篮球比赛中,队员们需要紧密合作才能取得胜利。如何有效地管理时间,让每一天都过得充实而有意义?这些范文从结构、观点、语言等方面都有一定的亮点,值得我们学习和借鉴。
大学数学学习心得篇一
作为一个大学生,学习数学文化是相当必要的,因为现在的社会中数学文化已经成为一种基本素质。在我的大学学习过程中,我也深深地感受到了大学数学文化的重要性。通过这篇文章,我想分享我对于大学数学文化学习的一些心得体会。
首先,数学知识的重要性是不可替代的。数学不仅是学科,更是知识、思想和思维方式的体现。数学对于发展人的思维、锻炼人的逻辑能力都起着积极而重要的影响。数学知识的掌握不仅仅是为了应对考试,而是要每位学生在日常生活中的一种必须掌握的知识。在日常生活中,数学知识能够帮助我们更好地理解事物的本质,有效的分析和解决问题,会使我们的生活变得更加简单和高效。
其次,数学文化是一种不断深化和积累的知识体系。这种知识体系是不断被更新和发展的,随着科技的进步和社会的变迁,数学文化也在不断变化着。一个优秀的大学生应该具备不断学习和适应变化的能力,这样才能很好的跟上时代的步伐。掌握数学文化需要始终保持对数学知识的学习和掌握,随时注重掌握最新的数学知识,不断反思和总结,才能更好地融入这个数学文化体系中来。
在学习数学文化的过程中,我感受到了数学中的乐趣和美感。学习数学不仅仅是单纯的知识吸收和记忆,更是一种思维的放纵和创造。数学对于人的思维并没有没有限制,甚至可以是跳脱出常规思维的一种习惯。数学面对新的问题和挑战时,我们通过记忆和习惯的表现方式可能是单调的,但通过数学思维,我们或许能够发现新的未知领域。
最后,学习数学需要持之以恒的时间和精力。学习数学必须要有持之以恒的时间和精力的支持。数学需要通过大量的练习来巩固其技能,靠自己对于数学知识的掌握和理解。只有花时间多付出,才能达到更高的高度,不断提高自己的数学素养。
总之,学习数学不仅仅是为了应对考试,更是为了提升我们的思维、逻辑和分析能力。数学文化是一种不断深化和积累的知识体系,需要我们对数学知识进行不断地学习和适应变化。学习数学需要创造性的思维和持之以恒的时间精力。我相信,在日后的人生道路中,对数学的了解和掌握将会让我们更加从容和自信。
大学数学学习心得篇二
作为一门重要的数学基础课程,高等代数在大学数学教育中担任着重要的角色。学习高等代数能够培养学生抽象思维能力,提高逻辑思维和解决问题的能力。同时,高等代数也是其他数学领域的重要基础,对于深入学习其他数学分支如数论、代数几何等具有重要的先修作用。因此,对于大学生而言,积极投入高等代数学习,全面掌握其基本概念和方法,具有极其重要的意义。
尽管高等代数具有重要性,但在学习过程中也面临着一些困难与挑战。首先,高等代数的内容相对抽象,需要学生具备较强的数学基础和严密的逻辑思维,对于一些学生而言,难以理解和掌握其中的概念和方法。其次,高等代数的部分内容需要运用严密的证明方法,需要学生掌握一定的证明技巧和推理能力。再次,高等代数中的一些概念和定理较为复杂,需要学生深入分析和研究,理解其内在的数学原理和思想,这对于学生的思维能力和数学素养提出了更高的要求。
针对高等代数学习的困难与挑战,我们可以采用一些有效的方法和策略来提高学习效果。首先,我们应当建立起良好的数学基础,对于高等代数中的基本概念和方法要形成清晰的认知。其次,我们要充分理解和消化教材中的定理和证明,培养自己的证明能力和逻辑推理能力。在学习过程中,我们还可以多做一些例题和习题,通过实际练习来加深对知识的理解和记忆。此外,积极利用互联网和图书馆等资源,查找相关资料和参考书籍,拓宽自己的知识面和学习视野。
高等代数学习不仅有着自身的学术意义,同时也有着广泛的应用价值和实践意义。高等代数的方法和理论广泛应用于许多数学、物理学和工程学等领域中,如矩阵运算在工程领域中的应用、向量空间理论在计算机科学中的应用等等。而且,高等代数的学习也能够培养学生的抽象思维能力和逻辑推理能力,这对于学生将来的科研工作和问题解决能力提供了良好的基础。
通过学习高等代数,我深切体会到了数学的美妙和力量。高等代数不仅给我带来了理论上的知识,也启发了我的思维方式和解决问题的能力。通过证明定理和推理过程,我学会了怎样严密地思考和表达。同时,我也发现了学习高等代数的乐趣,从抽象的数学符号到具体的应用场景,每一步的推导都如同解谜一样,令人兴奋和欣喜。通过高等代数的学习,我还培养了自学能力和发现问题的能力,这将对我未来的学习与科研起到积极的促进作用。
综上所述,高等代数是一门十分重要的数学课程,对于大学生而言,掌握高等代数的基本概念和方法,不仅能够提升自身的数学素养和学术能力,也将为将来的学习与工作提供有力的基础。在学习过程中,我们要认识到其中的困难与挑战,运用有效的方法和策略提高学习效果。同时,要意识到高等代数的应用价值和实践意义,为今后的发展奠定坚实的基础。通过高等代数的学习,我们不仅能够获得专业技能,更能够开阔我们的思维和视野,培养我们的创新能力和解决问题的能力。
大学数学学习心得篇三
通过对高等数学一年的学习,在这里很荣幸和大家分享一下高数的学习心得。首先,我想说一下高数在大学的重要性,看过教学计划的同学就会知道,高数的学分是你大学四年里最高的,可以毫不夸张的说如果你高数的学分拿不到,你的学位证书也就不用想了。一般来说,如果你大一高数挂了,要想重修过还是很痛苦的。所以希望大家无论如何,一定要把高数考好。记得开学时有位老师告诉我,专业课可以挂,但高数一定不能。说这句话,并不是说专业课不重要,只是为了说明考好高数的重要性。
其实,学号高数并不难,但大家需要注意一点,到了大学,你仍然不能放松,你心里还是需要绷紧一根弦(注意!!!)。可能之前会听到家长或者老师会说,到了大学就可以好好玩了。不错,但一切都应该有个度,所有的玩都必须建立在学习上没有问题的前提下,同学们万万不能因为玩而耽误了学业。而且,大学其实并不比高中轻松(这句话大家一定注意)。
下面我来介绍一下,大学高数的一些学习方法:
第一,还是老生常谈,那就是课前预习,而且,我觉得在大学课前预习显得比以前任何时候都重要。因为,大学课程的进程可不是一般的快。希望大家能保持课时比老师快两节,练习比老师快一节。最低限度,是不能落下(其实,这个要求也不低,但希望大家一定不能落下)。
第二,要好好利用课堂时间,对于预习中不明白的地方,注意听讲,而对于自己觉得简单的地方,大家就可以做些相关练习了。有一点大家需要注意,不明白的问题一定不要积压,要及时的问同学或者老师(建议是老师,但前提是你对这道题目要有一定的思考),经常问老师题目对你的好处是很大的,因为考试的题目一般都是你们的老师出的,所以老师在给你讲题的时候会不知不觉的给你透漏考试的一些信息,同时,万一考试时你出了状况,结果考了个五十几分,如果老师对你有不错的印象,她是可以把你送过的。
第三,就是你所需要做的题目,可以说只要你能把课本习题和老师上课讲的所有的题都弄会,考试是完全没有问题的,其他的题目就完全没有必要了,这里就不像高中要做大量的其他习题,但大家要注意,课本的题是有一定难度的。希望大家认真对待,不要气馁,不懂就问。这里的最低限度就是课本例题、练习册,一定不能再少了。想拿高分的同学,一定要多做题(范围也就是课本和老师讲的题),特别是向拿奖学金的同学。
第四,希望大家把学习时间一定要给足了,只靠考前突击,高数是没办法过的,除非你是天才。强烈建议大家去自习室,养成晚自习的习惯。宿舍的学习环境并不好,如果就想在宿舍学习,那么你必须先把桌子收拾干净,这样可以很好的提高你的注意力,原因大家应该体会的到。
好了,说的不少了,希望大家能有所收获,预祝大家取得优异的成绩。
大学数学学习心得篇四
我是电大教育06秋行政管理专科的一名学员,现在已经毕业。通过在校两年多的学习和实践,我真实地感受到了远程教育独有的魅力,它的方便、快捷、灵活是其它教学模式无可比拟的,也正因如此,才让我有可能边工作,边学习,通过学习提高了工作水平,也通过工作巩固了学习效果。
我们站在生命的每一个路口,回顾学习时总是必不可少的致敬方式。对于走过的岁月,每个人都有属于自己的一份体验,常常我们会对往昔充满了许多怀念,怀念让生命变得完整,因生活终将不可逆流,而回忆使人完成追溯。因为曾经坚定地选择行政管理作为专业,便注定这三年里几乎所有的怀念都与行政管理有关。
第一,必须树立一个明确的学习目标,因为明确的学习目标是顺利完成全部课程的前提。从目前社会大环境看,在信息技术迅猛发展、知识经济初露端倪的今天,知识的有效期在不断缩短。有的人往往会因为知识有限和社会变化太快而被淘汰。这就给我们继续学习,不断完善自己、不断提高自己提出了必然的要求。所以,加强学习成为我们生存发展和应对竞争的有效手段。我决定参加电大开放教育的学习,用理论知识提高自己的文化素质,并争取能够学以致用。所以我学习的目标很明确,不只是拿专科文凭,而是力争双丰收,既拿到文凭,又提高水平;既学到知识,又增加本领。目标明确才能有动力,才能够促使你想尽一切办法实现你的目标。我之所以能够顺利完成学业与我有一个明确的目标有很大的关系。
第二,要尽快适应开放教育的教学方法,变被动学习为主动学习,这也是开放教育本身的性质所决定的。在几个月的学习中,我逐步学会了从主教材、从网上、从站点上、从电话咨询、电子邮件、参加面授等等方式获得教学信息来进行学习,特别喜欢网上获取信息的学习方式,我觉得,如果学习从读文字教材入手,往往不得要领,看着后边忘了前边,效果不好,而通过上网下载同步测验题和作业,从同步测验和作业入手,既先熟悉了题型,同时边做看主教材,有的放矢,不会做的地方再上网查看教学动态辅导信息,各章节教学内容的讲解提示,再查不到弄不懂的问题就给老师发电子邮件询问,有时进入参与讨论,才有了今天的学习成绩,顺利的通过了电大大专课程。
第三,要正确处理好工作、生活、学习之间的矛盾。工学矛盾是每一个已经参加工作的电大学员都要面临的问题。在实际工作和学习中,如何能够较好的处理工学矛盾,在高标准、高质量完成工作的同时,能及时深化所学知识,并将知识快速转化为能力素质,这是我们不能回避的一个问题。我从事行政行业,想通过电大多学一些知识,工作经常加班加点,有时周末还不休息,非常繁忙,。一段时间内,围绕学习、工作、,我忙得晕头转向。虽然困难很多,但我经常告诫自己,一定要咬牙坚持,绝不能轻言放弃,“挤”时间保证学习质量,较好解决了工学矛盾。
今年我又报考了行政管理专业专续本的课程,使我能在今后的两年学习时间里有更好的提高。通过在专科的学习期间,有了很好的学习方法,相信自己能够很好的完成本科的课程,对社会有更多的帮助。
大学数学学习心得篇五
还有一个月的时间就要开学了,现在时不时想起去年复习考研的那段日子,感觉好像是昨天刚刚经历过。这不是因为它给我的心中留下了任何“痛苦”的回忆,相反的,复习考研的过程已经为我心中留下了一块珍贵的宝藏,并将让我一生受益无穷。
我之所以决定报考北京大学数学科学学院,基础数学专业的硕士研究生,主要是出于对于这个专业的兴趣和热情。本想本科毕业之后就工作,以后就可以自己养活自己,不让父母为我像以前那样操心了。但做了一段时间的程序员之后,感觉这项工作并不适合我,我不能像许多it工作者那样充满热情地长时间面对着电脑屏幕编写一行行的程序。我开始愈加怀念本科时学数学的生活,怀念和一群同样对于数学充满热情的同学讨论问题的日子。经过认真的自我分析之后,我决定继续追求自己的理想,踏上了考研的征程。
工欲善其事,必先利其器,首先要做的当然是收集考研的相关信息和复习资料。我那些天在北大研究生院的网页、北大未名bbs和一些考研相关的网站上得到了许多有价值的信息,让我在短时间内对考研有了许多了解,也大体上安排好了复习的时间表。事实上,在整个复习考研过程中我都很关注最新的资料和信息的收集整理,随时调整自己的复习计划,毕竟“闭门造车”的方法往往是事倍功半的,面对考研这种需要耗费大量心力的“工程”就更不可取了。
接下来就是一步一个脚印的复习了,但是复习考研的风格可不像期末考试前突击的那几天一样,它需要的时间少则几个月,多则一年,所以一个适合自己的复习计划是必不可少的。由于我本科时读的就是数学,在专业课上的复习压力相对小些,所以我选择在最后两个多月在家里全力复习备考,之前的几个月在业余时间以看书浏览各科知识点为主,偶尔做做题。
有了计划,更关键的是严格执行它。其实这个道理大家都明白,但俗话说:计划赶不上变化。今天可能你最要好的同学拉着你聚会,明天可能你身体不适一整天都看不进多少东西,大家有各自的情况,我反正这些事都赶上过不止一次,之后一般都选择每天把复习的量加大一点,争取能在几天之内把损失的时间补上。另外,我觉得复习计划也不宜定得太长、太详细,就像《每天爱你八小时》里梁朝伟说的:“我不能保证24小时之后的事。”每天早晨根据具体情况定好当天的计划就行了,第二天到了再说第二天的,如果你连今天的都没完成,那明天的计划提前定了也是白搭。但这并不表示一个长期的计划没有用,大家心里应该衡量好比如用大约多久看完这本书啦,用多久做完这本习题集啦,不然的话会在考试临近的时候发现好多最初计划要做的复习工作没时间做了。
具体到各科,对于公共课政治其实我是最头疼的(相信好多研友也是跟我同样的感觉),因为文科的东西重在积累,而这种需要记和背的活儿感觉总是很累人。我对付它的方法是“书读千遍,其意自现”,当然千遍是读不到,但那本“红宝书”我读了肯定有五遍,岳华亭的那本我也看了三遍。我一般选择做数学做的比较累了之后抱着政治参考书浏览,指望逐字逐句记住是不现实的,但把知识点理解了之后,能够用自己的话说出来还是不难的,前几遍可能看得比较慢,到后来大部分都熟了,只要在一些没掌握的地方留一下心就好了,今年的考题证明这种靠理解而不是靠背的方法还算是对路的。
公共课英语中我感觉阅读是最重要的(其实很显然,占分多嘛),而想要提高阅读水平的前提是单词量一定要过关,就是大纲里给的单词要无条件掌握,毕竟要读懂句子就要先认识单词才行。其实对于考研英语我没有太多的心得,只能给大家介绍一下我练模拟题用的书:一本是毕金献的'模拟题,难度比较大,但认真做下来会感觉很有收获;张锦芯的那本难度没有前者大,但跟最后真题比较相似,推荐做模拟考试用。
关于数学专业课的复习,由于介绍多了大家也不一定感兴趣,毕竟都是考不同专业的,所以我只想跟大家分享一下对于理科类科目复习共同的心得,那就是——做题。所谓“重剑无锋,大巧不工”,“做题”真的是我认为取得考研成功的关键,甚至是唯一的道路。专业课本的书后习题一定要做,一方面,通过做题检验你是否真正掌握了知识,还能进一步加深对其的理解;另一方面,出题的老师往往是教过这门课的,那课本自然是出题的最大依据,课后习题一般都很具有代表性,完全可以变个样子甚至就原样出成考题,用来考察考生的知识掌握程度再合适不过了。跟课程相关的习题集也可以有选择性地做,不是要搞题海战术,而是作为对课本题目的补充,比如复习数学分析时就很有必要做做《吉米多维奇数学分析习题集》。另外,如果能够拿到往届的或正在上这门课的同学的平时作业习题,也很有参考价值的,因为对同一本书不同的老师侧重点也会有所不同,这可以从他平时给学生留作业的风格看出来,而这个老师出题的风格也许就会出现在你的专业课试卷上。
复习考研说起来往往是个很艰辛的过程,但当你身处其中时,并不一定只会觉得苦。有时会因为取得一点进步而欣喜,有时会面临困难而苦恼,其中的点点滴滴都是一种生活经历,从中学到的不只是知识,还有许多终生值得借鉴的经验,需要自己体会。
何苦不现在就把握机遇,挑战新的高峰,给自己的人生定制一个清晰的方向。
在安适的山寨容易埋葬憧憬,在舒适的田野容易迷失方向。失去竞争实力时才去感叹时光如逝,何苦不现在就把握机遇,挑战新的高峰,给自己的人生定制一个清晰的方向。我希冀,我付出,所以我收获。你是否也像我一样为考研奋斗而最终收获呢?你的心中是否有明确的计划去实现你的理想呢?在此我希望与大家分享自己的心得与体会,使大家少走弯路,顺利攀登考研高峰。
制订好整体复习计划,合理安排复习时间,是相当重要的。对数学复习而言,我将其大体分成三个阶段。
因为课本对基本概念的定义,基本原理的推导都是十分准确、精练的,掌握了这些基础知识体系,后续阶段的复习会取得事半功倍的效果。有些同学一开始就盲目地追求做题数量,忽视了课本的复习,那是极不可取的。必须通过对课本的复习,理出一个知识框架体系,从总体上把握考点。另外,必须定期总结和巩固前一阶段所学习的知识,温故而知新。
众所周知,数学还是以练为主的。除了第一阶段必须完成课本上的习题外,主要的精力应集中在陈老师和黄老师本书所提到的黄老师均为黄先开教授。主编的《复习指南》上。刚做这本书上的习题时,我真有点力不从心,有时觉得解题方法很奇特,而答案也有些突兀。经过陈老师和黄老师上课时仔细地讲解,我对这些难点有了更深刻的理解。老师们稳重的授课风格,有条不紊的解题思路,以及循序渐进、举一反三的教学方法使大家能够更有效地吸收知识。我想强调融会贯通的重要性,千万别为了做题而做题,因为做题只是一种手段而已。应通过做题将所学知识点联系起来,并将所学的思路与方法为己所用。
从一些研究生介绍和自我感觉来说,真题的作用绝对是其他模拟题所不可替代的。只要你仔细研究就会发现历史是如此惊人地相似,很多考题都是貌离神合。应该用一到两个月的时间来做和研究近十年真题,包括数(一)到数(四)中你要考的内容。这不仅可作为检测自己最直接的手段,而且更重要的是能让考生熟悉考试的内容和侧重点,了解命题人的命题思路。在分析真题时,可找出自己的不足,再回到课本和辅导书进行复习巩固,理解的'程度自然就加深了。至于模拟题应有选择地做几套,目的只是练练手,切勿一味贪多。
当然,检验复习效果要靠考试,所以在抓做题的同时也要注意应试技巧的训练。主要做到快、准、全。快要求你通过分析能迅速找到解题思路:准则要求解题过程中运算要准确无误;而全则是必须按标准答案的步骤答题。以上三点需要你在平时训练中慢慢积累,如在做真题时严格按考试时间和要求检测自己,通过八套左右的练习,到考试时自然是水到渠成了。最后衷心祝愿师弟师妹们在来年的考研中取得理想的成绩。
大学数学学习心得篇六
作为一名大学生,学习数学文化不仅仅是学习知识,更是一种对思维能力的锻炼和提升。在大学学习数学文化的过程中,我深刻体会到了数学的魅力。下面,我将就自己在数学文化学习方面的体验和感受进行探讨和总结,希望能够对同学们有所启示。
一、注重基础,防止掉队。
不管是什么学科,都需要一个扎实的基础。在学习数学文化的过程中,我深刻认识到了基础的重要性。只有当你把基础打得扎实,才能逐渐掌握高深的数学理论和技巧。因此,我们在大学学习数学文化时一定要注重基础,不要让自己跟不上其他同学的步伐。只有筑牢基础,才能在后续的学习中更加游刃有余。
二、多听课,多做题,及时总结。
数学文化的学习和其他学科不同,它更强调练习和领略思维的美妙。我们不仅需要在课堂上认真听讲,还需要多多做题,将课程内容熟练掌握和应用。同时,我们还应该及时总结和归纳自己在学习过程中的收获,便于日后的复习和总结。
三、培养思维,领略美学。
数学文化的学习不仅仅是为了应对考试和提高分数,更是一种思维的训练和锻炼。在学习数学文化的过程中,我们需要逐渐培养自己的逻辑思维和推理能力,才能深入理解数学的本质和美学。随着对数学文化的深入探索,我越来越感受到了数学思维的独特魅力,也更加领略到了数学美学的魅力。
四、勇于创新,注重实践。
数学文化的学习需要我们不断创新和实践。我们需要探索自己的思路和方法,不断尝试新的学习方式和技巧。同时,我们也需要多多参与数学竞赛等相关活动,深入地了解数学的应用价值和实践意义。
五、坚持精进,成就未来。
学习数学文化需要坚持精进,不断追求进步。只有不断提高自己的数学素养和思维能力,才能有更好的发展和实现自己的理想。因此,我们需要一直持续学习和不断汲取新的知识,同时也要不断地反思和总结。只有如此,我们才能真正成就未来。
综上所述,大学数学文化学习不仅仅是学习知识,更是一种思维能力的锻炼和提升。只有注重基础、多听课、多做题、及时总结、培养思维、勇于创新、坚持精进等方面,我们才能更好地理解和掌握数学的本质和魅力。我相信,在不断地学习和努力中,我们一定能够取得更好的成果,成为真正的数学文化人。
大学数学学习心得篇七
今天上午九点,中国共产党第十九次全国代表大会开幕会在人民大会堂举行,我党支部全体党员通过互联网全程观看了在大会上的讲话,中国共产党第十九次全国代表大会,是在全面建成小康社会决胜阶段、中国特色社会主义进入新时代的关键时期召开的一次十分重要的大会。大会的主题是:不忘初心,牢记使命,高举中国特色社会主义伟大旗帜,决胜全面建成小康社会,夺取新时代中国特色社会主义伟大胜利,为实现中华民族伟大复兴的中国梦不懈奋斗。不忘初心,方得始终。中国共产党人的初心和使命,就是为中国人民谋幸福,为中华民族谋复兴。这个初心和使命是激励中国共产党人不断前进的根本动力。全党同志一定要登高望远、居安思危,勇于变革、勇于创新,永不僵化、永不停滞,团结带领全国各族人民决胜全面建成小康社会,奋力夺取新时代中国特色社会主义伟大胜利。
青年兴则国家兴,青年强则国家强。青年一代有理想、有本领、有担当,国家就有前途,民族就有希望。中国梦是历史的、现实的,也是未来的;是我们这一代的,更是青年一代的。中华民族伟大复兴的中国梦终将在一代代青年的接力奋斗中变为现实。全党要关心和爱护青年,为他们实现人生出彩搭建舞台。广大青年要坚定理想信念,志存高远,脚踏实地,勇做时代的弄潮儿,在实现中国梦的生动实践中放飞青春梦想,在为人民利益的不懈奋斗中书写人生华章!
大道之行,天下为公。站立在九百六十多万平方公里的广袤土地上,吸吮着五千多年中华民族漫长奋斗积累的文化养分,拥有十三亿多中国人民聚合的磅礴之力,我们走中国特色社会主义道路,具有无比广阔的时代舞台,具有无比深厚的历史底蕴,具有无比强大的前进定力。全党全国各族人民要紧密团结在党中央周围,高举中国特色社会主义伟大旗帜,锐意进取,埋头苦干,为实现推进现代化建设、完成祖国统一、维护世界和平与促进共同发展三大历史任务,为决胜全面建成小康社会、夺取新时代中国特色社会主义伟大胜利、实现中华民族伟大复兴的中国梦、实现人民对美好生活的向往继续奋斗!
作为一名博士生党员,先做好自己的本职工作,珍惜当下宝贵的学习机会,努力学习,艰苦奋斗,敢为人先,努力钻研研究课题,克服学术难题,永攀科研高峰,为中华民族的伟大复兴贡献自己的一份力量!
大学数学学习心得篇八
你是一个大学生,学历大学的数学之后你有什么想说的?看看下面的大学生学习数学心得体会吧!
大学数学实验对于我们来说是一门陌生的学科。
大学数学实验作为一门新兴的数学课程在近十年来取得了迅速的发展。
数学实验以计算机技术和数学软件为载体,将数学建模的思想和方法融入其中,现在已经成为一种潮流大学数学的心得体会大学数学的心得体会。
刚开始时学大学数学实验的时候我都有一种恐惧感,因为对于它都是陌生的,虽然在学数值分析时接触过matlab,但那只是皮毛。
大学数学实验才让我真正了解到了这门学科,真正学到了matlab的使用方法,并且对数学建模有了一定的了解。
matlab在各个领域均有应用,作为数学系的学生对于matlab解决数学问题的能力相当震惊,真是太强大了。
数学实验这门课让我学到了很多东西,收获丰硕。
第一节课我了解到了数学实验的一些基本发展史和一些基本知识。
对于一些实际问题,我们可以建立数学模型,把问题简化,然后运用一些数学工具和方法去解决。
大学数学实验我们学习了matlab的编程方法,虽然仅仅只有一种软件,可是整本书可用分的数学知识一点都不少,比如插值、拟合、微积分、线性代数、概率论与数理统计等等,现在终于知道课本上的知识如何用于实际问题了,真可谓应用十分广泛大学数学的心得体会心得体会。
刚开始我对matlab很陌生,感觉这个软件很难,以为它就像c语言一样难学,而且这个软件都是英文原版,对于我这种英语很烂的人来说真是种噩梦。
但是经过一段时间的学习后感觉其实并没有想象中的那么可怕,感觉很好玩。
我觉得学好这门课需要做到以下几点:1、多运用matlab编写、调试程序2对于不懂得程序要尽量搞清楚问题出在哪3、与同学课下多多交流,课上多请教老师。
数学,在整个人类生命进程中至关重要,从小学到中学,再到大学,乃至更高层次的科学研究都离不开数学,随着时代的发展,人们越来越重视数学知识的应用,对数学课程提出了更高层次的要求,于是便诞生了数学实验。
学期最初,大学数学实验对于我们来说既熟悉又陌生,在我们的记忆中,我们做过物理实验、化学实验、生物实验,故然我们以为数学实验与它们一样,当我们在网上搜索有关数学实验的信息时,我们才知道,大学数学实验作为一门新兴的数学课程在近十年来取得了迅速的发展。
数学实验以计算机技术和数学软件为载体,将数学建模的思想和方法融入其中,现在已经成为一种潮流。
当我们怀着好奇的心情走进屈静国老师的数学实验课堂时,我们才渐渐懂得,数学实验是一门有关计算机软件的课程,就像c语言一样,需要编辑运行程序,从而进行数学运算,它不需要自己来运算,就像计算器一样,只要我们自己记下重要程序语句,输入运行程序,便可得到运行结果,大大降低了我们的`运算量,给我们生活带来许多便捷,在大一时,我学过c语言,由于这样的基础,让我能够更快的学会并应用此软件。
时间飞逝,转眼间,我们就要结课了,这学期我们学习了mathematics的基础,微积分实验,线性代数实验,概率论与数理统计实验,数值计算方法及实验。
通过这学期的学习,我也积累了些自己的学习方法和心得。
首先,我们要在平时上课牢记那些mathematics语言和公式,那些东西就想单词和公式一样,只需要背诵;然后,我们要看几遍书,并多看一下例题;最后,我们要多应用mathematics软件去练习。
正所谓熟能生巧,我坚信,只要我们能够做到这三步,我们就能很好的掌握这门课程。
通过学习使用数学软件,数学实验建模,使我们能够从实际问题出发,认真分析研究,建立简单数学模型,然后借助先进的计算机技术,最终找出解决实际问题的一种或多种方案,从而提高了我们的数学思维能力,为我们参加数学竞赛和数学建模打下了坚实的基础,同时也为我们进一步深造和参加工作打下一定的实践基础!
一直以来都觉得数学是门无用之学大学数学的心得体会大学数学的心得体会。
给我的感觉就是好晕,好复杂!选修了大学数学这门课,网上也查阅了一些有趣的数学题目,突然间觉得我们的生活中数学无处不在。
与我们的学习,生活息息相关。
不得不说,数学是十分有趣的。
可以说,这是死中带活的智力游戏。
数学有它一定的规律性,就象自然规律一样,你永远也无法改变。
但就是这样,它就越困难,越有挑战性。
数学无边无际深奥,更是能让人着迷的遨游在学海的快乐中。
数学是很深奥,但它也不是我们可望不可及的。
它更拥有自己的独特意义。
学习数学的意义为了更好的生活,初中数学吧;为了进入工科领域工作,高中数学吧;为了谋求数学专业领域的发展,大学数学吧数学是什么是什么什么学科,公认的!我觉得是一们艺术,就象有黄金分割才美!几何图形如此精致!规律循环何等奇妙!
在网上看到一个很有趣的题目:有一个刚从大学毕业的年轻人去找工作。
为了能够胜任这第一份工作,他也自作聪明地象老板提出了一个特殊的要求。
“我刚进入社会,现在只是想好锻炼自己,所以你就不必付我太多钱。
我先干7天。
第一天,你付我5角钱;第二天就付我前一天的平方倍工钱,之后依次类推。”老板一口答应了。
可到了最后一天领工资的时候,这个年轻人却只领到了寥寥几块钱。
年轻人很不解,老板却说自己已经很不错了,多付了他好几百天的工钱。
自然,赚几元钱就得好多天了。
但是如果年轻人第一天要的工钱大于1元钱,那么7天的工钱可就多得多了。
我们不得不说这个老板是聪明的,员工的马虎的。
这么简单的知识也会运用错误,导致自己吃了哑巴亏还没办法挽回。
这么一个简单的例子事实上就已经说明数学就在我们的身边。
其实数学就是在我们的身边,之所以没有发现它的存在,我想有时候可能还是因为它的存在及运用实在太多。
数学讲究的是逻辑和准确的判断。
在一般人看来,数学又是一门枯燥无味的学科,因而很多人视其为求学路上的拦路虎,可以说这是由于我们的数学教科书讲述的往往是一些僵化的、一成不变的数学内容,如果在数学教学中渗透数学史内容而让数学活起来,这样便可以激发学生的学习兴趣,也有助于学生对数学方法和原理的理解认识的深化。
数学不是迷宫,它更多时候是象人生曲折的路:坎坷越多,困难越多,那么之后的收获就一定越大!
大学数学学习心得篇九
参加20xx年高教杯全国大学生数学建模竞赛,感觉只有一个字――累!三天紧张拼搏的日子已经过去,时间飞快走过的感觉仿佛依旧,充实忙碌的情景依然时时浮现眼前。
经过这次竞赛,我学到了许多东西,拓广了对数学的认识,锻炼了自己的思维,主要有以下几点:
以前,对于书本上的知识永远只是停留在理论的基础上,特别是数学知识。只是沉溺于解题和公式的推导所带来的乐趣中,很少来把书本上的知识与实际联系起来。自从参加了数学建模集训-竞赛的整个流程后,才真正踏进数学的殿堂,原来利用数学的知识还可以解决工业、商业和农业等生活中的问题。
数模竞赛的题目往往是从日常生产生活中提炼、抽象出来的,尽管题目已经得到了相当程度的简化,但对于我们这些仍在学校里求学而并未遇到过如此复杂问题的学生来说,并不简单。有时我们需要对海量数据进行处理,有时我们面临的却是零数据,无论何种情形,问题的解决都很让人头疼。不过这并不要紧,我们是勇敢者,既然已经选择了挑战,无论多艰难都要坚持下去,绝不退缩,在纷繁复杂的题目中寻找规律,运用合适的数学工具加以解决,对问题进行有效的分类,并逐个击破。
三天三夜的时间面对同一个题目,不仅仅是紧张枯燥、机械乏味的脑力劳动。只有真正参加了比赛的同学,才能体会到一种与集体融为一体,与数学融为一体,与竞赛融为一体的感觉。
这里需要说明一点,我们不建议论文只由一个人来写,而应由队伍中的所有同学共同完成,以体现每个人的特点、反映每个人的智慧。分了工并不是说大家各自为正、互不交流,而是为了更好地进行合作。遇到问题时,大家需要共同讨论,发表自己的见解并理解同伴的想法,最后将意见统一起来。有的时候即使自己感觉别人不对,如果多数人意见统一了,也最好能同意他人的看法,这需要对队友充分的信任且具备否定自己的魄力。如果分工不当、配合失误,往往会导致竞赛的失败,对此我们一定要小心谨慎。
竞赛中的合作是一种艺术,只有大家不断的磨合,才能使合作达到默契的程度。
通过这次比赛使我重新认识了自己,72小时的连续奋战,不敢相信我的体力会如此充沛,能把题目做出来,写出了还算成功的论文来,不管得奖与否,这对我们已经是最大的肯定了。这次比赛也让我明白了一个道理:人的潜能是巨大的,关键是自己怎样去挖掘。记得参赛第一天早上8点,当我们拿到题目的时候,对着密密麻麻几千字的题目,只能用四个字来形容我们当时的表情――一头雾水;当第四天上午,我们把经过三天三夜的汗水与脑汁换来的论文时,我们终于松了一口气。
总之,这次参赛经历培养了我的综合素质,比如计算机应用能力,检索文献能力,学习新知识的意识与能力,论文撰写能力等;在和队友一起奋斗的过程中,使我们建立了深厚的友谊;在和指导老师的交往中,使我在更深层次上理解了数模;与周围的交际能力也得到提高,领悟和理解别人的意思的能力也得到了很好的锻炼。
数模,我们永远的老师!
大学数学学习心得篇十
随着计算机科学和工程学科的快速发展,高等代数作为一门重要的数学课程,日益成为大学学生必修的一门课程。在我刚刚接触这门学科时,我首先感受到的是其极高的抽象性和复杂性,但随着学习的深入,我逐渐领悟到高等代数的美妙之处。下面我将结合我的学习体验,以五段式的文章结构,总结出对于大学高等代数学习的心得与体会。
第一段:认识高等代数的抽象性与逻辑性。
高等代数作为一门抽象的数学课程,最初给我留下了深刻的印象。在上大学之前,我对于数学的认识还停留在中学时期。然而,高等代数的学习让我感受到了数学的无限广阔和深厚内涵。在学习中,我接触到了矩阵、向量、线性变换等概念,这些概念的引入让我明白了高等代数是一门探讨数学结构及其演化的学科。这种抽象性的特点需要我们对于概念及其运算进行高度的抽象思维,同时也需要我们注重逻辑推理能力。
第二段:培养高等代数问题解决能力。
高等代数的学习过程中,独立思考和问题解决能力的培养是非常重要的。在做高等代数题目的过程中,我们需要用逻辑推理和数学语言的技巧,寻找问题的解决思路。这个过程往往需要我们灵活运用所学知识,遇到困难时不轻易放弃,多角度思考。通过不断练习解题,我逐渐习得了这样的解决问题的方法和技巧,并能将其运用到实际的问题解决中。
第三段:理论与实践的结合。
高等代数的学习不仅仅是死记硬背公式和定理,更重要的是在理论基础上能够灵活运用,将其与实际问题结合起来。高等代数的知识在计算机科学和工程学科中有广泛的应用,例如在线性代数中,矩阵的计算和变换是图像处理、机器学习等领域的核心操作。而在密码学中,群论、环论等高等代数的概念则被广泛地应用于加密算法的设计。通过与实际问题的结合,我进一步理解了高等代数的应用价值。
第四段:培养思维习惯和数学思维能力。
高等代数的学习对于培养思维习惯和数学思维能力具有重要意义。在解决高等代数问题时,我们需要培养良好的思维习惯,例如善于观察问题、发现问题之间的联系以及运用数学的思维进行问题的建模与分析。高等代数的学习过程中,不仅仅是知识的输入和输出,更是一种训练思维的过程,提高我们的抽象思维和逻辑推理能力。
第五段:感受高等代数的美妙魅力。
学习高等代数的过程中,我逐渐感受到了高等代数的美妙魅力。高等代数的知识体系严密而精致,规律性强,能够帮助我们更好地理解事物间的关系。通过学习高等代数,我对于数学的兴趣大大增加,并逐渐了解到数学的博大精深,无穷无尽的魅力。
总结起来,高等代数作为一门抽象与具体兼具的数学课程,不仅对于提升学生的数学能力和解决实际问题的能力有重要意义,更能够培养学生的思维习惯和逻辑思维能力。通过学习高等代数,我不仅仅是增加了对于数学的兴趣和热爱,更更深刻地认识到了数学的美丽和价值。
大学数学学习心得篇十一
作为大学生物科学专业的学生,我一直觉得高等代数是一门枯燥乏味的课程,直到我真正开始学习这门课程并获得了意想不到的启示。在过去的学期中,我通过努力学习和思考,逐渐体会到高等代数的重要性和美妙之处。在这篇文章中,我将分享一些关于大学高等代数学习的心得体会,希望能对其他学生有所启发。
第二段:理论的布局。
高等代数是一门集合论、逻辑学、代数学和数学分析等内容于一体的学科。学习高等代数需要掌握一些基本的概念和定义,例如集合、映射、环、域等。扎实的理论基础是学好高等代数的关键。在学习过程中,我发现理论的布局是非常重要的。当我理解了每个概念的定义和性质后,我能够将它们组织起来、串联起来,形成一个完整的框架。这样的布局能够帮助我更好地理解高等代数的知识体系,解决问题时也更加得心应手。
第三段:问题的解决。
高等代数的学习过程中,我发现解题是一种很好的锻炼思维能力的方式。每当我遇到一个看似难解的代数问题时,我不会直接放弃,而是尝试从不同的角度去思考、去解决。我开始逐渐发现,在解题的过程中,思维的灵活性和逻辑的严密性至关重要。当我能够熟练运用高等代数的知识,将题目进行分析和拆解后,问题也迎刃而解。通过解题的过程,我得到了解决问题的信心和方法,也培养了一种不畏困难、勇于挑战的精神。
第四段:应用的拓展。
高等代数的学习不仅仅是为了应付考试,更是为了将代数知识应用到实际生活和其他学科中。高等代数可以帮助我们更好地理解和描述自然界的现象,例如生物学中的遗传学、物理学中的矩阵运算等。通过应用的拓展,我发现高等代数的应用广泛而深远。例如,在分子生物学研究中,线性代数可以用来描述基因相互作用网络;在电子通信领域,代数编码可以用于纠正信息传输中的错误。我逐渐明白,高等代数不仅是一门学科,更是一种思维方式和解决问题的工具,对于各个学科和实际应用都具有重要的意义。
第五段:反思与收获。
在学习高等代数的过程中,我也面临了许多挑战。有时候我会感到困惑和沮丧,但是我从中学到了坚持和不放弃的精神。我意识到,只有通过不断地努力和思考,才能真正理解和掌握高等代数的知识。同时,高等代数也培养了我的逻辑思维能力和问题解决能力,使我在其他学科的学习中受益匪浅。通过这门课程,我不仅仅获得了知识,更重要的是培养了一种学习和思考的方法。
总结:
通过学习高等代数,我领悟到了数学的深奥和美妙之处,也体会到了数学在解决实际问题中的重要性。理论的布局、问题的解决、应用的拓展以及反思与收获,这些方面都让我对高等代数产生了浓厚的兴趣和热爱。我相信,在今后的学习和工作中,高等代数的知识和思维方式将成为我的宝贵财富,指引着我在科学的道路上不断前行。
大学数学学习心得篇十二
基础数学的知识与运用总是个人与团体生活中不可或缺的一块。虽然学习数学学了十多年,但我对数学也只是了解一点的而已。数学知识博大精深,然而数学的基础知识也是我们生活中必不可少的,通过我的学习以及我对数学的了解我说说我中学时学习数学的一些心得:
应先制定长期计划,据此确定短期学习安排,来促使长期学习计划的实现。计划不能定得太古板,要留有一定的余地,可根据执行过程中出现的新情况及时做适当调整——毕竟“计划不如变化”嘛,但计划一旦确定,就必须严格按照计划去执行。
预习是学习过程的起始环节,在提高学习效率方面具有十分重要的作用,通过预习,可以了解要学习的课程的主要内容和重、难点,提前了解自己的不足,便于自己提前做好准备,课上听讲有的放矢,提高听课效率。
对难以理解的概念作出记号,以便带着疑问去听课,而后再做练习,通过练习来检查自己的预习时掌握的情况,最后再带着自己不懂的问题去听课。
复习在学习中的作用十分重要:克服遗忘、巩固记忆、加深理解,消化知识、也是为新知识打基础的重要措施。复习是学习过程中的一个重要环节,将听课中的要点,思维方法等作出简单扼要的记录,以便复习,消化。
做题。做题的目的在于检查自己的复习效果,加深对知识的理解,培养解决问题的能力以及所学的知识、方法是否掌握得很好。做习题是为了巩固知识、提高应变能力、思维能力、计算能力。
学数学要做一定量的习题,但学数学并不等于做题,有的习题是简单知识点的堆积,利用公理化知识体系的演绎就能解决的,这些通过做一定量的习题达到对解题方法的转移而实现的,因此要精做习题,注意知识的理解和灵活应用,当你做完一道习题后不妨做题后进行一定的“反思”自问:本题考查了什么知识点?什么方法?我们从中得到了解题的什么方法?这一类习题中有什么解题的通性?实现问题的完全解决我应用了怎样的解题策略?只有这样才会培养自己的悟性与创造性,开发其创造力,养成善于思考的好习惯,这对自己其他方面的学习也是很有好处的。
学习时间的安排要服从学习内容。在安排的学习时间上要根据学习内容合理地安排时间,才不致使时间浪费。要留有一定的时间看课本,看笔记,回顾过去知识点,思考老师当天讲了什么知识,归纳当天所学的知识。充分利用零星时间。零星时间看似很少,利用价值很小,积少成多,将零星时间集合起来,就是很宝贵、很有价值的时间。一天的时间里,人的精力不可能地始终都保持同样的旺盛。根据自己的特点,分出轻重缓急,合理分配时间,可获事半功倍的效果。另外,要注意劳逸结合,这也是保证时间利用效率的一个重要方面,只有会休息的人才会工作。
大学数学学习心得篇十三
一提起“数学”课,大家都会觉得再熟悉不过了,从小学一直到高中,它几乎就是一门陪伴着我们成长的学科。然而即使有着大学之前近的数学学习生涯,我想仍会有很多同学和我一样在初学大学数学时遇到了很多困惑与疑问,尤其是作为数学系的学生,在面对着“数学分析”之类的课程时,更可能会有一种摸不着头脑的感觉。因此我在读大一的时候,也经常向别人请教一些关于“如何学好数学”之类的问题,我就把自己问到的结果并结合自己的经验教训,讲一点有关大学数学学习的方法,希望对各位师弟师妹能有帮助。:
知难而进,迂回式学习。
了解背景,理论式学习。
自然人文,全面式学习。
大学数学学习心得篇十四
首先我们要来看看美国的孩子是如何“后来居高”呢?纵观中美学生的解决复杂问题的策略,美国学生中只有一小部分学生用较抽象的方法来解决问题,大部分学生喜欢用直观的方法来解决问题,如画图、列表、用文字描述等,方法多样而有趣;中国的孩子大部分用代数的方法来解决问题,而且解题策略高度统一,极少数学生采用画图或列表的方法来解决问题(相信画图来解决问题的孩子,在我们老师眼里没准就是被归为差生类型的)。遇到找不到任何思路解决问题的情况,两国学生的态度也大相径庭,美国的孩子总是尝试写点什么,而中国的孩子却是用空白来选择放弃。
现象:美国孩子用中国教师认为的不太数学化、不太严谨的方法解决了许多复杂问题。
当前的解决问题的教学,教师们都意识到方法多样化的必要性,但紧接着的算法最优化是否又将算法多样化的给抹杀了,通常情况下,直观的、不够数学化的方法会被教师忽视,教师引导学生对解决问题的策略进行筛选,通常情况下,教师引导孩子们比较方法时,总是青睐用推理逻辑严密,列式简洁明了的解决问题的方法,并推荐给孩子,这一做法否会让孩子产生一种想法,认为方法有好坏。造成后果就是只要列不出式子来解决问题,孩子们就认为这个问题太难,自己无法解决,很多孩子宁愿放弃寻求问题的解决方法,也不愿再去尝试其他的方法2021年大学数学心得体会心得体会。即使是头脑中有了一些想法,也觉得自己的方法不是好方法,不敢大胆的表达,最终选择了放弃。
课内,教师先引导学生分析题中已知条件和问题,让学生小组讨论该怎样解决问题,然后请学生展示自己的方法。
学生1:“梯形的面积等于上底加下底的和乘高除以2,我用55米减高15米,刚好等于上下底的和,然后乘15除以2就得到面积225平凡米。”
学生1分析得头头是道,推理逻辑严密,列式简洁明了。教师也不吝赞美之词,大力肯定了学生的方法。
师:“还有没有不同的想法?”
学生2:“我是猜出来的,三条边的长度是55米,有一条是15米,我看图,一条和15米的差不多长,我就当它是15米,一条长很多,我猜长的是25米,加起来刚好55米,然后我用公式算出梯形的面积是225平方米。”
生2说完神色喜悦,我想他正为自己能够想出办法来解决这个问题而沾沾自喜,等待老师的表扬,多可爱的孩子啊!
师:“同学们喜欢哪种方法?”
生;“第一种。”
师:“为什么?”
生;“因为第一种够简便。”
师;“那我们以后再解决问题可以采用这种简单的方法。”
仔细想想,在我们一厢情愿的追求方法的“优化”过程中,有多少有效的策略被优化掉了。画图、列表、假设、猜测验证……这些在教师眼中略显幼稚的经常让我们忽视的方法,却有着让人不可小看解决问题的强大功效,不要让这种有效地解题策略在我们的算法优化的程序中溜走,我想,我们应该做的是帮孩子将众多的方法进行归类整理,让我们的孩子明白方法没有好坏之分,大胆地根据实际问题采用不同的方法去解决,能解决问题的都是好方法。教师的观念对学生起着潜移默化的影响,只有教师改变观念,在教学中渗透多种解决问题的策略,关注策略的多样性,相信我们的孩子将能在坚实的“地基”之上修筑起恢宏的建筑,实现“高度”的不断攀升。
将本文的word文档下载到电脑,方便收藏和打印。
大学数学学习心得篇十五
自从上了奥数课,我发现,这里的每一天都充满了挑战,每一天都有新的知识等待我去挖掘。尽管起初我对这些新的知识感到困惑,但我坚信,只要我坚持不懈,我一定能够掌握这些技巧。
我的奥数学习之路并非一帆风顺。有些时候,我会遇到一些特别复杂的题目,让我感到无从下手。但我没有放弃,我会反复研究这些题目,尝试不同的方法,最终找到解决问题的方法。这个过程让我明白了一个道理:无论遇到多大的困难,只要我肯花时间思考,就一定能够找到解决的方法。
我发现,学习奥数不仅让我在数学上有了更深的了解,也让我学会了如何面对问题,如何去解决问题。我开始更加理解,每一个问题都有其独特的解决方法,而只有通过不断的尝试和失败,我才能找到最适合自己的方法。
学习奥数,也让我明白了团队合作的重要性。在解题的过程中,我们需要集思广益,倾听他人的想法,这样才能找到最有效的解决方案。这让我学会了如何在团队中发挥作用,如何与他人协作,共同解决问题。
总的来说,学习奥数是我人生中一个非常宝贵的经历。它让我了解到数学的魅力,也让我学会了如何面对问题,如何去解决问题,如何与他人协作。我相信,这个经历将对我未来的学习和生活产生积极的影响。
大学数学学习心得篇十六
复变函数是复数域上的微积分,是基于解决数学内部矛盾的间接需要而产生的,是由于在生产实际和科学研究中发现了应用原型而发展起来的!
复变函数现在是大学理工科专业和数学院系数学类专业的一门重要的基础课,但是复变函数的学习要有高等数学的基础,如果没有这方面的知识,学习复变函数无疑会非常困难,因为这门课程在初学者看来非常抽象,理论性太强。作为复变函数的教学工作者,如何使得这门课程的课堂变得生动有趣,而且使学生在学习过程中容易理解,是我们不得不思考的问题。
由于复变函数的导数与可导性、微分与可微性是利用类比的方法从一元实变函数相应概念推广到复数域后得到的,它们在形式上与一元实变函数的导数、可导性与微分一致,因此在教学中应当勤于和善于比较,既要重视共性,更要注意不同点,切实关注在推广到复数域后出现了什么新情况和新问题,探讨出现新问题的原因何在。
在这篇报告中,王锦森先生非常生动地介绍了复变函数课程的改革思路和分别讨论了复变函数教学中的难点和重点,并且这些难点和重点的教学方法。
难点和重点介绍方面:讨论了“在复变函数可导性(从而判断函数解析性)的充要条件中,为什么要求函数的实部和虚部必须满足cauchy-riemann方程?”内在含义,复变函数的导数的几何意义是否跟实变函数导数的几何意义相同?,一元实函数的微分中值定理能不能推广到复变函数中来?,复变初等函数与相应的实变初等函数之间的关系与差别,复变函数的积分与一元实变函数的第二型曲线积分的不同之处,即,它们积分和式的结构不同,积分的表达形式不同,物理意义不同等等,还讨论了学习cauchy-goursat基本定理应当注意的几个问题,复变函数积分中有没有与一元实变函数微积分中的微积分基本定理和newton-leibniz公式相对应的结论等等。
这些难点和重点教学法方面介绍了类比教学法,化“复”为“实”,用“已知”解决“未知”的思想等教学法。
大学数学学习心得篇十七
自从三年级第一次接触奥数以来,到现在已经学习三年了。在这段漫长的学习过程中,既有欢笑,也有泪水;既有成功,也有失败。在奥数老师的谆谆教诲下,我积累了许多宝贵的经验,也深刻地体会到了数学的无穷魅力。
刚入门时,我觉得奥数就像是一本厚厚的大书,抽象、空洞、晦涩,翻阅时不禁让人望而却步。但是,渐渐地,我发现了奥数的乐趣。每当我解决一道难题时,就像是在打开一座城门,中间经历的种种困难,最后都能化作一份胜利的喜悦。
奥数,让我从一个肤浅的孩子变成了一个更加深入思考的人。我开始尝试去理解更深层次的问题,而不是满足于表面的答案。奥数,它让我更精确、更深入地理解数学的本质,让我对数学有了新的认识。
在奥数学习中,我也明白了“学而不思则罔,思而不学则殆”的道理。只有既学习知识,又思考问题,才能学到真知。而且,学习数学需要耐心和毅力,不能一蹴而就,更不能半途而废。
同时,奥数也教会了我数学思维。数学思维是一种独特的思维方式,它能够帮助我们看到问题的本质,找到问题的关键。这种思维方式让我在解决问题时,能够从不同的角度去思考,找到最合适的解决方法。
最后,我想说的是,奥数学习让我收获了许多,也让我更加深入地理解了数学。我希望在未来的日子里,我能够继续保持这种学习的热情,不断探索,不断学习,不断进步。
【本文地址:http://www.xuefen.com.cn/zuowen/18249772.html】