编写教案是教师对教学内容进行深入研究和设计的过程。那么我们该如何编写一份优秀的教案呢?首先,我们应该明确教学目标,并根据学生的特点和需求进行精确的设计。其次,我们需要合理选择教学方法和手段,以激发学生的学习兴趣和主动性。此外,还应注重教学过程的组织与管理,确保教学效果的实现。教案的设计不是固定的,要因材施教,因时制宜。
六年级数学变化的量教案篇一
学生已经有了对周长的认识,只是研究圆的周长需要探索圆的周长与直径的关系,那么,对于圆的周长与直径的这个倍数关系,学生通过测量、计算是能发现的,然后再根据这一倍数关系推导出周长的计算方法。教学时,关键是引导学生能发现圆的周长与直径之间的倍数关系。
1.理解圆周率的意义,推导出圆周长的计算公式,并能正确的进行简单的计算。
2.培养学生的观察、比较、分析、综合及动手操作能力。
3.领会事物之间是联系和发展的辩证唯物主义观念以及透过现象看本质的辨证思维方法。
4.结合圆周率的学习,对学生进行爱国主义教育。
推导并总结出圆周长的计算公式。
深入理解圆周率的意义。
备注:
活动一:创设情境,引起猜想:认识圆的周长
(一)激发兴趣
(二)认识圆的周长
1.回忆正方形周长:
小黄狗跑的路程实际上就是正方形的什么?什么是正方形的周长?
2.认识圆的周长:
那小灰狗所跑的路程呢?圆的周长又指的是什么意思?
每个同学的桌上都有一元硬币、茶叶筒、易拉罐等物品,从这些物体
中找出一个圆形来,互相指一指这些圆的周长。
(三)讨论正方形周长与其边长的关系
1.我们要想对这两个路程的长度进行比较,实际上需要知道什么?
2.怎样才能知道这个正方形的周长?说说你是怎么想的?
3.那也就是说,正方形的周长和它的哪部分有关系?正方形的周长总
是边长的几倍?
(四)讨论圆周长的测量方法
1.讨论方法:刚才我们已经解决了正方形周长的问题,而圆的周长呢?
2.反馈:(基本情况)
(1)滚动--把实物圆沿直尺滚动一周;
(2)缠绕--用绸带缠绕实物圆一周并打开;
(3)折叠--把圆形纸片对折几次,再进行测量和计算;
(4)初步明确运用各种方法进行测量时应该注意的问题。
3.小结各种测量方法:(板书)转化
曲直
4.创设冲突,体会测量的局限性
5.明确课题:
今天这堂课我们就一起来研究圆周长的计算方法。(板书课题)
(五)合理猜想,强化主体:
1.请同学们想一想,正方形的周长和它的边长有关系,而且总是边长的4倍,所以正方形的周长=边长4。我们能不能像求正方形周长那样找到求圆周长的一般方法呢?小组讨论并反馈。
2.正方形的周长与它的边长有关,你认为圆的周长与它的什么有关?
向大家说一说你是怎么想的。
3.正方形的周长总是边长的4倍,再看这幅图,
猜猜看,圆的周长应该是直径的倍?
(正方形的边长和圆的直径相等,直接观察可发现,圆周长
小于直径的四倍,因为圆形套在正方形里;而且由于两点间
线段最短,所以半圆周长大于直径,即圆周长大于直径的两倍)
4.小结并继续设疑:
活动二:动手操作,探索圆的周长与直径的关系。
六年级数学变化的量教案篇二
从知识角度分析为什么难。
打折销售与学生的日常生活息息相关,学生并不感到陌生,但在促销活动中选择最佳消费方式,要运用所学的百分数知识解决问题有一定的难度。
从学生角度分析为什么难。
学生在解题的过程中,要懂得“满100元减50元”的促销方式,对于消费者来说不如打五折实惠;如果总价是整百元的,那两种促销的方式优惠的结果是一样的,但要得出这种结论,对于学生来说有一定难度,需要运用所学的百分数知识去分析、交流、比较才能解决。
在教学时,先让学生结合自己的生活经历去理解“满100元减50元”的含义,然后根据实际情况进行表述,再引导学生体会这种促销方式的计算方法,接下来要由学生独立完成两种购买方式所要支付的钱,并通过比较来解决题目中的问题。
一、复习旧知,引入新课。
1、提问“一件物品打九折出售”表示什么意思?
2、生活中,是不是所有的优惠都是以“几折”来表示的呢?
3、购物中优惠的形式有很多种,我们要做一个精明的小买家。今天,我们就来研究购物中的折扣问题。(板书:购物中的折扣问题)。
二、教学新知。
(一)出示例5:某品牌的裙子搞促销活动,在a商场打五折销售,在b商场按“满100元减50元”的方式销售。妈妈要买一条标价230元的这种品牌的裙子。
1、根据这些信息,学生提问题。
教师板书:
(1)在a、b两个商场买,各应付多少钱?
(2)哪个商场省钱?
2、分析问题,理解题意。
(1)结合题目给出的数学信息,哪些是关键的?
(2)怎样理解“满100元减50元”?
(3)不足100元的部分呢?怎么办?
3、独立思考,尝试解决。
师:请同学们独立思考,看能否解决黑板上的这两个问题?
4、交流并汇报方法。
师:谁来说说自己的解决方法?
学生展示自己的算式,并解释。
5、启发思考,辨析原因。
(1)满100元减50元,少了50元,也是打五折啊,怎么优惠的结果却不一样呢?
(2)什么情況下两种优惠是一样的呢?
6、小结:在今天的折扣问题中,我们知道了优惠的形式有很多种,解决这些问题时要注意的是“满100元减50元”和打五折的区别:
(1)“满100减50”,就是够100才能减50,不够则不减。
(2)打五折实际售价都是原价的50%,不满100元的也能按50%计算。
(3)售价刚好是整百元的时候,两种优惠结果才是一样的。
三、练习巩固,提高能力。
1、做一做。
某品牌的旅游鞋搞促销活动,在a商场“每满100元减40元”的方式销售,在b商场打六折销售,妈妈准备给小丽买一双标价120元的这种品牌的旅游鞋。
(1)在a、b两个商场买,各应付多少钱?
(2)选择哪个商场更省钱?
同学们,在今天学习的折扣问题中,我们知道了不同形式的优惠有很多种,在解决这些问题时要注意的是“满100元减50元”和打五折的区别。
六年级数学变化的量教案篇三
使学生知道对于同样的数据可以有多种分析的方法,能根据需要选择合适的统计图,直观、有效地描述数据,进一步发展数据分析观念。
教学重点了解不同统计图的特点,合理选择用不同统计图来未表述。
教学难点熟练掌握不同统计图的特点。
我们已经学过哪些统计图,它们各有什么特点?
名称优点
条形统计图能清楚地看出数量的多少
折线统计图不仅可以反映数量的多少,还能看出数量增减变化趋势
扇形统计图能清楚地反映出各部分与整体的关系
下面几组数据分别选用哪种统计图表示更合适?
(1)绿荫小学xxxx-xxxx年校园内树木总量变化情况统计表。
(2)xxxx年绿荫小学校园内各种树木所占百分比情况统计表。
(3)xxxx年绿荫小学校园内各种树木数量统计表。
第(1)小题
(1)绿荫小学xxxx-xxxx年校园内树木总量变化情况统计表。
绿荫小学xxxx-xxxx年校园内
树木总量变化情况统计图
第(2)小题
(2)xxxx年绿荫小学校园内各种树木所占百分比情况统计表。
这题给出了各种树木占树木总量的百分比,用条形统计图和扇形统计图都可以表示出这些信息。但用扇形统计图更能直观地看出部分与整体之间的关系。
第(3)小题
(3)xxxx年绿荫小学校园内各种树木数量统计表。
这题给出了各种树木的数量,只能用条形统计图来表示。为什么不能用其他的统计图?
1、在林业科学里,通常根据乔木生长期的长短将乔木分成不同的类型。
下面是我国乔木林各龄组的面积构成情况。
以上信息可以用什么统计图描述?哪种更直观些?
2、完成教科书第99页“做一做”
3、完成练习二十一第5、6、7、8题
这节课学习了什么内容?应该注意些什么?
六年级数学变化的量教案篇四
1、让学生通过活动,经历分类的过程,学会按一定标准进行分类的方法,初步养成有条理地整理事物的习惯。
2、通过分类活动,让学生进一步体会分类的`含义,感受分类在生活中的用途。
3、教师可以适时地向学生渗透爱劳动、爱家庭的教育。
教学重点:学会按一定的标准进行分类的方法,养成有条理地整理事物的习惯。
教学难点:学会按一定的标准进行分类的方法。
一、导入
同学们,你们逛过超市吗?里面的物品是怎么摆放的?
为什么要这样摆放呢?
分类摆放后顾客去买东西更方便。你们想不想学习怎样分类呢?
那么今天这节课就来学习分类。
二、授新课
1、活动一:整理房间
(1)有个叫亮亮的小朋友很想去公园玩,可是他的妈妈有要求:要他先把自已的房间整理好.
(2)课件出示:同学们看了亮亮的房间,你们想对亮亮说什么?
你们愿意帮帮他吗?那么你们认为该怎样整理房间呢?(小组交流,说说自己的想法)
小组汇报
你能说说为什么要这样整理吗?(强调同一类的要放在一起)
课件演示整理过程
提问:你还知道哪些学习用品?
六年级数学变化的量教案篇五
教学目标:
1.结合具体目标,体会生活中存在着大量互相依存的变量。
2.在具体情境中,尝试用自己的语言描述两个变量之间的关系。
教学重点:
结合具体目标,体会生活中存在着大量互相依存的变量。
教学难点:
在具体情境中,尝试用自己的语言描述两个变量之间的关系。
教学用具:课件。
教学过程:
一、课前预习。
1、预习书18页内容,尝试回答书上的问题。
2、找一找其中的变量,想一想它们之间有没有关系?如果有,有怎样的关系?
3、仔细看书,看看哪些关系能够用式子表示?
二、课堂展示。
活动一:观察并回答。
1、下表是小明的体重变化情况。
观察表中所反映的内容,搞清楚表中所涉及的量是哪两个量?观察后请回答。
2、上表中哪些量在发生变化?
3、说一说小明10周岁前的体重是如何随年龄增长而变化的?
小结:小明的体重随年龄的增长而变化。2—6岁和6---10岁是体重的增长高峰。说明这两个阶段是孩子成长的重要阶段。
4、体重一直会随年龄的增长而变化吗?这说明了什么?
说明:体重和年龄是一组相关联的量。体重的增长是随着人的生长规律而确定的。
1、教育学生要合理饮食,适当控制自己的体重。
活动二:骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大的变化。
观察书上统计图:
1、图中所反映的两个变化的量是哪两个?
2、横轴表示什么?纵轴表示什么?
同桌两人观察并思考,得出结论后,记录在书上,然后再在全班汇报说明。
3、一天中,骆驼的体温是多少?最低是多少?
5、第二天8时骆驼的体温与前一天8时的体温有什么关系?
6、骆驼的体温有什么变化变化的规律吗?
活动三:某地的一位学生发现蟋蟀叫的次数与气温之间有如下的近似关系。
1、蟋蟀1分叫的次数除以7再加3,所得的结果与当时的气温值差不多。
2、如果用t表示蟋蟀每分叫的次数,你能用公式表示这个近似关系吗?请你写出这个关系式,全班展示,交流。
4、你还发现我们学过的数学知识中有哪些量之间具有变化的关系?
三、反馈与检测。
1、连一连,把相互变化的量连起来。
路程正方形周长。
边长购卖数量。
总价行驶时间。
2、说一说,一个量怎样随另一个量变化。
(1)一种故事书每本3元,买书的总价与书的本数。
(2)一个长方形的面积是24平方厘米,长方形的长与宽。
3、小明到商店买练习簿,每本单价2元,购买的总数x(本)与总金额y(元)的关系式,可以表示为:。
四、全课小结:今天我们研究的两个量都是相关联的。它们之间在变化的时候都具有一定的关系。下一节课我们将深入研究具有相关联的两个量,在变化时有相同的变化特征,这样的知识在数学上的应用。
六年级数学变化的量教案篇六
1.使学生能有效地使用自己的眼、耳、鼻、舌、身,获得准确的感性材料。
2.培养学生对看到的、听到的事物进行了深入理解和准确把握。
3.观察力的训练是伴随着理解思维而进行的,同时也检查你的记忆力。
培养学生的对看到的、听到的事物进行了深入理解和准确把握。
开拓学生是思维能力。
要使自己更聪明,就要经常训练自己的头脑,在多观察、多思考问题中使思路灵活,就能找到解决问题的方法。所以观察力的训练是伴随着理解思维而进行的,同时也检查你的记忆力,即你是否见多识广,你是否一看就清楚,或者一听就明白。愿这一节课能使你的头脑更灵活。
1.课件出示:一组有趣的图片。
图1:柱子是圆的还是方的?仔细看一看。
让学生先同桌互相说一说,看到了什么?
图2:看着黑点身体前后移动。
让学生跟着要求做,然后说一说看到的。
图3:有多少个黑点?
图4:是静的还是动的?
图5:“弗雷泽螺旋”是最有影响的幻觉图形。
教师介绍学生认识。
2、练习。
学生谈收获。
六年级数学变化的量教案篇七
义务教育课程标准实验教科书二年级下册第20页辨认方向。
1.知识目标:结合具体的情境给定一个方向,能辨认其余的七个方向,名能用这些词语描述物体所在的位置。
2.技能目标:借助辨认方向,进一步发展空间观念。
3.情感目标:在具体的情境中体验数学与生活的密切联系。
1.重点:结合给定的一个方向辨认其余三个方向。
2.难点:用所学的方向词描绘物体所在的位置。
提问法、讨论法、练习法。
课件、小卡片。
一、复习。
二、新授。
1、引入。
师:在生活中,除了听说过东、南、西、北这四个方向之外,还听说过哪些方向词?(板书:东南、东北、西南、西北。)现在我们就来认识这些方向。
2、认识东南、东北、西南、西北四个方向。
课件出示主题图让学生观察:你看到什么,并说出它们的方向。
让学生将自己置身于学校这个位置,用已经学过的方向知识,说一说体育馆、商店、医院、邮局分别在学校的什么方向。教师先让学生4人一组说一说,再由教师指名让学生自己说一说。
教师让学生观察剩下的4个建筑物所在的方向与以前所认识的方向有什么特别之处。
发现剩下的4个方向分别在学校的斜方向的位置上。也就是在两个方向的中间。如:图书馆在北面和西面的中间。
说一说:少年宫、电影院、动物园所在的方向。
师:这样描述方向真是太麻烦了,请大家分别给这4个方向取名字。
问:你们是如何得出这些名称的?
教师让学生多说一说这4个建筑物分别在学校的什么方向,最后教师总结。
3.试一试。
(1)利用方向板说一说教室里8个方向分别有什么?
(2)让学生坐在自己的座位上,教师给出班级面朝的方向,小组内说一说自己的东南、东北、西南、西北分别是哪位同学。
(3)使用方向板时,教师应让学生注意方向板中的方向应与现实中面朝的方向相符。
三.练一练。
教师出示地图,问:这是哪个国家的地图,地图的形状像什么?在地图上看到了什么?(教师可适时对学生进行爱国主义教育。学生在观察地图时,教师让学生注意面朝北的方向标。)。
教师说出一个方向,让学生在图中将其指出。
问:你还可以提出哪些数学问题?
四.实践活动。
到操场上看一看,说说校园内各个方向分别有些什么?
观察后,到班级交流观察的结果。
五.你知道吗?
读书中的一段话后,说一说自己对指南针的了解,再让学生回家去找资料,查找有关指南针的知识,增强学生收集信息的能力。
六.小结。
这节课,同学们都学习了哪些数学知识呢?
六年级数学变化的量教案篇八
1、使学生能理解抽取问题中的一些基本原理,并能解决有关简单的问题。
2、体会数学与日常生活的联系,了解数学的价值,增强应用数学的`意识。
抽取问题。
理解抽取问题的基本原理。
一、教学例。
1、猜一猜。
让学生想一想,猜一猜至少要摸出几个球。
2、实验活动。
(1)一次摸出2个球,有几种情况?
结果:有可能摸出2个同色的球。
(2)一次摸3个球,有几种情况?
结果:一定能摸出2个同色的球。
3、发现规律。
启发:摸出球的个数与颜色种数有什么关系?
学生不难发现:只要摸出的球比它们的颜色种数多1,就能保证有两个球同色。
二、做一做。
第1题。
(1)独立思考,判断正误。
(2)同学交流,说明理由。
第2题。
(1)说一说至少取几个,你怎么知道呢?
(2)如果取4个,能保证取到两个颜色相同的球吗?为什么?
三、巩固练习。
完成课文练习十二第1、3题。
六年级数学变化的量教案篇九
教学目标:
1、经历自主回顾和整理“数的认识”的过程。
2、能对学过的数进行较系统的整理,进一步掌握数的知识,发展数感。
3、积极参加自主整理的活动,获得成功的学习体验。
课前预习:
小组合作,交流整理:
回顾以前学过那些数,各举五例。分析不同类数之间有何关系。
教学过程:
一、结合实例,引导学生回忆数的认识
1、回顾数的意义。
师:你学过那些数?
(生回答)
师出示卡片,生齐读。师:举例说明这些数可表示什么?
(生回答)
2、数的分类。
完成问题(1)。
师:把上面的数填到合适的位置
(生回答)
师:每种类型的数,除了上面几种类型,你还能举出其它的吗?
(生回答)
3、数的互化
呈现表格,完成数的互化,交流做法。
4、数的大小比较。
学生自主完成。
5、适时小结。
师:通过刚才的练习,我们复习到数的哪些知识?
(生回答)
二、整理回顾有关倍数和因数的知识
1、引出问题。
(生回答)
以上问题,我们运用了哪些数学知识呢?(倍数和因数)
明确:我们一起回顾和整理倍数和因数。
2、小组合作,梳理知识。
师:以小组为单位,将学过的“倍数和因数”知识整理下来。同学们认真讨论,由组长记录,一会儿我们要比一比,看一看哪一个小组整理的`更加完整、科学合理。全班交流。
整理完善知识结构。
师:在这一部分中我们为什么先学因数和倍数?
组织学生讨论和交流
师:倍数和因数是基础,他们是相互依存的关系,今天整理出来的倍数和因数脉络图使这部分知识更加条理化和系统化。
三、复习正数和负数
师出示亮亮家4月份收支情况记录。
学生阅读题目内容。
出示问题(1)。
提醒学生估算时要注意的问题。(生回答)师:(生回答)师:(生回答)
出示问题(2)。
让学生举例说明什么是正数和负数。
学生自主完成问题(2)。
全班交流。
交流时重点关注怎样用正负号表示收支情况,以及怎样基数按每次结余。
四、人民币上的号码
1、让学生拿出自己身上的人民币。
2、提出兔博士的问题,鼓励学生根据自己你的经验大胆回答。
五、课堂小结
这节课我们复习了哪些内容?,你想提醒大家注意哪些问题?
六、课堂作业
教学目标
1、经历自主回顾和整理整数、小数、分数四则运算的过程。
2、能对四则运算及它们之间的关系和运算定律进行归纳和整理,能选择合适的估算方法。
3、体验自主整理数学知识的乐趣,提高计算能力。
课前回顾:
我们学过那些计算?分别写出整数、小数、分数的加、减、乘、除的算式各一道,并计算出结果。小组内交流计算的结果。
教学过程:
一、引导学生回顾和整理四则运算
1、师:回想一下我们学过哪些计算?
生回答。
小组长汇报本组在课前练习中出现的问题。
2、议一议
出示问题(1)生归纳整理。
出示问题(2)生举例说明0和1在四则运算中的一些特殊情况。
生整理汇报。(注意提示0不能做除数)
3、各部分间的关系。
师:加法各部分间有什么关系?
生回答。
引导学生自己总结减法各部分间的关系。
师归纳出加减法互为逆运算。
同样的方法总结乘除法的关系。
说一说
师:上述关系在计算中有哪些应用?
启发学生回答,(进行验算、解方程等)
二、复习四则运算和运算律
1、师:我们学过的运算律有哪些?
小组讨论,自主总结,并写出字母表达式。
先说出运算顺序再计算。计算后交流做法,注意能简算的要简算。
3、估算。
先让生独立思考并判断,再回答是如何判断的。
师生共同讨论怎样想,需要几个步骤。
计算问题(2)时可用竞赛的方式,看谁算得又对又快。
三、课堂总结
师:这节课我们整理和回顾了什么内容?需要注意什么?
六年级数学变化的量教案篇十
教学目标:
1、通过观察、操作、想象,经历一个简单图形经过平移或旋转制作复杂图形的过程,体验图形的变换,发展空间观念。
2、借助mp_lab平台的操作和分析,有条理地表达图形的平移或旋转的变换过程,培养学生观察、思考、动手操作、表达能力和合作交流能力。
3、利用七巧板在方格纸上变换各种图形,进一步提高学生的想象能力。让学生体验成功的喜悦,体现数学在生活中的应用价值,激发学生爱数学、学术学的情感。
教学重、难点:通过观察、操作活动,说出图形的平移或旋转的变换过程。
教学准备:课件、电脑、mp_lab平台。
教学过程:
一、创设情境、激发兴趣、复习旧知。
1、出示情景图片,让学生说说窗户、风扇、蝴蝶在生活中是怎样运动的或发生什么现象?
(设计意图:通过创设有趣的生活情景,激发学生的学习兴趣与求知欲望,并感受数学来源于生活,又服务于生活。)。
2、让学生打开mp_lab平台动手操作复习,即平移二要素:方向、距离;旋转三要素:绕哪个中心点,什么方向,旋转多少角度;轴对称一要素:对称轴。
师强调:在分析图形的变换时,不仅要说出它的平移或旋转情况,还要说清楚是怎样平移或旋转的,这样就能清楚地知道它的变换过程。
(设计意图:利用学生感兴趣的mp_lab平台,既熟练了mp_lab操作,又很好地复习了以前所学过的平移、旋转、轴对称等知识。)。
二、自主探究、合作交流、获取新知。
今天我们一起利用所学的内容进一步探索图形的变换。(揭示课题:图形的变换)。
2、让学生进行利用mp_lab摆一摆,移一移,转一转自主探究图形的变换方法,教师进行巡视指导。
3、再让学生小组讨论,交流自己的想法,最后小组汇报展示。教师这时要抓住:方法策略的多样化和表达的条理性。
(设计意图:利用mp_lab平台让学生自主探究,合作交流掌握图形的变换过程,充分地发挥学生的主体性、主动性,培养学生的发散思维,体现玩中学,学中玩,合作交流中学。)。
4、巩固尝试。
出示图形(2)、(3)、(4),先观察,再思考讨论以下问题。
(1“风车”图形中的四个三角形如何变换得到长方形?
(2)长方形中的四个三角形如何变换得到正方形?
(3)正方形中的四个三角形如何变换回到最初的图形?
让学生自己操作,教师巡视指导。再同桌交流图形变换的方法,最后全班汇报。
(设计意图:在学生已经掌握了图形变换的方法的基础上,让学生自主完成以上三个变换过程,巩固所学的知识,解决实际问题。)。
三、拓展练习、应用提高、课外延伸。
刚才同学们只用了4个三角形来摆图形,变换出来的图形不多而且较简单。你们想不想变换出更多更美的图形呢?(想),出示七巧板图形。
1、先观察,再说一说右边的图形是怎么得到的?
2、让学生利用七巧板,摆一摆,变一变,看谁变出来的图形最美,最有创意。最后进行展示与评比。
(设计意图:通过学生感兴趣的七巧板,发挥学生的想像,发散学生的思维,让学生自主创造个中丰富多彩的图案。发展学生的空间观念和空间想像能力。)。
4、欣赏生活中的个中美丽的图案。开阔学生的视野。
(设计意图:让学生感受数学生活中的美,数学中美,激发学生爱数学,学数学的情感。)。
四、质疑问难、自我评价、全课小结。
2、教师激励学生,提出希望:生活中有很多美丽的图案都是经过变换所得到的,只要同学们有一双善于观察的眼睛和善于思考问题的大脑,会有更多美丽的图案等着我们去发现去创造。
五、板书设计:
图形的变换。
平移旋转轴对称。
方向位置中心点方向角度对称轴。
六、教学反思:
本节课充分发挥mp_lab教学平台的辅助作用,让学生动手操作、自主探究、合作交流,掌握图形的变换的操作方法,并有条理的叙述出整个变换过程。发展学生学生的空间观念和空间想像能力。主要体现以下几点:1、学生能在电脑上直观操作平移、旋转、轴对称变换,改变传统制作复杂的学具教具。2能把学生的整个操作过程录制下来,帮助学生进行展示、交流与叙述。3、能有效发散学生思维,不受器材的限制,利用多种方法完成变换过程,并变换出多种美丽的图案,发展学生的空间观念和想像力。不足之处:1、由于在电脑上操作需要的时间比较多,时间的把握与分配还不够合理科学。2、学生对变换的过程的叙述不够完整。
六年级数学变化的量教案篇十一
第一课时长方体和正方体的认识。
教学内容:长方体和正方体的认识。
1、使学生通过观察实物、动手操作等活动认识长方体、正方体,知道长方体和正方体的面、棱、顶点以及长、宽、高(或棱长)的含义,掌握长方体和正方体的基本特征。
2、使学生在活动中通过建立图形的表象的过程,进一步积累空间与图形的学习经验,增强空间观念。
一、引入新课。
1、由平面图形引到立体图形。
接着电脑演示由面到体的过程,揭示课题:“长方体的认识”。
2、引导学生认识什么是立体图形。
指出它占有一定的空间,像这样占有一定空间的物体的形状就是立体图形(电脑显示若干立体实物)。
问:这些物体的形状都是什么图形呢?在这里面哪些物体的形状是长方体的呢?
3、举例。
让学生举出日常生活中见过的长方体的物体实例。
师:要知道这些物体为什么都是长方体,就要研究长方体的特征。
1、出示例1:
(1)拿一个长方体的纸盒来观察:
长方体有几个面?从不同的角度观察一个长方体,最多能同时看到几个面?
指导学生从不同的角度观察学具,回答上面的问题。
(2)抽象图形。
说明:因为我们最多只能看到长方体的3个面,所以通常这样画长方体。
(师边讲边画长方体的直观图,注意要规范。)。
让学生上去指一指,图上哪3个面是我们能直接看到的`?另外3个面在哪里?
2、认识长方体各部分的名称。
(1)教师结合直观图逐一向学生介绍棱和顶点,并及时在图中作出标注。
(2)同桌学生用手摸长方体纸盒,互相指出长方体的面、棱、顶点。
电脑分别显示面、棱、顶点这三个部分,加深印象。
3、长方体的特征。
出示:长方体有几条棱和几个顶点?它的面和棱各有什么特征?看一看,量一量,比一比,并在小组里交流。
学生四人一组讨论长方体有什么特点,讨论后自由发表自己的看法,教师引导学生总结长方体特点。
(1)面的特点。
长方体有几个面?谁能迅速的数出长方体的6个面?比较哪一种方法好?
长方体的6个面是什么形状的?还有不同看法吗?这两个面的位置是怎样的?(可结合拍手理解“相对”)。
(还可以出示预先准备好的纸盒让学生直观感受长方体的一种特殊情况,一般来说,长方体的每个面是长方形,特殊情况也可能有两个相对的面是正方形。)。
相对的面形状相同,大小一样,可以用这四个字(出示:完全相同)来代替。(电脑演示相对的面完全相同这个特点)。
(2)棱的特点。
长方体有多少条棱呢?谁能给大家介绍一种很快的数出这12条棱的方法?
如果有学生是分组来数的,可以结合长方体铁丝框架数一数。想一想:每组有几条棱?每组4条棱的位置是怎样的?相对的棱有什么特点?(长度相等)(电脑显示棱的特点)。
(3)顶点的个数。
长方体有几个顶点?你是怎样迅速数出来的?
(4)概括长方体的特征。
**让学生看着自己的长方体纸盒说说长方体的面、棱、顶点各有什么特征。
**小结:长方体是由6个长方形围成的立体图形。它有12条棱,8个顶点。一个长方体的面可以分为3对,相对的面完全相同;长方体的棱可以分为3组,每组4条,相对的棱长度相等。
4、学习长、宽、高。
(1)问:相交于同一顶点的3条棱的长度都相等吗?
指出:长方体相交于同一个顶点的这三条棱的长度,分别叫做长方体的长、宽、高。通常把水平方向的两条棱分别叫做长和宽,把竖直方向的一条棱叫做高。(师边讲边标注)。
(2)学生选择一个长方体实物,量出它的长、宽、高。
5、认识正方体的特征。
(2)学生交流后,让他们小小组去探究。
(3)全班交流。
6、讨论长方体和正方体的关系。
(1)观察比较:长方体和正方体有哪些相同点?有哪些不同点?
明确:正方体是一种特殊的长方体。由于正方体的12条棱长度都相等,所以它的棱的长度不分长、宽、高了,就叫做棱长。
(2)选择一个正方体实物,量出它的棱长。
7、小结:今天我们一起来研究了长方体和正方体的特征,请同学们打开课本看第10—11页的内容。
1、练习一第1题。
看图说出每个长方体的长、宽、高各是多少。
结合第3个图形再说说这个长方体的面的形状有什么特别之处。
2、练习一第2题。让学生说一说。
3、练习一第3题。让学生仔细观察后回答各问题,并说说怎么看出来的。
明确:这个长方体前后的两个面是正方形,其余的4个面是完全相同的长方形。
4、练习一第4题。
先让学生判断摆出的这几个几何体分别是长方体还是正方体,再让学生互相指一指每个几何体中长、宽、高(或棱长)的位置,说说它们分别是多少厘米。
5、练习一第5题。
学生独立完成后交流。
通过这节课的学习,你有什么收获?
师:这儿有一个关于长方体特征的顺口溜。大家可以轻声读读。
出示:
长方体立体形,8顶6面十二棱;
棱分长、宽、高,每组四条要记好;
6个面对着放,对应面都一样。
在家里找一个自己喜欢的长方体玩具或物体,仔细观察一下它的面、棱、顶点;或是找一些材料自己做一个长方体并涂上或画上喜欢的图案。
教学后记:
第二课时长方体与正方体的展开图。
教学内容:p3例3、“试一试”“练一练”、练习一第6—7题。
教学目标:
1、使学生通过观察实物、动手操作等活动认识长方体、正方体的展开图,进一步加深对长方体和正方体特征的认识。
2、使学生在活动中通过建立图形的表象的过程,进一步积累空间与图形的学习经验,增强空间观念。
教学资源:学生每人准备正方体、长方体纸盒各一个、剪刀。
学生按小小组分别准备教科书14页思考题中所需的若干张硬纸(每种6张)教学过程:
1、说说长方体和正方体的特征。
2、师:这节课,我们要继续研究有关长方体和正方体的知识。
1、让学生看教科书3页,像例3那样,将有关的棱用红线描出,并按照例题所示的步骤进行操作,得到正方体的展开图。
2、把展开图再复原成立体图,再进一步展开、复原,让学生从展开图中找到3组相对的面。
3、让学生独立一剪,并在小组里交流自己得到的展开图,在交流中认识不同的正方体展开图,并思考展开图中的各个面与原来各个面的关系。
4、学生独立完成“试一试”。
拿一个长方体纸盒,沿着一些棱剪开,看看它的展开图,先从自己的展开图中找出长方体的3组相对的面,然后在其他同学的不同的展开图中找。最后让学生观察相对的面在不同的展开图上的分布情况,发现其中的规律。
4、“练一练”
第1题让学生在观察展开图的基础上,先在图中标注下面、后面、和左面,并说明自己的理由。然后将展开图复原成立体图来检验。
第2题。
(1)出示各展开图,引导学生先想像把展开图复原成立体图的过程,再判断。
(2)把教科书117页的图形剪下来试着折一折从而验证自己先前的判断是否正确。
1、练习一第6题。
让学生在仔细观察展开图的基础上作出判断。对于不能围成长方体的图形要说明理由,最后再进行操作验证。
2、先让学生独立思考并进行选择,再通过交流让学生说明选择的根据。
让学生拿出准备好的硬纸,先启发学生思考:要围成一个长方体或正方体,至少要用几张硬纸片?这几张硬纸片的形状和大小有什么关系?再让学生操作。然后说说有没有找到什么规律。
通过学习,你有什么收获?想提醒大家注意什么?
六年级数学变化的量教案篇十二
1、认识钟面和时间单位时、分,建立时分的时间观念,并学会时间的两种写法;知道1时=60分。
2、引导学生初步建立时间观念,教育学生遵守时间,珍惜时间,做时间的小主人。
3、让学生感悟到数学知识的魁力。
《数学课程标准》指出“数学活动必须建立在学生的认知发展水平和已有的知识经验基础之上”。依据这一理念,本设计侧重从以下两个方面开展数学学习活动:
1、利用学生已有经验,让学生在情景中生疑引探。
《课标》中”已有的知识经验,生活经验和方法经验等。本课利用学生已认识了整钟点,生活中对时、分的无意识感知,让学生在非整时的认识产生疑问:“要怎么样认读呢?”在教学时、分的关系时产生了“为什么1时=60分呢?”使学生产生内需,萌发探索的动机,从而诱导学生主动探索,体验成功。
2、遵循学生的认知特点,让学生体验成功的快乐。
时、分的进率及正确认读钟面上的几时几分是本课的重点,也是难点,若采用传统的教学方法势必叵杀学生的积极性,因此在这一环节我特地安排了“闯关夺宝”活动,让学生自主进行探究与合作交流,从而激发学生的思维,调动每一位学生的学习主动性,使他们真正成为学习的主人,让他们感受到成功的喜悦及学习数学的快乐。
3、增添童话色彩。
低个级学生都是比较活泼、可爱型的,因此问题情境的设置应注意童趣化,如“小白兔闯关夺宝”、“山羊伯伯的一天”等。真正做到让学生在玩中学、乐中悟,让学生在轻松、愉快的学习氛围中快乐成长。
时、分的认识。
小白兔和妈妈一起逛钟店……。
(出示钟店画面)。
1、师:时钟有什么作用,你想把它带回家呀!
2、小结:
要表示时间,就要用到时间单位“时、分”。
(板书:时、分)。
2、师根据学生回答板书:a、有两根针;
b、有12个数字;
c、有大格,有小格。
3、学生自己小结。
1、师:看来钟面上的知识还真不少,那把闹钟带回家,不会看也没用啊!
2、让同学说说平时在生活中是如何看钟的。
3、点出时间的两种写法。
4、引出时间的两种写法。
5、感知1分钟。
师:既然大家都会看时间,那闯关肯定是没问题,有没有信心呢?
第一关:帮时钟爷爷念念数。
1、出示钟面模型。
2、要求先读一读,再把它们写下来。
3、小组讨论,并推荐代表闯关。
第二关:给可爱的小闹钟找伙伴。
1、出示图片。
2、小组讨论后反馈。
第三关:山羊伯伯的一天。
1、刚才我们经历了一分钟,那山羊伯伯的一天里有好几个一分钟,它又是怎么安排的呢?我们一起来看一看。
2、出示山羊伯伯的一天。
3、全班齐读每一个时刻,小组讨论后完成表格的时间填写。
4、小组反馈。
师宣布闯关成功,并出示奖品。
由学生自主完成,并对学生进行珍惜时间的思想教育。
六年级数学变化的量教案篇十三
1、通过练习,进一步巩固复式条形统计图与复式折线统计图的知识。
2、从统计图中获取尽可能多的信息,体会数据的作用。3、进一步学习制作复试折线统计图,培养学生动手操作能力,分析能力和合作能力。教学重点:从统计表里收集信息,并能用这些信息分析问题。
如何根据信息绘制统计图。
一、基础练习,全班交流。
1、练功房。
基础练习,了解统计图的种类。分辨什么数据用什么统计图描述更清楚更直观。
2、智慧树。
(1)这是什么统计图?
(2)分析图中的`数据,回答问题。
(3)第3题,你能知道哪些信息?
3、实践大本营。
提高练习。
让学生选择一题来绘制统计图。
(1)绘制统计图需要哪些数据?
(2)绘制统计图你需要注意什么?
学生独立完成后,集体订正。
二、变式练习题。
课件出示练习题。
学生看题,先集体分析题目,一起探讨数学问题。
1、这是什么统计图?
2、你能解决这些问题吗?
3、你知道了哪些信息?
4、你还有什么疑问?
教学小结:
通过这次练习,你有什么收获?通过练习,进一步巩固结复式统计图的理解与掌握。
通过自主交流与探索,让学生自主选择。
六年级数学变化的量教案篇十四
第87页例1、例2,88页课堂活动第1、2题,练习二十二第1~4题。
1.在现实情境中初步认识负数和理解负数的意义,了解负数的产生与作用,感受负数使用带来的方便。
2.会正确地读、写正、负数,知道0既不是正数,也不是负数。
3.使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的意识。
负数的意义和负数的读法与写法。
理解0既不是正数,也不是负数。
多媒体课件。
教师讲授、合作交流。
一、复习导入。
提出问题:举例说明我们学过了哪些数?
教师小结:为了实际生活的需要,在数物体个数时,1、2、3……出现了自然数,物体一个也没有时用自然数0表示,当测量或计算有时不能得出整数,我们用分数或小数表示。
提出问题:我们学过的数中最小的数是谁?有没有比零还小的数呢?
二、创设情境、学习新知。
1.教学例1。
(1)出示:中央电视台天气预报的一个场面,主持人说:“哈尔滨零下6至3摄氏度,重庆6至8摄氏度……”
为什么阿姨说的零下6摄氏度,屏幕上打出的字幕就变成了-6℃呢?
这里有零下6℃、零上6℃,都记作6℃行吗?
你有什么简洁的方法来表示他们的不同呢?
教师小结:同学们的想法都很好。现在,国际数学界都是采用符号来区分,我们把比0摄氏度低的温度用带有“-”号的数来表示,例如把零下6℃记作-6℃,读作负6摄氏度;零上6℃记作+6℃,读作正6摄氏度或6摄氏度。
(2)巩固练习。
同学们,你能用刚才我们学过的'知识,用恰当的数来表示温度吗?试试看。
学生独立完成第87页下图的练习。
教师巡视,个别辅导,集体订正写得是否正确,并让学生齐读。
2.自主学习例2。(进一步认识正数和负数)。
教师:同学们,你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。
引导学生交流:珠穆朗玛峰比海平面高8844.43米。
引导学生交流:吐鲁番盆地比海平面低155米。
学生交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。吐鲁番盆地的海拔可以记作:-155米。(板书)。
教师追问:你是怎么想到用这种方法来记录的呢?
最后教师将数字改动成:海拔+8844.43米或8844.43米;海拔-155米。
教师小结:以海平面为界线,+8844.43米或8844.43米这样的数表示比海平面高8844.43米;-155米这样的数表示比海平低155米。
(2)巩固练习:教科书第88页试一试。
3.小组讨论,归纳正数和负数。
提出疑问:0到底归于哪一类?(如有学生提出更好)引导学生争论,各自发表意见。
小结:(结合图)我们从温度计上观察,以0℃为界限线,0℃以上的温度用正几表示,0℃以下的温度用负几表示。同样,以海平面为界线,高于海平面的高度我们用正几来表示,低于海平面我们用负几表示。0就像一条分界线,把正数和负数分开了,它谁都不属于。但对于正数和负数来说,它却必不可少。我们把像+6、3、+8844.43等这样的数叫做正数;像-6、-155等这样的数我们叫做负数;而0既不是正数,也不是负数。(板书)。
通常正号可以省略不写。负号可以省略不写吗?为什么?
最后,让学生看书勾划,并思考两个“……”还代表那些数?(让学生对正负数的理解更全面和深刻)。
三、运用新知,课堂作业。
1.课堂活动第1题。让学生先自己读读,并举例说说是什么意思?全班订正后,同桌间自选5个互相说说。
2.课堂活动第2题。同桌先讨论,然后反馈。
四、小结。
同学们,今天我们认识了负数。你有什么收获?
五、课堂作业。
练习二十二第1、4题。
家庭作业:练习二十二第2、3题。
板书设计:
负数的初步认识。
正数:20、22、14、+8844.43…。
0:既不是正数也不是负数。
负数:-2、-30、-10、-15、-155…。
六年级数学变化的量教案篇十五
教学内容:冀教版《数学》六年级上册第92、93页。
教学目标:
1、结合具体情境,经历运用圆的面积公式解决实际问题的过程。
2、能灵活运用圆的面积公式解决已知周长求面积的简单问题。
3、感受数学在解决问题中的价值,培养数学应用意识。
课前准备:一个蒙古包图片。
教学过程:
1、师生讨论引出蒙古包,教师贴出图片让学生观察。提出:你能想到哪些和数学有关的问题,给学生充分的发表不同问题的机会。
师:同学们,在草原上有一种非常特别的房子,你们知道叫什么吗?
生:蒙古包。
师:对,蒙古包。看,老师带来了一张蒙古包的图片。
图片贴在黑板上。
师:观察这个蒙古包,你都想到了哪些和数学有关的问题?
2、提出:要计算蒙古包的占地面积,怎么办?师生讨论,得出:测量直径不好测,可以测量出周长,再计算占地面积。教师给出周长数据。
师:如果要计算蒙古包的占地面积,怎么办?
生:测量出蒙古包的直径,就能计算出它的占地面积。
生:不好测量。
生:测量出周长。
师:对,周长容易测。草原上的人们也想到了这个办法,他们测量出蒙古包的周长是18.84米。
板书:周长18.84米。
1、提出:已知周长,怎样求蒙古包的占地面积?学生讨论,理清思路后,自主计算。
师:现在知道了蒙古包的周长,怎样求蒙古包的占地面积呢?同学们讨论一下。
学生讨论。
师:谁来说说已知圆的周长是多少,怎样求圆的面积?
生:先利用圆的周长公式求出半径,再利用圆的面积公式计算出面积。
学生说不完整,教师参与交流。
师:解题思路大家都清楚了,请同学们在本上算一算这个蒙古包的占地面积。
学生独立计算,教师巡视并指导。
生:我先计算出蒙古包的半径,列式2×3.14×r=25.12求出r=4,再计算蒙古包的占地面积3.14×42=50.24(平方米)。
学生说的同时,教师板书:
蒙古包的半径:
2×3.14×r=25.12。
r=25.12÷6.28。
r=4。
蒙古包的占地面积:
3.14×42=50.24(平方米)。
如果出现先算出直径再求面积的方法,教师首先予以肯定,然后提示。已知周长求面积,先直接求出半径,计算比较方便。
1、“练一练”第1、2题,蒙古包占地类似的问题,让学生自己读题,并解答。
师:我们解决了蒙古包的占地问题,下面,请看练一练第1题,自己读题,并解答。
学生独立完成,教师个别指导。
师:谁来说一说你的做法,这个蓄水池的占地面积是多少?
生:我先求出这个蓄水池的半径3.14×2×r=31.4求出r=5,再计算蓄水池的占地面积:3.14×52=78.5(平方米)。
师:看第2题,求花池的面积。自己解答。
交流时,请学习稍差的学生回答。
答案:3.14×2×r=18.84。
r=3。
3.14×32=28.26(平方米)。
2、练一练第3题,提示学生思考木桶铁箍长是底面的什么,再计算。师:请同学们读第3题,想一想,这个木桶铁箍的长是这个木桶底面的什么?再解答。.
学生完成后,指名汇报。答案:。
3.14×2×r=100.5。
r=16。
3.14×162=803.84(平方厘米)。
生:就是把树锯断后的圆面。
师:树木的周长相当于这个横截面的什么?
生:周长。
师:这个问题同学们课下解决。可以几个人一起测量,也可以自己完成测量,然后计算出那棵树的横截面面积。在我们的生活中,有很多类似的数学问题,可以用我们学到的知识来解决。只要你多观察,多动脑,就一定会越来越聪明。下面看问题讨论中的问题。自己读一读。
学生读题。
学生可能出现不同意见,都不做评价。
1、让学生阅读“问题讨论”的内容,启发学生按照聪聪的思路进行小组讨论和试算。
师:怎么研究这个问题呢,聪聪给我们提供了一个很好的思路:假设铁丝的长度。比如,铁丝长1米,2米或3米,4米等,实际算一算,再看看结果是什么。好,现在同学们小组合作,按聪聪的办法算一算。
学生合作研究,教师参与指导。
学生可能出现不同的假设。如:(1)假设铁丝长1米。
正方形的边长:1÷4=0.25=25(厘米)。
正方形面积:25×25=625(平方厘米)。
圆半径:100÷2÷3.14≈16(厘米)。
圆面积:3.14×162≈803(平方厘米)。
结论:圆的面积大。
(2)假设铁丝长2米。
正方形的边长:2÷4=0.5=50(厘米)。
正方形面积:50×50=2500(平方厘米)。
圆半径:200÷2÷3.14≈32(厘米)。
圆面积:3.14×322≈3215(平方厘米)。
结论:圆的面积大。
(3)假设铁丝长4米。
正方形的边长:4÷4=1(米)。
正方形面积:1×1=1(平方米)。
圆半径:4÷2÷3.14≈0.64(米)。
圆面积:3.14×0.642≈1.29(平方米)。
结论:圆的面积大。
3、提出:长方形和圆周长相等时,哪一个图形面积大?师生讨论,使学生了解,圆的面积大。
师:我们以前研究过长方形和正方形周长相等时,正方形的面积大,今天我们又知道了正方形和圆周长相等时,圆的面积大,现在,老师有一个问题,长方形和圆的周长相等时,哪一个图形的面积大?说出判断理由。
生:肯定圆的面积大。假设长方形、正方形、圆周长都相等。圆面积大于正方形,正方形面积大于长方形,那圆肯定大于长方形。学生说不完整,教师说明。
六年级数学变化的量教案篇十六
1、通过该活动让学生了解椭圆式田径跑道的结构,学会确定跑道起跑线的方法。
2、让学生切实体会到数学在体育等领域的广泛应用。
如何确定每一条跑道的起跑点。
确定每一条跑道的起跑点。
一、提出研究问题。(出示运动场运动员图片)。
1、小组讨论:田径场400m跑道,为什么运动员要站在不同的起跑线上?(终点相同,但每条跑道的长度不同,如果在同一条跑道上,外圈的同学跑的距离长,所以外圈跑道的起跑线位置应该往前移。)。
2、各条跑道的起跑线应该向差多少米?
二、收集数据。
1、看课本75页了解400m跑道的结果以及各部分的数据。
2、出示图片、投影片让学生明确数据是通过测量获取的。
直跑道的长度是85.96m,第一条半圆形跑道的直径为72.6m,每一条跑道宽1.25m。(半圆形跑道的直径是如何规定的,以及跑道的宽在这里可以忽略不计)。
三、分析数据。
学生对于获取的数据进行整理,通过讨论明确一下信息:
1、两个半圆形跑道合在一起就是一个圆。
2、各条跑道直道长度相同。
3、每圈跑道的长度等于两个半圆形跑道合成的圆的周长加上两个直道的长度。
四、得出结论。
1、看书p76页最后一图:
2、学生分别计算各条跑道的半圆形跑道的.直径、两个半圆形跑道的周长以及跑道的全长。从而计算出相邻跑道长度之差,确定每一条跑道的起跑线。(由于每一条跑道宽1.25m,所以相邻两条跑道,外圈跑道的直径等于里圈跑道的直径加2.5m)。
3、怎样不用计算出每条跑道的长度,就知道它们相差多少米?(两条相邻跑道之间的差是2.5)。
五、课外延伸。
200m跑道如何确定起跑线?
【本文地址:http://www.xuefen.com.cn/zuowen/17313441.html】