通过总结,我们可以发现自己的优势和不足,进而做出改进。如何制定一套较为完美的解决方案是我们需要思考的关键问题。具有参考价值的写作文集。
加法交换律说课稿篇一
今天听了张老师的加法运算律一课,受益非浅。下面就我对这节课的一些体会。
张老师分三大块安排本节课的教学,加法交换律、加法结合律、及两者之间的比较练习。在教学加法交换律和结合律时,老师都按“情境导入—提出问题—解决问题—对比、抽象概括—实践应用”步骤教学,思路清晰、层次分明,教学重难点突出,并有助于学生掌握学习的方法。
在整节课中,张老师把练习分成了两大块:一是学习完新知后,安排了针对性的练习,这有助于学生更好地掌握本节课的重难点,使学生学得更加扎实有效;二是在比较两个加法运算定律后,安排了综合性的练习,这有助于帮助学生梳理本节课的知识、横向比较知识点,加深对知识的理解,进一步提升所学知识。
教学中张老师注重了举例、观察和讨论,让学生通过举例,经历分析、综合、抽象的过程来验证自己的想法,从中能够自己概括出加法运算律。这一学习过程,学生实现了运算律的抽象内化运用的认识飞跃,同时也体验到学习数学的乐趣。
总的来说,张老师的整节课,教学目标落实到位,教学过程如行云流水,学生学得扎实有效;通过整节课的教学中,同时引发我以下思考:
1、情境引入,是否有效。张老师用两个不同情境引入加法交换律和加法结合律。其实以学生原有基础,对加法交换律掌握地比较好,并且能在实际学习中运用定律,教学中教师应该帮助学生概括加法交换律的意义,认识加法交换律的本质,可设计如下练习:
(88+19)+27=27+(88+19)运用加法的什么定律;
2、整堂课的教学环节有两大块是类似的,这样有助于学生掌握学习的方法,但是加法结合律是本节课的重点和难点,是不是可以适当调整教学环节,把本节课的重点更加突出,如先教学加法结合律,加法交换律的教学,可以让学生根据前面的学习方法,自己研究,总结概念。
当然,以上知识本人的一些粗浅的看法,是不是科学还有待老师们指正,批评。
加法交换律说课稿篇二
1、教学内容。
“加法交换律和乘法交换律”是北师大版《义务教育课程标准实验教课书》四年级上册第四单元的内容。书中把两部分内容编排在一起。在备课过程中,根据教学内容和学情我先引导学生观察发现加法交换律,然后在学生掌握加法交换律的基础上迁移过来。让孩子们大胆猜想,进而验证,得出乘法交换律。
本单元所学习的几条运算定律,不仅适用于整数的加法和乘法,也适用于有理数的加法和乘法。随着数的范围的进一步扩展,在实数甚至复数的加法和乘法中,它们仍然成立。因此,这些运算定律在数学中具有重要的地位和作用,被誉为“数学大厦的基石”。而加法、乘法交换律又是这数学大厦基石中的基石。
加法、乘法交换律的内容比较简单,学生在以前的学习过程中都有过浅显的认知基础,只是没有明确的概括,本节课的教学很大程度上是要将学生以前比较零散的感性认识经过整理、明晰后上升为理性认识,因此,学生学起来比较容易。但是用符号或字母表示加法交换律,则是学生认识上的一个难点,因为这是学生第一次接触从研究确定的数到用字母表示一般的数,比较抽象,理解起来也比较困难。再有,学习方法比学习知识更为重要。不要简单地让孩子们学习运算定律,而是重在渗透给他们去猜想、验证并得出结论的数学研究的方法。
所以在设计本节课时我更多的想的是,如何让学生主动地去思考,去验证,经历得出结论的过程。自然地经历由用数到用字母表示的知识形成的过程,让学生在理解、感悟、体验中感受字母表示的优越性,从而为后面的其他运算定律的教学,以及正式教学“用字母表示数”打下基础。
3、教学目标。
有了上面的思考,我把本课的教学目标定为:
(1)使学生经历探索加法、乘法交换律的过程,理解并掌握加法交换律。
(2)使学生感受数学与现实生活的联系,培养学生根据具体情况,选择算法的意识与能力。
(3)经历加法交换律逐步符号化,形式化的过程,使学生初步感受用字母表示运算定律的优越性,培养学生的符号感。
(4)渗透给学生用“举例验证法”来验证规律存在的真实性数学学习方法。
4、教学重点:使学生理解并掌握加法、乘法交换律。
5、教学难点:会用个性化的符号或字母表示加法、乘法交换律。能根据加法运算定律展开猜想,并能进行举例验证。
设计本节课时,我一直在思考:教师怎么引导学生去探究、发现、总结规律?
交换两个加数的位置,和不变,学生在一年级的时候就会,只是比较零散,没有系统的表达。知识点本身的学习并不应“浓墨重彩”去渲染,我们的小学数学教学不仅应该关注“是什么”和“怎样做”,还应该引导学生去猜想、去探究“为什么”和“为什么这样做”,这样才能够凸显出“数学是思维的体操”这一学科特色。教师应该带领学生经历从现象到本质的探究过程,给学生一个问题模式,让学生“知道怎样思维”,让学生感悟一些数学研究的一般方法。
因此我在设计本课教学的基本思想是:
一是紧密联系学生的生活实际,引导学生在已有经验的基础上发现和归纳出运算定律。
二是重视让学生在探索中经历运算定律的发现过程,大致应该经过以下几步:观察、猜测、举例、验证,得到规律。
三是给学生提供机会经历“具体事物——学生个性化的符号表示——学会数学地表示”这一逐步符号化、形式化的过程。
本节课分三部分教学。
我以为,教学运算律主要让学生经历不完全归纳的过程,只注意让学生举出实例进行验证,而忽视了能否找到反例的问题。对于不完全归纳法来说,举出的正例越多,则意味着结论的可靠性越大;但若发现了一个反例,则可推翻结论。因此,我预设了“刚才老师和同学们举了这么多例子,有没有不符合这个规律的例子?”这个问题,学生通过无法找到反例,加深了对结论可靠性的认识。在这个过程中,学生不仅获得了数学结论,更重要的是学到了获得数学结论的思想方法和体悟到科学研究方法的严谨性。
(三)巩固练习,深入理解交换律。
从个别特例中形成猜想,并举例验证,是一种获取结论的方法。但有时,从已有的结论中通过适当变换、联想,同样可以形成新的猜想,进而形成新的结论。
猜想一:减法中,交换被减数和减数的位置差不变?
猜想二:乘法中,交换两个因数的位置积不变?
猜想三:除法中,交换被除数和除数的位置商不变?
选择一个你感兴趣的,用合适的方法试着验证。使学生经历“形成猜想、举例验证”的完整、真实的过程,感悟数学研究的一般方法。
加法交换律说课稿篇三
《加法交换律和结合律》是小学四年级上册第7单元中的内容。加法交换律和加法结合律是运算中进行简便计算的两种必要的理论依据,他们是学生正确、合理、灵活地进行计算的思维素质,掌握的好坏将直接影响学生今后的简便计算和计算速度。这部分内容是在学生已经学过的加法计算和验算的基础上进一步探究,从感性上升到理性的内容。教材安排两个运算定律教学时,采用了不完全的归纳推理,教材从学生熟悉的实际问题的解答引入新课,列出两个不同的算式组成等式,再例举类似的等式进行分析、比较、找到共同点,抽象、概括出加法交换律和加法结合律。教材有意识地让学生运用已有的经验,经历运算律的发现过程,使学生在合作与交流中对运算律的认识由感性逐步发展到理性,合理的构建知识。然后安排了一些基本练习,以填空、判断等形式巩固对加法运算的理解,接着通过题组对比和凑整等练习,为学习简便计算作适当渗透和铺垫。
徐老师在教学本课时,整合教材现有的资源,从学生的实际出发,紧紧围绕“什么变了”“什么没变”这两个核心问题展开教学。我认为这节课主要有以下值得学习的地方:
徐老师从数学本真出发,从学生觉得最简单的算式出发,以1+2、1+2+3、1+2+3+4这样的算式让学生明确运算顺序,在只有加减运算时,从左往右进行运算,从而引出学生的旧知,便于知识间的迁移。然后再以1+2+3+4+5+6+7+8+9这样的算式,让学生说说计算方法,激发了学生的学习积极性,有的学生通过改变加数位置、有的学生通过改变运算顺序来进行计算,这时徐老师提出问题:这样的改变可以吗?使学生有了想一探究竟的求知欲。
本节课中徐老师始终是教学的组织者和引导者,紧紧地围绕“什么变了”“什么没变?”这两个关键点进行教学。为了便于学生探究,徐老师选取了一个最简单的算式:1+2和2+1让学生探究加法交换律。徐老师先利用吸钉让学生摆一摆,从而让学生认识到:1+2和2+1都表示把两个圆片和一个圆片合起来,结果都是三个圆片。此时追问:1+2和2+1两个算式到底是“什么变了?什么没变?”学生又一次感受到:“加数位置变了,但和没变。”接下来徐老师让学生再写出几个类似的等式,通过观察这样的等式,从而得出加法交换律的规律:两个加数交换位置,和不变。加法结合律的教学是以学生自主探究为主,有了前面的加法交换律的探究方式为基础,学生的自主探究进行的有模有样。徐老师引导学生通过观察、比较、归纳等学习方法,明确第一个是算式是先算前两个数的和,第二个算式是先算后两个数的和,最后结果不变。让学生对加法结合律掌握的更牢固。
在完成练习九的第3题时,徐老师让学生对88+45+12和45+(88+12)这组题进行了分析:哪里变了?运用了什么运算律?什么没变?从而让学生把加法交换律和结合律区分开来:一个是加数位置变了,一个是运算顺序变了,相同点是和都没变。
总的来说,徐老师的整节课,教学目标落实到位,教学过程如行云流水,学生学得扎实有效;通过整节课的教学中,同时引发我以下思考:
1.规律的发现是否过于片面。徐老师只用几个数比较小的算式,让学生观察从而得出规律,这样的方式过于片面,是否可以多涉及一些,比如:小数加法、分数加法、数目大一点的整数加法等。
2.在规律总结时,徐老师都是引导学生通过说“什么变了”“什么没变”来总结规律,并没有用完整的数学语言加以归纳,没有很好的提高学生的学习能力。
当然,这些只是本人的一些粗浅的看法。徐老师的课上得精彩、生动,朴实无华,富有激情,能充分调动学生学习的积极性和主动性,课堂气氛热烈,活而不乱,学生掌握知识也很牢固。
加法交换律说课稿篇四
今天听了张老师的加法运算律一课,受益非浅。下面就我对这节课的一些体会。
1、这节课结构清晰,安排合理。
张老师分三大块安排本节课的教学,加法交换律、加法结合律、及两者之间的比较练习。在教学加法交换律和结合律时,老师都按“情境导入—提出问题—解决问题—对比、抽象概括—实践应用”步骤教学,思路清晰、层次分明,教学重难点突出,并有助于学生掌握学习的方法。
2、练习层次分明,做到循序渐进。
在整节课中,张老师把练习分成了两大块:一是学习完新知后,安排了针对性的练习,这有助于学生更好地掌握本节课的重难点,使学生学得更加扎实有效;二是在比较两个加法运算定律后,安排了综合性的练习,这有助于帮助学生梳理本节课的知识、横向比较知识点,加深对知识的理解,进一步提升所学知识。
3、注重数学思想的培养。
教学中张老师注重了举例、观察和讨论,让学生通过举例,经历分析、综合、抽象的过程来验证自己的想法,从中能够自己概括出加法运算律。这一学习过程,学生实现了运算律的抽象内化运用的认识飞跃,同时也体验到学习数学的乐趣。
总的来说,张老师的整节课,教学目标落实到位,教学过程如行云流水,学生学得扎实有效;通过整节课的`教学中,同时引发我以下思考:
1、情境引入,是否有效。张老师用两个不同情境引入加法交换律和加法结合律。其实以学生原有基础,对加法交换律掌握地比较好,并且能在实际学习中运用定律,教学中教师应该帮助学生概括加法交换律的意义,认识加法交换律的本质,可设计如下练习:
(88+19)+27=27+(88+19)运用加法的什么定律;
2、整堂课的教学环节有两大块是类似的,这样有助于学生掌握学习的方法,但是加法结合律是本节课的重点和难点,是不是可以适当调整教学环节,把本节课的重点更加突出,如先教学加法结合律,加法交换律的教学,可以让学生根据前面的学习方法,自己研究,总结概念。
当然,以上知识本人的一些粗浅的看法,是不是科学还有待老师们指正,批评。
加法交换律说课稿篇五
《加法交换律和结合律》是人教版四年级下册第三章的第一部分内容。这一部分一共有3个例题,期中教材的处理是例1为第一课时,例2和例3为第二课时。熊老师在处理教材时有自己独特的见解,将例1和例2两个新内容融合在一起进行授新。我认为学生从低年级开始就接触过加法验算和口算方面的知识,对此有比较多的感性认识,这正好也是学习加法交换律和结合律的基础,熊老师这样处理教材也是比较合适的。下面就熊老师的课谈谈我个人的感想:
1、内容充实,节奏明快。在熊老师的课堂上,教学内容的设计本身就是一种无形的奖品,学生用心的思考,答对了或做对了题就好比获得了一份奖品的喜悦。多样化的题型设计即使是层出不穷的映入学生的眼帘,也不会使学生有疲倦感。自始至终学生都能精神饱满,紧跟老师的节奏进行思维活动,所以孩子们有高频率的课堂练习机会。师生在课堂上相处轻松而又愉快。
2、情境导入,简单、直接,充满乐趣。本节课一开始就让学生数一数教室里有多少位老师和多少位同学,这种来自身边的鲜活例子,一下就激发了学生的激情。他们想:“老师到底是想干什么呢?”不同的疑问和猜测充满了学生的头脑。以此为教学的切入点激发学生主动学习数学的需要,为学生进行教学活动创设了良好的氛围。再通过教师提问:这样的等式你还能举些例子吗?来引出学生获取知识的兴趣。然后通过:这样的等式无穷无尽,在这里肯定有着某种规律,大家想知道吗?这个问题激发出学生对定律的探究欲望。从一环节导入另一环节贴切、自然,符合学生的认知需求。
3、题目设计新,注重学生综合能力培养。熊老师在习题的设计上别具匠心,着力培养学生细心观察和认真分析的能力。不但有各种丰富的题型,鲜明的层次,而且使学生在练习的过程中既收获了数学知识,又体验到了学习的快乐。习题连一连将可以运用运算定律的式子连起来,很多同学开始不加思索的说:45+63与63+54可以连起来,仔细观察后才发现45与54不相等。通过这种习题的练习学生能自然领悟其中的道理,为今后的学习习惯和态度的培养奠定了基础。
俗话说得好,课无完课,每个老师对同一堂课都会有不同的教学思路和教学方法。我个人发表一下不同成熟的看法:本堂课需学习的内容多,练习容量也比较大,但是缺乏训练透彻的重难点内容。由《加法交换律》过度到《加法结合律》这一新内容似乎衔接比较牵强,局限了学生的数学思维。
加法交换律说课稿篇六
《加法交换律和结合律》是苏教版四年级下册的教学内容。在此之前,学生对加法运算律已经有了一些感性的认识,如:在看图列出两道加法算式时;在笔算加法验算时,交换两个加数再算一遍,所得的结果不变。所以,从知识层面上看,学生在理解、运用运算律上是比较容易的。但如何引导学生发现运算律的本质,上出彩却是不简单的。
听了徐老师执教的《加法交换律和结合律》一课,让我感受到了徐老师饱满的激情与精湛的教学技艺,让我对这一内容的教学又有了新的认识。
徐老师跳出教材的束缚,去除生活化的情景导入,重组教材,直接利用加法的意义、利用简单的计算来引出加法交换律与结合律的本质特征。如:让学生摆一摆原片来表示“1+2”与“2+1”,得出这两个加法算式都表示把一个圆片和两个圆片合起来,一共是三个圆片。
徐老师始终引领学生围绕加法运算率的本质特征“加数不变”、“加数的位置变”而“和不变”以及“加数不变、位置也不变”、“运算顺序变”、“和不变”来展开探究活动,在“变”与“不变”中,凸显运算律本质特征。同时,让学生经历了“列式计算——观察思考——猜测验证——得出结论”这样一个完整的研究问题的过程。学生不仅深刻理解了加法交换律与加法结合律这两个运算律,更重要的是掌握了研究一般问题的过程与方法,为接下来学生自主探究乘法运算律提供了模板。
加法结合律用字母表示的式子(带有小括号)该如何读,还是应该引导学生用正确、规范的数学语言来表述。
加法交换律说课稿篇七
听了徐老师的课,给我的总体影响就是在整个教学过程,教师始终处于一个引导者的位置,让学生去观察、发现、归纳总结并验证,无论是新授还是应用环节,都给他们提供了一定探索的平台。让学生在学习中逐步学会迁移,学会从个别到一般的推理方法,从而进一步拓展了学生的思维。
加法的交换律和结合律一课,是在学生经过较长时间的四则运算学习,对四则运算已有较多感性认识的基础上,结合一些实例,学习加法的运算律。这节课教师教学思路清晰,教学过程流畅,整节课教师从“谁算的快导入—提出问题—解决问题—对比概括运算律—实践应用”层次分明,清晰,教学重难点突出。这节课徐老师在比较加法算式中感悟运算的规律,自发提出关于规律的猜想,在例子中体验、验证猜想,坚定猜想的正确性,从结论形成的过程中获得了科学研究问题的态度与方法。
徐老师在教加法的交换律和结合律这课时,课堂的引入徐老师就以谁能算得又快又对引入,一下子激起了学生学习的“兴奋点”,学生有生活的经验,把凑成十的两个数先加,徐老师紧紧抓住在这个计算过程中什么“变了”什么“没变”,发生了2次变化。这个的改变可以吗?需要我们去验证很自然的进入了后面的学习。徐老师改编了例题通过举例1+2=,2+1=让学生摆学具操作,教师开始引导学生比较和分析这两道算式之间有什么相同的地方?有什么不同的地方?可以用等号连接吗?问:观察黑板上的等式,你发现了什么规律?问:是不是其他的数之间也存在这种规律呢?请你再举一个这样的例子验证验证。举了这么多的例子,你找到规律了吗?这个规律用语言叙述比较长,你能够用自己喜欢的方式把这个规律简单明了地表达出来吗?这一开放性问题的出现,很快激活了学生的思维,充分发展了不同学生的特点、特长、和思维等他们分别用画图形、画符号、写文字、写字母等形式表示加法的交换律在这样一个教师引导,学生进行比较、分析、举例、验证,表达的过程中,充分发挥了学生主体的作用,也让学生感受到了发现规律的一般过程,从而达到经历过程,讨论提升,归纳概括的目的。结合律的教学过程则也仿照加法交换律教学过程。
对本节课的建议:
1、徐老师在导入中紧紧抓住在这个计算过程中什么“变了”什么“没变”,发生了2次变化,这个的改变可以吗?如果换成这样的改变蕴藏着什么规律呢?我们一起来探究?我觉得这样可能更好。
2、列举是的数据太过简单,应该像例题中有所体现学习本课运算律的意义。教材中的例题是把运算律结合在具体的情景中更能体现加法结合律,改编后可能相对薄弱。在教学完加法交换律后,加法结合律可以放手让学生自己探索。
3、在理解加法交换律和结合律算式的特点并且学生自己会说这样的算式的基础上,我感觉应再注重找找这些算式等号两边有什么异同?进而再用自己的语言表达出各自的内容。
加法交换律说课稿篇八
动手实践是学生在亲自动手操作的过程中进行探索,从而获取数学经验、知识和技能,发展能力的一种学习方式。
二年级下册的“克与千克的初步认识”是一节操作体验课。教材配套的教师用书中明确要求“在掂一掂、估一估、称一称的实践活动中,初步建立1克和1千克的质量观念,并学会以此为标准去估量物体的质量,培养学生的动手能力和合作意识。”但在很多课堂上,这一实践过程只有“形”而无“质”,更多的是怎么使用这两个单位的相关练习。
笔者曾经在教学这一节课前要求学生准备1千克及接近1克重的物品(2包500克的盐或1包1千克的洗衣粉等;5分硬币或1颗扁豆等),课堂上重点要求学生体验1克与1千克的重量:先通过掂自己的物品,体验出1克的感觉,再掂一下其他同学的物品,通过多次的掂量,把1克的感觉记在心上;让同桌的2名学生把两个1克合并起来,再掂,然后3个1克、4个1克……在掂一掂的过程中,让学生体会到以克为单位进行称量,即使数字翻倍,还是非常轻,有时候轻得快要感觉不到;感觉千克的过程大同小异,学生很快就知道千克比克重得多,而且不需要教师提醒,学生已经知道要把同桌的物品合并起来一起掂量,发现1千克与2千克的重量相差非常多,3千克、4千克……学生就会发现,质量大的单位,如果多1个单位,会重很多。通过大量的操作实践,学生做到了真正的知,再与后面的行合起来,学生对千克与克在生活中的应用自然能水到渠成,如鱼得水。
二、找准知识间的联系,把数学的思想贯彻始终。
笔者尝试从学生的这一疑惑着手,在研学案中准备了适量的前置性练习:
学生发现这些式子的得数都是整百整十数,特别容易计算,这时再告诉学生,交换律说的是两个数之间的关系,但在日常生活中,只有两个数的时候没必要使用交换律。
在学习完交换律之后,再给出练习:
此时,学生遇到需要应用到交换律的情况,才“接受”让交换律成为自己数学思维的一部分。
三、从如何修改着手,优化学习路线。
六年级下册的“统计”是通过让学生阅读扇形统计图,会综合应用学过的统计知识,能从统计图中准确提取统计信息,正确解释统计结果,并能根据统计图提供的信息,作出正确的判断或简单的预测。从教学目标上看,这样的课要上得出彩,并不容易。
有位执教老师在教学中先给出一幅存在问题的扇形统计图:
学生在讨论中了解到,当“其他品牌”具有最大占有率时,这个扇形统计图的数据就显得不清晰,此时需要把“其他品牌”细化。本来教学到这里就可以给出相关的读图分析练习。但是,该教师又提出一项研学任务:怎样修改才能使这张统计图更加清晰呢?由于有了之前的铺垫,学生很容易形成一个思维定式:直接把它改为a品牌最畅销的统计图。但通过分享与交流,学生给出了三种情况:把“其他品牌”拆分成若干份,占有率都小于20%,还是a品牌最畅销;拆分的若干份中,有的占有率大于20%,a品牌不是最畅销的;拆分的若干份中,有的占有率刚好也是20%,a品牌不是最畅销的……该过程充分体现出交流的优越性。
加法交换律说课稿篇九
义务教育数学课程标准指出:教师要用教材教,而不是教教材,也就是让我们教师要把握教材的编写意图,根据学生实际,创造性地使用教材。根据这一指导思想我结合本班学生善于动脑,乐于推理,勤于总结的特点,将教材例1和例2合并成一节课展开学习活动。纵观本节课有以下几个特点:
课堂上我从口算a、b两组竞赛题入手,让学生练习计算,比速度,让学生马上意识到算b组题的速度明显比a组题快,先声夺人,让孩子感受到简便算法的优越,接着教师引导:为什么b组题算得快,这其中蕴含哪些数学知识呢?这一问题马上激起了学生探究的欲望,学习问题的产生将学生自然带入到学习状态中来,激发了学生强烈的探究欲望。
教学新知前我让学生对课题“加法的运算定律”说说自己的理解,学生很自然地想到:我们今天要研究的是加法的一些运算规律,再由贴近学生的生活情境引入主题,让学生自由地提问,学生提出的问题多数是用加法解决的问题,不仅培养了学生发散性的思维,还能让学生提出的问题直奔主题,老师的引导做到了有放有收,从而提高了学习效率。
数学课标指出:在数学教学过程中,教师应注重发展学生模型思想。本节课我注重“授之鱼”,更注重“授之以渔”。先是和学生一起学习了加法的结合律,总结出了四步学习法:提出问题---解决问题---举出例子----总结归纳。建立这样的模型后让学生按照这样的方法展开自学活动。本节课的教学并不是仅仅让学生掌握加法的运算定律,更重要的是要掌握解决问题的方法,培养学生观察、分析、比较、概括的能力。整节课对学生有“扶”又“放”,在教会孩子知识的同时,也教会了孩子的学习方法。这四步学习法对后续一些运算定律的学习,一些规律的推理和验证都用重要的意义。
本节课的教学内容如果按教材的编排程序去学习是体现了知识的学习由浅入深,循序渐进。但我觉得学生自学加法结合律有一定的难度,需要教师的引导才能学懂、学透,而加法交换律学生很容易通过老师的“自学提示”展开学习,所以我大胆地对教材的内容进行了调整,先领学生学习加法结合律,而加法交换律我放手让学生根据“四步学习法导学单”进行自学,学生的学习效果非常好。课堂上做到了以学定教,立足于学生的学,立足于学生的终生学习和可持续性发展。
加法交换律说课稿篇十
在学校举行的一人一节研究课展示活动中,我执教的苏教版四上《加法交换律和结合律》这一课题,通过活动我收获颇多,现将我的反思呈现如下:
教学的整体程序是:出示这堂课的学习目标——出示这堂课的自学要求——学生根据自学要求自学、教师巡视发现学生自学中的问题——小组汇报自学结果(优先差生)——纠正、讨论、指导自学结果——小组派代表在班级展示自学成果----师生点评------巩固练习-----知识延伸(拓展)。这样的设计,生生之间积极互动,师生之间互动,教师引导学生自己去发现规律,并学会用多种方法表示,让学生有一种成就感。然后引导学生运用前面的研究方法开展研究,由扶到放,初步培养学生探索和解决问题的能力和语言的组织能力。这节课我强调学生的发言要大声地说:我们小组的发现是……充分调动他们的自信心和自豪感。
具体做法是:
一、学生经历有效地探索过程。在探索知识形成的过程中,以学生为主体,激励学生动眼、动手、动口、动脑积极探究问题,促使学生积极主动地参与“观察发现——举例验证——得出结论”这一数学学习全过程。教学这两个运算律都是从学生解决熟悉的实际问题引入的,让学生通过观察、比较和分析,初步感受运算的规律。然后让学生根据对运算律的初步感知,举出更多的例子,进一步观察比较,发现规律。我有意识地让学生运用已有经验,经历运算律的发现过程,让学生在合作与交流中对运算律认识由感性逐步发展到理性,合理地构建知识。
二、注意数学学习方法的渗透。加法结合律是本课教学难点,由于在探索加法交换律时,学生经历了“观察发现——举例验证——得出结论”的学习过程,在此基础上,再让学生探索加法结合律,教师加以适当的引导,为学生提供足够的自主探索的时间和空间,学生将已有学习方法渗透到探索加法结合律中,很容易感受到三个数相加蕴含的运算规律。学生不但理解了加法运算律的过程,同时也在学习活动过程中获得成功的体验,增强学生学习数学的信心。
三、教学中注意沟通知识间的联系。在教学完加法交换律时,我及时把新学的知识和加法计算的验算结合起来,让学生回忆交换加数验算的方法,明确与加法交换律之间的联系。在教学完加法结合律时,又出示了两道口算题9+7、34+27,让学生回忆口算过程。这样引导学生把新旧知识及时沟通,加深了对已有知识经验的认识,同时加深了对新知的理解。在最后的提高巩固阶段,结合练习为下节课学习加法简便计算垫下了基础。
总的来说,这堂课取得了较好的效果。通过本课的学习,学生不但掌握了加法交换律,加法结合律的知识,更重要的是学会了数学方法,所以到课尾出现了学生由加法运算律联想到减法、乘法、除法运算中,是否也存在一定的规律呢这一想法。并产生运用这一数学方法进行探索的愿望和热情。这些数学方法是学生终身学习必备的能力。同时,在教学过程中,我也发现了一些问题,这些问题有些是客观的,有些是由于本人的教学机智和教学设计还不够。总之,在学习洋思经验及实施新课改中,我会不断地反思,及时地总结,适时地改进,充分地完善自我,相互学习,取长补短,不断提高自己的教育教学水平。
加法交换律说课稿篇十一
在教学加法交换律时我采用了情境导入—探究新知—反馈练习三个教学环节,情境导入环节利用课本上李叔叔骑车旅行的情景导入,得出已知条件和问题;探究新知环节,让学生先独立完成,集体交流时发现算式结果相同,用等号连接,得出56+28=28+56,然后又让学生仿照举例,最后引导学生得出规律;反馈练习环节学生的积极性很高,本节课的教学非常顺利,轻松完成教学任务。但我觉得本节课的知识太少,能不能把加法交换律和乘法交换律合并成一节课讲解呢,在以后教学本节课时我准备在“交换律”这节课进行以下几个方面尝试。
(1)改进材料的呈现方式。教材只是提供了教学的基本内容、基本思路,教师应在尊重教材的基础上,根据学生的实际对教材内容进行有目的`的选择、补充和调整。另外在材料呈现的顺序上,改变了教材编排的顺序:先教学加法交换律和加法结合律,然后教学乘法交换律交换律和结合律,而是同时呈现,同时研究。因为当学生在已有认知结构中提取与新知相关的有效信息时,不可能像教材编排的有先后顺序之分,而是同时反映,充分做到了尊重学生的认知规律。
(2)找到生活的原型。加法交换律和乘法交换律的实质是交换位置,结果不变,这种数学思想在生活中到处存在。本节课我首先引导学生用辨证的眼光观察身边的现象,渗透变与不变的辩证唯物主义的观点;然后采撷生活数学的实例:同桌两位同学交换位置,结果不变。引导学生产生疑问:这种交换位置结果不变的现象在我们的数学知识中有没有呢?你能举出一个或几个例子来说明吗?这样利用捕捉到的“生活现象”引入新知,使学生对数学有一种亲近感,感到数学与生活同在,并不神秘,同时也激起了学生大胆探索的兴趣。
(3)找准教学的起点。对学生学习起点的正确估计是设计适合每个学生自立学习的教学过程的基本点,它直接影响新知识的学习程度。加法交换律和乘法交换律是人教版小学数学第八册第三单元的内容,先教学加法交换律和结合律,然后是交换律和结合律的应用,接着乘法交换律和乘法结合律,乘法分配律。而在过去的学习中,学生对加法和乘法交换律已有大量的感性认识,并能运用交换加数(因数)的位置来验算加法(乘法),所以这节课的重点应放在引导学生发现并用数学语言表述数学规律和总结怎样获得规律的方法上,使学生的认识由感性上升到理性。
加法交换律说课稿篇十二
加法交换律是一节概念课,是在学生已经掌握四则运算的基础上进行教学的。本节课的教学设计有意识地让学生运用已有经验,亲身经历“提出猜想—举例验证—得出结论—总结规律”这一探究过程,同时注重学习方法的渗透,为高年级的学习打下基础。
1、创设问题情景,激发学生学习兴趣。本节课以成语故事“朝三暮四”为切入点,吸引了大部分学生的注意力,自然而然地激发了学生学习的兴趣。同时,为学生进行教学活动创设了良好的氛围,这样设计,让学生在快乐的氛围中主动思考,发现规律,为举例验证埋下伏笔。
2、本节课让学生经历数学知识发生、发展和形成的过程,同时注重数学思想和方法的渗透,通过猜想、验证、类比、归纳,提升学生的理性思维,提高学生应用数学思想方法解决实际问题的能力。
加法交换律说课稿篇十三
在学校举行的一人一节研究课展示活动中,我执教的苏教版四上《加法交换律和结合律》这一课题,通过活动我收获颇多,现将我的反思呈现如下:
具体做法是:
在探索知识形成的过程中,以学生为主体,激励学生动眼、动手、动口、动脑积极探究问题,促使学生积极主动地参与“观察发现——举例验证——得出结论”这一数学学习全过程。教学这两个运算律都是从学生解决熟悉的实际问题引入的,让学生通过观察、比较和分析,初步感受运算的规律。然后让学生根据对运算律的初步感知,举出更多的例子,进一步观察比较,发现规律。我有意识地让学生运用已有经验,经历运算律的发现过程,让学生在合作与交流中对运算律认识由感性逐步发展到理性,合理地构建知识。
加法结合律是本课教学难点,由于在探索加法交换律时,学生经历了“观察发现——举例验证——得出结论”的学习过程,在此基础上,再让学生探索加法结合律,教师加以适当的引导,为学生提供足够的自主探索的时间和空间,学生将已有学习方法渗透到探索加法结合律中,很容易感受到三个数相加蕴含的运算规律。学生不但理解了加法运算律的过程,同时也在学习活动过程中获得成功的体验,增强学生学习数学的信心。
在教学完加法交换律时,我及时把新学的知识和加法计算的验算结合起来,让学生回忆交换加数验算的方法,明确与加法交换律之间的联系。在教学完加法结合律时,又出示了两道口算题9+7、34+27,让学生回忆口算过程。这样引导学生把新旧知识及时沟通,加深了对已有知识经验的认识,同时加深了对新知的理解。在最后的提高巩固阶段,结合练习为下节课学习加法简便计算垫下了基础。
总的来说,这堂课取得了较好的效果。通过本课的学习,学生不但掌握了加法交换律,加法结合律的知识,更重要的是学会了数学方法,所以到课尾出现了学生由加法运算律联想到减法、乘法、除法运算中,是否也存在一定的规律呢这一想法。并产生运用这一数学方法进行探索的愿望和热情。这些数学方法是学生终身学习必备的能力。同时,在教学过程中,我也发现了一些问题,这些问题有些是客观的,有些是由于本人的教学机智和教学设计还不够。总之,在学习洋思经验及实施新课改中,我会不断地反思,及时地总结,适时地改进,充分地完善自我,相互学习,取长补短,不断提高自己的教育教学水平。
加法交换律说课稿篇十四
学生根据模仿,学会了根据结果相等,将两个算式写成恒等的方法,这对于他们来说是一个新知识,其实也就是在经历等量代换的过程。而这一数学方法对接下来要学习其它各种运算定律,及运用定律进行简便运算,列方程解应用题等都十分重要。
学生在独立举例后,在全班范围内交流发现的规律,得出结论:不管两个加数的位置怎么交换,它们的和都不会改变。师引导:同学们所举的所有例子都能写出这样的结论,可见我们的四则运算中有一个规律,谁能把这个规律准确地概括一下?……从个别到一般,把对特例的发现上升为具有普遍意义的规律和性质,这就是小学阶段的“不完全归纳法”,让学生经历这一归纳过程,体验结论的科学性。
本节课的不足之处就是对处理“用字母表示定律”这一环节有些不足。在学生例举字母表示定律后总结出用a+b=b+a公式来表示定律后,没有进一步拓展,如问:三个数可以怎样表示呢?这个规律还适用吗?这样环节设计,会让学生对字母表示运算定律更为熟悉,从而培养数学思想,更能强化目标。
在今后的数学中,注意强化本节课的重难点,并针对重难点进行数学思想的渗透与拓展,尤其对稍差的学生更应该重复强化,尽量让每一个孩子都学会。
加法交换律说课稿篇十五
课程标准提出“让学生经历有效地探索过程”。教学中以学生为主体,激励学生动眼、动手、动口、动脑积极探究问题,促使学生积极主动地参与“观察猜想——举例验证——得出结论”这一数学学习全过程。基于以上理念本节课的教学我注意从教材出发,理解教材所要达到的教学目标,创造性地使用教材,调整了教材的知识结构,真正做到用教材教,而不是教教材。充分发挥出教师的主导性、学生的主体性。本节课打破传统的课堂教学结构,注重学生观察、比较和分析能力的培养,让学生从已有的生活经验出发,根据已有经验自主探索知识的形成过程。课堂上关注学生的个人体验,满足的学习需求,强化学生的积极情感,使学生不断获得成功的体验。我本着“以人为本,关注学生”的教学思想,试图建立“提出问题——解决问题——举出例子——总结归纳”的基本教学模式,让学生展开自主学习活动,学生在建模的教学活动中找到了数学学习的方法,使传统的“指导接收式”转变为“自主探究式”,充分体现课程改革的教学思想。纵观本节课突出了以下几个特点:
课堂上我从口算a、b两组竞赛题入手,让学生练习计算,比速度,让学生马上意识到算b组题的速度明显比a组题快,先声夺人,让孩子感受到简便算法的优越,接着教师引导:为什么b组题算得快,这其中蕴含哪些数学知识呢?这一问题马上激起了学生探究的欲望,学习问题的产生将学生自然带入到学习状态中,激发了学生强烈的探究欲望。
教学新知前我让学生对课题“加法的运算定律”说说自己的理解,学生很自然地想到:我们今天要研究的是加法的一些运算规律,再由贴近学生的生活情境引入主题,让学生自由地提问,学生提出的问题多数是用加法解决的问题,不仅培养了学生发散性的思维,还能让学生提出的问题直奔主题,老师的引导做到了有放有收,从而提高了学习效率。
数学课标指出:在数学教学过程中,教师应注重渗透建模的思想。本节课我注重“授之鱼”,更注重“授之以渔”。先是和学生一起学习了加法的结合律,总结出了四步学习法:提出问题---解决问题---举出例子----总结归纳。建立这样的模型后让学生按照这样的方法展开自学活动。本节课的教学并不是仅仅让学生掌握加法的运算定律,更重要的是要掌握解决问题的方法,培养学生观察、分析、比较、概括的能力。整节课对学生有“扶”又“放”,在教会孩子知识的同时,也教会了孩子的学习方法。这四步学习法对后续一些运算定律的学习,一些规律的推理和验证都用重要的意义。
本节课的教学内容如果按教材的编排程序去学习是体现了知识的学习由浅入深,循序渐进。但我觉得学生自学加法结合律有一定的难度,需要教师的引导才能学懂、学透,而加法交换律学生很容易通过老师的“自学提示”展开学习,所以我大胆地对教材的内容进行了调整,先领学生学习加法结合律,而加法交换律我放手让学生根据“四步学习法导学单”进行自学,学生的学习效果非常好。课堂上做到了以学定教,立足于学生的学,立足于学生的终生学习和可持续性发展。
不足的是,在使用导学单进行导学中,对学生的学情了解不透,导致导学单中某些问题的设置起点偏高,拖延了教学时间,最后的练习量过大,这点是在我精心准备教案设计和课件的同时,留下的最大遗憾。
加法交换律说课稿篇十六
在学校举行的一人一节研究课展示活动中,我执教的苏教版四上《加法交换律和结合律》这一课题,通过活动我收获颇多,现将我的反思呈现如下:
具体做法是:
一、学生经历有效地探索过程。
在探索知识形成的过程中,以学生为主体,激励学生动眼、动手、动口、动脑积极探究问题,促使学生积极主动地参与“观察发现——举例验证——得出结论”这一数学学习全过程。教学这两个运算律都是从学生解决熟悉的实际问题引入的,让学生通过观察、比较和分析,初步感受运算的规律。然后让学生根据对运算律的初步感知,举出更多的例子,进一步观察比较,发现规律。我有意识地让学生运用已有经验,经历运算律的发现过程,让学生在合作与交流中对运算律认识由感性逐步发展到理性,合理地构建知识。
二、注意数学学习方法的渗透。
加法结合律是本课教学难点,由于在探索加法交换律时,学生经历了“观察发现——举例验证——得出结论”的学习过程,在此基础上,再让学生探索加法结合律,教师加以适当的引导,为学生提供足够的自主探索的时间和空间,学生将已有学习方法渗透到探索加法结合律中,很容易感受到三个数相加蕴含的运算规律。学生不但理解了加法运算律的过程,同时也在学习活动过程中获得成功的体验,增强学生学习数学的信心。
三、教学中注意沟通知识间的联系。
在教学完加法交换律时,我及时把新学的知识和加法计算的验算结合起来,让学生回忆交换加数验算的方法,明确与加法交换律之间的联系。在教学完加法结合律时,又出示了两道口算题9+7、34+27,让学生回忆口算过程。这样引导学生把新旧知识及时沟通,加深了对已有知识经验的认识,同时加深了对新知的理解。在最后的提高巩固阶段,结合练习为下节课学习加法简便计算垫下了基础。
总的来说,这堂课取得了较好的效果。通过本课的学习,学生不但掌握了加法交换律,加法结合律的知识,更重要的是学会了数学方法,所以到课尾出现了学生由加法运算律联想到减法、乘法、除法运算中,是否也存在一定的规律呢这一想法。并产生运用这一数学方法进行探索的愿望和热情。这些数学方法是学生终身学习必备的能力。同时,在教学过程中,我也发现了一些问题,这些问题有些是客观的,有些是由于本人的教学机智和教学设计还不够。总之,在学习洋思经验及实施新课改中,我会不断地反思,及时地总结,适时地改进,充分地完善自我,相互学习,取长补短,不断提高自己的教育教学水平。
加法交换律说课稿篇十七
设计理念:生活经验是小学生学习数学的宝贵财富,也是他们进行数学探索的基础。教师应充分利用学生已有的生活经验,让他们在此基础上实现对数学的再创造,切实体验数学与生活的联系,经历数学知识发生、发展和形成的过程,提高学生应用数学解决实际问题的能力。
教材分析:教材从情境引出例题,帮助学生体会运算定律的现实背景,让学生借助解决实际问题,进一步体会和认识加法交换律,使学生经历由个别到一般,由具体到抽象的认知过程,引导学生由感性认识上升到一定的理性认识。
教学目标:探索和理解加法交换律,并能够用字母来表示加法交换律;经历探索运算定律过程,通过对实际问题的解决,进行比较和分析,发现并概括出加法交换律;在数学活动中获得成功的体验,培养学生独立思考和探究问题的意识和能力。
教学准备:多媒体课件。
教学过程:
1.导入故事《朝三暮四》,引发学生思考。根据学生回答板书:
3+4=7(个)4+3=7(个)3+4=4+3
3.尝试解决问题。学生独立解决问题,根据学生解答板书:
40+56=96(千米)56+40=96(千米)40+56=56+40
引发猜想:是否任意两数相加,交换位置,和都不变?
1.交流:有了猜想,我们还得验证。你打算怎么验证?
2.学生举例验证,教师巡视指导。
1.同学们仔细观察列举出的等式,说一说你发现了什么?你能用自己的话说出你发现的规律,并给它命名吗?(两个加数交换位置,和不变。这叫加法交换律。)
2.让学生用自己喜欢的方式表示加法交换律。用语言表达加法交换律比较麻烦,怎样表示既简单又清楚呢?试一试,用你喜欢的符号、字母或图形表示两个加数。
1.引导学生由加法类比到减法、乘法和除法,并自觉形成关于减法、乘法和除法中是否有交换律的三个新猜想。
2.学生选择部分猜想,举例进行研究。教师参与,适时给予指导。
3.交流:哪一种猜想是正确的,你们是怎么举例验证得出结论的?教师板书若干例子,进而得出结论。
1.请同学们想一想,以前学过的知识中哪些地方用到过加法交换律?
2.下面我们就来比一比,看谁学得最好。
(1)你能在括号里填上合适的数吗?
300+600=()+()()+55=55+420 ()+65=()+35
(2)仔细看一看,下面的算式符合加法交换律吗?
270+380=380+270 b+800=800+b
(3)运用加法交换律,你能写出几个算式?写写试试吧。
25+49+75=()+()+()
学生写出算式以后,让学生观察这些算式,哪两个数交换了位置?在这些算式中,你认为哪一道计算起来比较简单?说说你的想法。
通过这节课的学习,你有哪些收获?说一说自己表现最好的方面。
(责任编辑付淑霞)
加法交换律说课稿篇十八
《加法的交换律和结合律》是苏教版四年级上册第七单元第一课时的内容。在此之前,学生经过较长时间的四则运算学习,对四则运算已有较多感性认识和加法运算律已经有了一些感性认识。本节课属于理性的总结和概括,比较抽象,学生不易理解和掌握。
1、本节课从现实生活出发,以学生熟悉的大课间活动为教学的切入点,提出问题:“从图中你了解到了那些数学信息?”组织学生观察分析题中的信息,由于是学生身边熟悉、感兴趣的活动课,学生很快投入进来,从而主动的去解决问题。这一环节的设计激发了学生的学习兴趣,又培养了学生收集和处理信息的能力。
2、让学生经历了探索加法运算律的过程。因此,在探索知识形成的过程中,我让学生根据自己提出的问题,列出28+17=45、17+28=45两道算式,再组织学生观察比较两个式子的相同点和不同点,组织学生观察交流,然后,引导学生举出几个这样的等式,让学生再次观察、比较有什么相同点和不同点,从而感知其中的规律。鼓励学生用自己最喜欢的方法来表示加法的运算律,学生独立思考,师生交流,再次让学生经历由数字上升到用符号、字母表示的一种抽象过程,学生在此过程中感受到加法交换律的形成,在这里我渗透了数学的思想“不完全归纳法”让学生理解这样的数学思想的建立在多个而不是一个等式的基础上,让学生经历了归纳,抽象的过程,培养学生符号感的意识。在教学加法结合律时,我安排了不少学生交流,讨论,汇报的结果,真正的把课堂还给了学生,由于学生刚经历了加法交换律的探索过程。所以就自然而然地把刚才所用的方法迁移到加法结合律的学习上。
3、在练习中感悟数学知识。“想想做做”第1,2题是基本练习,巩固和加深对加法交换律和结合律的认识。第4,5题为即将学习的简便计算作好准备,同时帮助学生初步掌握简便运算的思考方法。
4、在探索运算律的过程中,应该将学生举出的例子板书在黑板上,引导学生观察、比较和分析,通过多个例子,学生能更好地感受运算律。
5、通过例题和学生举例,在学生充分感知的基础上,从用符号表示规律到用字母表示规律,总结出加法结合律。在这里,学生能体会出这两种运算律,但还应该让学生再说一说运算律的含义,可能学生语言表达起来有些困难,说不清楚,但不要求孩子要一字不差的把规律说出来,只要能理解就够了,同时也能培养学生的语言表达能力。
6、让学生经历评价反思的过程。促使学生积极主动地参与“猜测一举例验证一归纳结论一运用”这一数学学习全过程,让学生在合作与交流中对运算律认识由感性逐步发展到理性,合理地构建知识。
总之,在今后的教学中,我会不断反思,及时改进,不断提高自己的教育教学水平。5以内的加法教学反思平面向量的加法教案。
加法交换律说课稿篇十九
加法的运算定律是运算体系中的普遍规律。为了让学生能够理解并掌握这一规律,以便为今后的应用服务。我在教学中从学生的已有知识经验的实际状态出发,通过抽象建模,大胆猜测,操作验证,合作总结这四个环节,让学生能够理解加法运算定律的含义,并从过程中体验成功的喜悦或失败的情感。
本课我把凑整简算的思想贯穿始终,让学生从学习中体验选择简便的方法是学习的最好途径。对于小学生来说,运算定律的理解与运用是培养和发展学生抽象的极好时机。本节课,我引导学生在知识的形成过程中提升学生的思维能力,在课堂上充分调动学生积极性,让孩子们大胆猜想,举例验证、得出结论。
1、在复习引用中,巩固学生的思维基础。
通过一组口算练习,让学生明确能够凑整十或整百数的两个数加起来比较简便,这个为后面学习结合律打下基础。
2、大胆猜想,自主探究,培养学生独立思考的能力。
在教授新课的过程中,我通过提问、设疑,让学生观察―猜测―举例―验证四个环节,同时通过小组合作得出结论。这样既培养了学生的抽象概括能力,同时让学生的思维得到了有效的训练和发展。
3、多层次的巩固练习,有效提升学生的思维。
【本文地址:http://www.xuefen.com.cn/zuowen/17673653.html】