般的认知规律,引起学生的兴趣。使他们能够积极参与其中,同时,使他们的思维得到了锻炼和发展。不足之处:时间安排不是很合理,前松后紧。课堂上没有给更多的学生提供展示自己思考结果的机会,过于注重“收”,而“放”不够。

平方差公式教案及板书设计篇十六

1会推导平方差公式,并能运用公式进行简单的计算.

2.经历探索平方差公式的过程,认识“特殊”与“一般”的关系,了解“特殊到一般”的认识规律和数学发现方法,平方差公式第一课时教学反思。

重点:公式的理解与正确运用(考点:此公式很关键,一定要搞清楚特征,在以后的学习中还继续应用)

难点:公式的理解与正确运用

教法:自主探究和合作交流

(1)(x+2)(x-2)(2)(1+2y)(1-2y)(3)(x+3y)(x-3y)

=x2-22=12-(2y)2=x2-(3y)2

学生分组讨论,交流,小组长回答问题。

师生共同总结归纳:

平方差公式:(a+b)(a-b)=a2-b2

即两数和与两数差的积,等于它们的平方差。

平方差公式特征:

(1)一组完全相同的项;

(2)一组互为相反数的项

2.例题

(1)(5+6x)(5-6x)(2)(-m+n)(-m-n)

3.公式应用

(1)(a+2)(a-2)(2)(-x+2y)(-x-3y)

两个学生板演,其余学生在练习本上自己独立完成

老师巡视,辅导学困生。

1.计算(1)(a+1)(a-1)(a2+1)(2)(a+b)(a-b)(a2+b2)

师生共同分析:此题特征,两次利用平方差公式,教学反思《平方差公式第一课时教学反思》。

学生在练习本上独立完成,同桌互相检查。

2.(ab)(-ab)=?能用平方差公式吗?它的a和b分别是什么?

学生分组讨论交流,独立完成运算。

1、(ab+8)(ab-8)2、(5m-n)(-5m-n)

3、(3x+4y-z)(3x-4y+z)4、(a+b)(a-b)(a2+b2)

1、什么是平方差公式?

2、运用公式要注意的.问题:

(1)平方差公式运用的条件是什么?

(2)公式中的a、b可以代表什么?

平方差公式(1)

一、检测导入

二、例题展示

三、拓展延伸

四、达标堂测

五、归纳小结

平方差公式:(a+b)(a-b)=a2-b2

即两数和与两数差的积,等于它们的平方差。

六、布置作业

p21:习题1.91、2

平方差公式教案及板书设计篇十七

1、使学生理解和掌握平方差公式,并会用公式进行计算;

2、注意培养学生分析、综合和抽象、概括以及运算能力。

教学重点和难点

重点:平方差公式的应用。

难点:用公式的结构特征判断题目能否使用公式。

教学过程设计

我们已经学过了多项式的乘法,两个二项式相乘,在合并同类项前应该有几项?合并同类项以后,积可能会是三项吗?积可能是二项吗?请举出例子。

让学生动脑、动笔进行探讨,并发表自己的见解。教师根据学生的回答,引导学生进一步思考:

(当乘式是两个数之和以及这两个数之差相乘时,积是二项式。这是因为具备这样特点的两个二项式相乘,积的四项中,会出现互为相反数的两项,合并这两项的结果为零,于是就剩下两项了。而它们的积等于乘式中这两个数的平方差)

继而指出,在多项式的乘法中,对于某些特殊形式的多项式相乘,我们把它写成公式,并加以熟记,以便遇到类似形式的多项式相乘时就可以直接运用公式进行计算。以后经常遇到(a+b)(a-b)这种乘法,所以把(a+b)(a-b)=a2-b2作为公式,叫做乘法的平方差公式。

在此基础上,让学生用语言叙述公式。

例1计算(1+2x)(1-2x)。

解:(1+2x)(1-2x)

=12-(2x)2

=1-4x2.

教师引导学生分析题目条件是否符合平方差公式特征,并让学生说出本题中a,b分别表示什么。

例2计算(b2+2a3)(2a3-b2)。

解:(b2+2a3)(2a3-b2)

=(2a3+b2)(2a3-b2)

=(2a3)2-(b2)2

=4a6-b4.

教师引导学生发现,只需将(b2+2a3)中的两项交换位置,就可用平方差公式进行计算。

课堂练习

运用平方差公式计算:

(l)(x+a)(x-a);(2)(m+n)(m-n);

(3)(a+3b)(a-3b);(4)(1-5y)(l+5y)。

例3计算(-4a-1)(-4a+1)。

让学生在练习本上计算,教师巡视学生解题情况,让采用不同解法的两个学生进行板演。

解法1:(-4a-1)(-4a+1)

=[-(4a+l)][-(4a-l)]

=(4a+1)(4a-l)

=(4a)2-l2

=16a2-1.

解法2:(-4a-l)(-4a+l)

=(-4a)2-l

=16a2-1.

根据学生板演,教师指出两种解法都很正确,解法1先用了提出负号的办法,使两乘式首项都变成正的,而后看出两数的和与这两数的差相乘的形式,应用平方差公式,写出结果。解法2把-4a看成一个数,把1看成另一个数,直接写出(-4a)2-l2后得出结果。采用解法2的同学比较注意平方差公式的特征,能看到问题的本质,运算简捷。因此,我们在计算中,先要分析题目的数字特征,然后正确应用平方差公式,就能比较简捷地得到答案。

课堂练习

1、口答下列各题:

(l)(-a+b)(a+b);(2)(a-b)(b+a);

(3)(-a-b)(-a+b);(4)(a-b)(-a-b)。

2、计算下列各题:

(1)(4x-5y)(4x+5y);(2)(-2x2+5)(-2x2-5);

教师巡视学生练习情况,请不同解法的学生,或发生错误的学生板演,教师和学生一起分析解法。

1、什么是平方差公式?

2、运用公式要注意什么?

(1)要符合公式特征才能运用平方差公式;

(2)有些式子表面不能应用公式,但实质能应用公式,要注意变形。

1、运用平方差公式计算:

(l)(x+2y)(x-2y);(2)(2a-3b)(3b+2a);

(3)(-1+3x)(-1-3x);(4)(-2b-5)(2b-5);

【本文地址:http://www.xuefen.com.cn/zuowen/5119990.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档