读后感是对读完一本书后的个人感受和思考的一种表达方式,它能够帮助我们更好地理解和评价所读的内容,我觉得写一篇读后感是挺有必要的呢。读后感是读者对于书籍内容的理解和思考的一种表达方式,通过写读后感可以使我们更深入地思考和理解书中的主题和观点。通过写读后感,我们可以将自己的思考和感受与他人分享,也可以帮助他人更好地了解这本书的价值和意义。读后感是一种对所读书籍的总结和回忆,可以帮助我们更好地把握书中的精华和观点。读后感通过个人的思考和感悟,可以让我们更好地理解和体会书中蕴含的智慧和哲理。读后感是对所读书籍的一种总结和概括,可以帮助我们更好地理解书中的主题和观点。读后感是对阅读过程和读书收获的一种总结和概括,可以帮助我们更好地提升自己的阅读能力和思考能力。读后感是对所读书籍的个人感受和思考的一种表达方式,可以帮助我们更好地理解和评价所读的内容。读后感是对书籍中的主题和观点的一种思考和概括,可以帮助我们更深入地理解和探索书中的内涵。写一篇令人印象深刻的读后感需要我们用心体会书中的情感和层次,进行准确的观点阐述。以下是小编为大家收集的读后感范文,仅供参考,大家一起来看看吧。读后感是读者对作品的理解和感受,每个人的读后感都是独特而有价值的。读后感可以帮助我们更好地理解和欣赏作品,同时也是对作者的一种尊重和回应。读后感是对作品进行思考和赏析的过程,它可以让我们更加深入地了解作品的内涵和意义。读后感是文学作品与读者之间的一种精神交流和情感传递,它可以激发读者的思考和创造潜力。在读后感中,我们可以表达自己对作品内容、情节、人物形象、文体特点等方面的认识和感受。读后感是一种实践性的文学活动,它可以提高我们的阅读能力和写作水平。读后感是一种对作品的回顾和思考,它可以帮助我们更好地理解和探索作品的内涵和意义。
数学读后感篇一
近日我认真拜读了《新课程理念与小学数学课堂教学实施》一书,这本书是们学校发的。读完这本书让我受益匪浅,颇有心得。
《新课程理念与小学数学课堂教学实施》是王丽杰、吴文信所著,由首都师范大学出版社出版发行。全书八个部分:
第一部分“为了每一位学生的发展“主要位我们剖析了新课程这一核心理念。
第二部分“走向生活”,让我们把握课程要面向学生的生活世界和社会实践和教学活动必须尊重学生已有的知识与经验这两个基本理念。
第三部分“为了孩子美好的明天”介绍了新课程基本理念之三;提倡自主、合作、探究的学习方式。
第四部分“参与是课程实施的核心”让我们明确了这个基本理念。
第五部分“让课堂教学充满创新活力”是围绕新课程改革的主旋律是培养学生的创新精神和实践能力这一基本理念而讲的。
第六部分“教是为了学”阐明的基本理念是教师是学习活动的组织者、引导者、参与者。
第八部分“发展才是硬道理”从第二部分到第七部分,还提供了许多教学片段或课例及简明的点评,并总结出课例所蕴含的理念,还为读者总结提供行动策略。
真正是课例鲜活而富有内涵,理念阐明通俗易懂、深入浅出;行动策略具体详尽,可操作性强,做到课例、理念、行动策略的“三点一线”。
1.教师和学生的关系。
旧课程观认为教师是知识的传授者,教师是教学活动的中心,学生只是知识的接受者,是被动的。而新课程观则认为,学生获取知识的过程是自我建构的过程,教师与学生都是课程的开发者,共创共生,形成"学习共同体".每个学生都带着自己的经验背景,带着自己独特的感受,来到课堂进行交流,这本身就是课程建设.
2.课程和教材的关系.
旧课程观认为课程就是教材,教材又是知识的载体,因而教材是中心,而新课程观则认为课程是教材、教师、学生、环境四因素的整合.学生从同学身上.教师身上学到的'东西远比从教材中学到的多.
3.课程与教学的关系.
数学新课程理念之一就是课程要面向学生的生活世界和社会实践,这里是指课程的内容要贴近学生的生活实际,要反映现实生活的内容;课程要成为学生生命历程的重要组成部分;课堂学习要与社会生活实践紧密结合。《新课程理念与小学数学课堂教学实施》举了很多鲜活的例子来反映新课程所提倡的理念。本书的课例提供的行动策略也给我带来了收获。比如以前如何让学生参与教学我比较盲目,现在我知道要做到以下的几点:
1、给每一个孩子以同样的表现机会;
2、让孩子学得有兴趣;
3、把孩子们领进精彩的问题空间;
4、精心设计学生的活动;
5、把时间和空间还给学生;
6、注重过程,注重体验。
其中“面积和面积单位”教学片断给我留下了深刻的印象。
数学读后感篇二
这个暑假,我读了《数学王国探秘》这一本书,这本书让我了解到数学的历史以及一些数学知识,逸事。让我有了很深的感触。
数学是起源于生活,也应用于生活。人们创造数目的最早的动机便是想知道一堆物体具体的数目。在数学的发展中,出现了一个智慧的迷宫,那就是幻方。这个游戏是给定1,2……n2。这些数字要求它们排列成n×n的方阵,并要使每一行,每一列,每一条对角线上的所有数字之和相等。每条直线上的数字之和叫做幻方常数。但有一个问题如何快速解决标准幻方,即从1按自然数顺序依次填到n2,这首先就要确定幻方常数例如三阶幻方常数是15,四阶幻方常数是34,那么n阶幻方的常数m是多少呢。我们可以先把n阶幻方的所有数的之和求出,得s=1+2+3+……+(n2―1)+n2=(1+n2)+(2+n2-1)+(3+n2―2)+……=n2/2(1+n2)再除n得m=1/n×n2/2(1+n2)=n/2(1+n2)所以标准幻方均可用m=n/2(1+n2)。
而幻方的的排法也是异常的多,五阶幻方超过2亿,七阶幻方超过3亿,让我也不得不感叹数学的灵活多变。
书中让我另一处感触最深的一个便是巧算勾股数,在学习勾股定理的时候我们便会注意到整勾股数的问题也就是x2+y2=z2的正整数解组,简称勾股数,例如(3,4,5)所以如果a,b,c都是勾股数并具有(a2+b2=c2)那么a,b,c就称为一组勾股数那么,只需要将他们同时乘以正整数k,其结果(ka,kb,kc)也是一组勾股数。所以只要考虑a,b,c两两互素的勾股数,并把它称为基本勾股数组。那么怎么创造出一组勾股数来呢?毕达哥拉斯提出的一组在课本里出现过,便是设m是任意大于或等于2的正整数,则(m2―1,2m,m2+1)一定是一个勾股数,因为这组是两两互素,是基本勾股数组。但无法给出所有勾股数组。我国的数学名著《九章数论》给出了更妙的方法:若给两个数m,n那么,1/2(m2―n2)、mn、1/2就是一组勾股数每次给的m,n不同所得勾股数也不同。并且如果m,n互素,这个公式便能套出所有两两互素的勾股数组。因此这个公式叫做x2+y2=z2的通解公式。
数学的奇妙我只领略一二,以后还有更长的数学道路需要我去体味。
数学读后感篇三
有关数学的故事跨越了几千年。本书分为数学简史和数学概念小史两部分,在介绍数学的知识的同时又讲述了各个时期,各个地区的数学历史与发展,并且解决了很多的'数学题目。
数学简史这部分介绍了许多地区的数学历史与发展。数学的开端、希腊数学、印度数学、阿拉伯数学等等。数学概念小史这部分则通过事例,介绍了数学界许多重要人物的成果和相关题目。数字“0”的故事就很有趣。四世纪的时候,巴比伦人用一个小点来避免楔形文字记数混淆,“0”作为占位开始了它的生命。但这时候,它还只是一个跳过某些东西的符号。公元九世纪的印度开始把0作为一个数字来对待。当时在东方国家数学是以运算为主,而西方是以几何为主,所以当阿拉伯数学家阿尔.花剌子模初引入0这个符号和概念到西方时,曾经引起西方人的困惑,把0本身作为一个数字看待的想法花了很长时间才确立。
读完这本书,我对古人先辈的智慧感到敬佩,对数学历史的源远流长感到惊叹,更对数学知识有了更深的理解。数学源于生活却高于生活。如今,数学在生活中被广泛的运用,很多事情都离不开数学。所以,我们不说对数学进行什么更深层次的研究,而是应该更加热爱它。并且我们要学习前人那种对未知事物的坚定、执着的探索精神,对当下学习的数学知识学懂、吃透。我认为,这是很重要的。
数学读后感篇四
《数学史》把数学几千年的发展浓缩为这本编年史中。从希腊人到哥德尔,数学一直辉煌灿烂,名人辈出,观念的潮涨潮落到处清晰可见。而且,尽管追踪的是欧洲数学的发展,但并没有忽视中国文明、印度文明和阿拉伯文明的贡献,是一部经典的关于数学及创造这门学科的数学家们的单卷本历史著作。读了这本书,让我对数学学习有了新的认识和感悟,也让我更深层次的了解到数学的魅力和伟大,以及对前人的崇敬。
数学源于人类的生活与发展。书中说,“人类在蒙昧时代就已具有识别事物多寡的能力,从这种原始的‘数觉’到抽象的‘数’概念的形成,是一个缓慢的,渐进的过程。”人类为了便于生活生产的需要,开始以手指头计数,手指数不够了,开始用石头计数,结绳计数,刻痕计数。又经过几万年的发展,随着几种文明的诞生与发展,记数系统在各种文明中都有了表示方式。古埃及的象形数字,巴比伦楔形数字,中国甲骨文数字,中国筹算数码等等。
但是,为什么时至今日我们最习惯和擅长使用的是十进制计数的方式呢,难道就是因为老师们一代一代这样教出来的吗?很多人可能就是这样认为的,或者根本并未思考过。书里写到:“十进制在今天的普遍使用,只不过是解剖学上一次偶然事件的结果而已:我们中的大多数人,生来就有10个手指、10个脚趾。”经历过扳着手指头数数的过程,可能十进制早已在我们的心中留下了牢固的烙印。这就是一个知识的自然形成。
通过对书中一些知识的'阅读与思考,可以感觉到许多知识并不是那些先驱者凭空乱想出来的,是根据某种需要而研究出来的规律,而且是一些自然存在的规律,我们今天所学的知识正是这些已经总结出来的规律。“坐标系”这个词,对很多人来说可能并不陌生,即使他的数学知识已经“还给老师”很多年了,他也许还知道什么是“经度纬度”。为什么会出现这样的现象呢,也许是因为后者在生活中出现的更多一些,但其实两者的实质都是一样的。一个小故事说:“笛卡尔小时候在一次晨思时看见天花板上有一只苍蝇在爬,他的头脑中闪现出智慧的火花,如果知道苍蝇和相临两个墙壁的距离之间的关系,就能描述它在天花板上的位置与运动路线。”这个故事可能是编造的,但最终形成了我们今天所知的“笛卡尔坐标系”。这样的思想广泛的应用在天文,地理,物理等许多的学科中。
数学源于生活,高于生活,最终也将服务生活,运用于生活。在一般人看来,数学是一门枯燥无味的学科,因而很多人视其为畏途,从某种程度上说,这也许是由于我们的数学所教的往往是一些僵化的、一成不变的数学内容,如果在数学教学中渗透数学史内容而让数学活起来,这样也许可以激发学生的学习兴趣,也有助于学生对数学认识的深化,让更多的学生懂得数学。
数学读后感篇五
最近,我读了一本书,叫《数学司令》。它主要讲了自称“数学司令”的牛牛,运用数学知识解决生活中的实际问题的故事。开始时,妞妞非常骄傲,自己碰巧的了第一名,就到处炫耀。但是,后来在实际应用中,觉得自己的只是远远不够用,觉得自己应该继续虚心学习、认真听课。知识的海洋是无边无际的`,应该不断的探索,从那以后,他就比以前更加努力。
读了这本书,我在想:我们在学习中,在生活中,不要有半点骄傲情绪,应该不满足于现状,继续努力学习,争取更大的成绩。可是,我们的学习中往往有一些这样的人。小明是一个很聪明的小学生,但是他非常骄傲,上课不认真听,听了一半就以为自己全都会了,就在下面玩东西。所以,他的成绩很差。小丁一般般,但是他非常努力地学习,没有半点骄傲情绪,正是因为这样,小丁的成绩越来越好。
读了这本书,我们要学习牛牛,学习牛牛敢于认识自己的错误,勇于改正缺点,善于动脑,在知识的海洋中不断地遨游,有句这样的名言“虚心使人进步,骄傲使人落后”。
小朋友,我们一起努力学习文化知识,将来做一个名符其实的数学司令,做一个对社会有用的人。
数学读后感篇六
数学学科是现在学生学习的噩梦,尤其是很多害怕数学的同学后来告诉我,经常做噩梦都是梦见考试时做不出数学。记得高中时代,很多女同学不敢选物理,作为一个女生的我是个例外,如果数学也实施选科的话,可能很多同学首先会放弃数学。为什么这样?带着一直以来的疑惑,我拜读了乔·博勒教授的《这才是数学》,有一些收获。
书上说,据统计40%以上的人不喜欢数学,甚至对数学怀有深深的厌恶和恐惧。这种情感来源于传统的数学教学模式,即老师站在黑板前讲解数学定理及方法,学生则在下面将老师的板书抄下来,再做大量的习题来巩固。这种教学模式往往形成学生只要记住相关知识就能将其掌握的假象,却掩盖了他们数学能力低下的事实。我们传统教学模式确实都如此,教师大量地教、学生被动地学,依稀记得高中时代,数学课堂就是老师讲足40分钟,满满的几大黑板的板书,老师口干舌燥,班级同学有些听懂,有些没听懂(也就假装懂)。作为一位女生,庆幸的是我的数学没有那么糟糕,也算是班级中上水平,我回想我读书时代学数学的乐趣,那就是面对难题,我没有放弃,尝试各种方法去解决,虽然有时候花了很长很长的时间,绞尽脑汁,睡醒、吃饭、洗澡的时候也会在想。突然脑子一闪,貌似找到了知识“联结点”,成功解决,那种喜悦是多么刻骨铭心。我想,这就是一种兴趣,一种成功体验,促使我不放弃学数学。现在的小学生如果有这样成功的体验,我想他不会不喜欢数学的。
乔·博勒教授对几千名美国和英国的中学生进行了为期数年的纵向调研,重点分析学生如何开展数学学习,以便找出好的教学方法。让学生能够以一种不同的方式去学习数学,那么他们将来很可能在数学领域取得成功。看起来,这些学习方式在国内难以实施,譬如尽可能地激发学生学习数学兴趣,留给学生足够的思考时间,只要他们在想在坚持,就不限制时间等等。但这些教学理念是值得我们去学习,慢慢去改变“满堂灌”模式的。
书中指出,人们学不好数学是因为没有找到正确的方法,而不是所谓的“智力问题”。传统的教学方式注重“知识点”,但是学习过程更重要的是建立关联,找到关联。有时碰到不会解的难题看看人家的解题过程,感叹“为什么自己想不到”。问题就在这里,为什么想不到?现在的小学生在做《数学课堂作业本》的'时候,看了题做习题时肯定会用到刚刚学过的知识点,不用自己去找。但是综合解决实际问题时,面对各类题型却没有现成的知识点供使用,导致知识点混乱,方法乱用,不会从现有条件一步步推演到熟悉的知识点上去。这一过程是传统数学教学薄弱的地方,却是数学学习最关键的地方。
数学读后感篇七
阅读了《特别要命的数学》这本书,我发现,数学真奇妙!
这本书以有趣的漫画、详细的文字和精彩的小故事把我们带入了一个有趣的数学世界里。比如,《有趣的方格》中,几何老师芬迪施教授告诉我们,骨牌有很多类型,也能拼成很多块。再比如,《水池问题》里,买护栏、买地砖和买优质池水。它告诉我们这三个问题要有不同的条件才能买到合适这个水池的材料。
我最喜欢那篇关于三维世界的解释文。里面说,二维世界里可以看到一维世界里的人,三维世界里的人可以看到二维世界里的人。同样,生活中竟然有能看到我们(三维世界的人)的四维世界的人!我感到不可思议!
数学是奇妙的,它的一些秘密我们人类也许还不知道。虽然如此,但这本书已经带我领略了部分数学的奥秘。我很开心,因为它让我感到数学奇幻的魅力。
数学读后感篇八
数学,一根串着文明历史发展的闪耀金绳,它与文学物理学艺术经济学或音乐一样,是人类不断发展,努力的结果。
对数学不太敏感的我,拿起这本数学史,一开始是不愿意翻开的,认为它语言生涩,一定有很多的生僻又陌生的专有名词,几乎满篇皆是,所以从收到这本书之后2天内都没有看过。但是为了完成刘老师的作业,我硬着头皮翻开了这本陌生的书。这本书是以时间发展为主线进行编布的。
读开端的时候我就觉得这本书很不一样语言是亲切、严谨的观点是新颖的。作者“从历史开始学数学”的观点让我对这本书产生了兴趣。变得愿意与他一起跟随数学的脚步,一页一页翻下去,读下去。在书本中,有许多我认识的老朋友,他们曾经在小学或是初中课本上出现过。像欧几里得、笛卡尔。他们是数学的奠基人,为数学之路铺上卵石。在这本书中也出现过一些我不熟悉的伟大数学家,他们在认真探究,证明的场景一幕幕浮现在脑海,令人心生敬畏。
我记忆最深刻的就是一位打破了“数学家都是男性”观念的法国优秀女数学家———索菲.热尔曼!
她在所谓的“启蒙运动”中成长,怀揣着炽热的想成为数学家的愿望,在困难重重克服了社会对女性知识分子的偏见,在弹性理论上取得重要结果。实在令人佩服!
当今社会,数学在多领域工作,在工地、广场、车站、实验室......
我们需要数学,今天需要数学,未来也一样需要数学,因为“数学不是被发现出来的,而是被发明出来的!”
学好数学就是走好未来的一大步!
数学读后感篇九
读这本书是因为朋友的差评:“太无聊了,日本哥们压力大到用无聊解压,真的看不下去。”
我向来好奇心重,作者的大便书在国内外如此畅销,怎么会low到这个程度?好奇心就是动力,一定要评下无聊度数,反正姐也是亚历山大,实在无聊也顺便解压了。
带着这个有色眼镜,我开始批判性阅读。
没想到的是,从无聊开始,到有聊还没结束,我一直被这本书引领着,开启了更上一层的快乐生活。
作者的画风还是那么独树一帜,用最简单的笔画画出的却是传奇,看似小儿科,其实却是大家的范;文字不多,提纲挈领,点到为止,留更多的发挥空间让读者去思考,可谓仁者见仁智者见智;书中涵盖的内容非常宽泛,把抽象而枯燥的数字形象化具体化,引入生活、工作,通过思维的改变,让我们获得发现美和乐趣的能力。
通过这些小的图文并茂的实例,我掌握了送礼的艺术、定价的策略、消费的陷阱、目标制定的技巧、绩效方案的策略,并把这些融入到生活和工作中,起到了非常好的效果。同时了解了符合人性的思维架构并建立之,在很多方案的设计中运用,大大提高了方案通过的成功率!
关于竹节的篇章,我自己也受益匪浅,生活未必总是多姿多彩的,但如果我们拥有了发现和创造爱或美的能力,我们总会拥有快乐,因为我们拥有了创造快乐的能力。自己快乐了,我们会带给身边的人快乐,生活就不一样了!
看似浅显的漫画书,其实蕴含了很多的人生哲理,这个浮夸的时代,需要静下心来品读!
书是不是无聊,你也来试试!
数学读后感篇十
《黄爱华与活的数学课堂》这本书是我在学校图书室偶然间看到的,一看内容写的是活的数学课堂,我就把这本书借了出来,认真的翻阅它,我感觉到它真是一本好书,书页间飘散的墨香中,每每嗅出它那深藏的思想,也触发自己心底的思绪。读了黄爱华老师的书后,他的嗜书如命、执著追求以及精彩智慧的课堂深深打动了我,吸引着我,鼓舞着我。
黄爱华老师“活”的数学课堂艺术特色是“趣”、“实”、“活”。“趣”,让学生们感到新鲜有趣、富有吸引力;、“实”,在知识点教学的关键下真功夫,重点特出;“活”,在教学过程中对教材的灵活处理,应变自如、驾轻就熟、左右逢源。
《黄爱华与活的数学课堂》一书告诉我们:数学课堂教学要在多元智能理论的指导下,树立尊重个性的教育观;为学生创设自主探索的问题情境,提供充分的感性材料,让学生多种感官参与实践活动,致力改变学生的学习方式,使学生在自己动手操作、独立思考、观察讨论、合作交流、自主探究的过程中感受、理解数学知识,在经历掌握数学知识的过程中,培养了学生分析、比较、概括等逻辑思维能力,使他们在知、情、意诸方面和谐发展;数学课堂让儿童在再创造的过程中同化和顺应,以此不断丰富和完善知识结构,这样的课堂才是适合儿童发展的数学课堂,才是高效的课堂。
黄爱华老师是营造现实而富有吸引力学习背景的高手,善于根据实际创设现实的、有趣的、探究性的、开放的和新奇的及喻理的问题情境。这些良好的问题情境深深地吸引学生,唤起学生的求知欲望,燃起学生智慧的火花,有效地发展了学生的数学思维。
揣摩黄爱华老师的课堂案例,几乎每节课都有大量的学生动手操作的内容;黄老师善于引导学生在操作中独立思考,在自主探索中产生交流的需要;他鼓励和引导学生在小组交流中,既要正确表达自己的想法,又要倾听别人的意见,有效地增进合作交流的“涵养”;班级交流中,往往会呈现多样的学生思考方法和多种解决问题的策略,促使每个学生在数学上都有新的发展。
“问渠哪得清如水,为有源头活水来”。营造和谐、灵动的课堂,毫无疑问教师自身的素质是决定性的因素。我相信,只要坚持不懈的学习、实践和思考,这样美妙的数学课堂离我们一线教师不会太远!
数学读后感篇十一
第一次看到书名《印度数学》,和封面上的小标题—世界上最神奇的数学课。我就在想,印度数学?它和我们学的数学有什么不一样么?数学还有不同的?“最神奇的数学”,为什么神奇?神奇在哪?难道不用加减乘除?带着满心的疑问,我翻开了书。
书里讲的也是加减乘除,那神奇在哪呢?它的神奇就在它算式的算法。咦?难道不是按个位,十位的竖式计算方法吗?没错,印度数学的计算方法还真不是这样,不信?我举个例子吧。比如两位数减两位数:92-43,它的计算方式是把92分成90+2,43分成50-7,再从高到低计算,整数相减,个位相加。
我最喜欢的是“结网计数”这篇,因为它完全是用画图来计数。
书里还有许多计算方法是我看不明白的,比如面积计算法,一元一次和两元一次的计算。
果然,印度数学的这些计算方法和我们学的很不同,但是真的很有趣。我真是第一次知道,原来数学还有这样的啊。
数学读后感篇十二
《数学史》一直是我最想读的一本书教学中我越来越觉得作为一个数学教师,数学史对我们有多少重要!于是我拜读了数学史。
我知道了,数学的历史源远流长。我了解到,在早期的人类社会中,是数学与语言、艺术以及宗教一并构成了最早的人类文明。数学是最抽象的科学,而最抽象的数学却能催生出人类文明的绚烂的花朵。这便使数学成为人类文化中最基础的工具。而在现代社会中,数学正在对科学和社会的发展提供着不可或缺的理论和技术支持。
我知道了,第一次数学危机——你知道根号2吗?你知道平时的一块钱两块糖之中是怎么迸溅出无理数的火花的吗?正是他——希帕苏斯,是他首先发现了无理数,是他开始质疑藏在有理数的背后的神奇数字。从那时起无理数成为数字大家庭中的一员,推理和证明战胜了直觉和经验,一片广阔的天地出现在眼前。但是,希帕苏斯却被无情地抛进了大海。不过,历史却绝对不会忘记他,纵然海浪早已淹没了他的身躯,我们今天还保留着他的名字——希帕苏斯!
第二次数学危机——知道吗?站在巨人的肩膀上的牛顿,曾经站在英国大主教贝克莱的前面,用颤抖的嗓音述说者自己的`观点,没有人相信他,没有人支持他,即便他的观点着实是今天的正解!数学分析被建立在实数理论的严格基础之上,数学分析才真正成为数学发展的主流。
我知道了,我们中国在数学上的成就也绝对不能忽视,从《九章算术》到《周髀算经》,中国传统数学源远流长,有其自身特有的思想体系与发展途径。它持续不断,长期发达,成就辉煌,呈现出鲜明的“东方数学”色彩,对于世界数学发展的历史进程有着深远的影响。
数学读后感篇十三
今天读了一篇《零国王斗跳蚤》的故事。
零国王被跳蚤咬了,它拿剑向跳蚤刺去,跳蚤准备和它大战。
跳蚤拿出一把比老鼠胡须还细的小宝剑跟零国王杀在一起。零国王被杀到跷跷板上,跳蚤跳到另一头,把国王弹飞到半空。零国王说自己表面个头大,但是没重量,因为是零。跳蚤打了喷嚏把国王冲出去好远,零国王一屁股坐在地上。跳蚤说连个喷嚏都经受不住还跟我斗,再见吧!
零国王气的双目圆瞪,摘下腰间的乘法钩子勾住跳蚤,喊道:"变",跳蚤不见了,国王自言自语说它能把任何东西乘没,就连法术高强的小数点都治不它。
这个故事让我明白了零是一个很厉害的数字。
【本文地址:http://www.xuefen.com.cn/zuowen/18902834.html】