读后感是读书后的一种反应,通过写作表达自己的阅读体验和心得。写好一篇读后感的关键在于观察细致入微、思考深入透彻和表达准确流畅。以下是小编为大家整理的一些精选读后感范文,希望能给大家提供一些写作思路和参考。
人工智能的未来读后感篇一
你不得不承认,人生是一个不断的巧合。如果不是因为去年参加网络上的人工智能课程,我不会了解那么多新鲜的知识。在bigdata课程里,看到了介绍hierarchicaltemporalmemory,搜索在y**tube上看了jeffhawkins的视频,原来他就是那本被很多人谈及的《onintelligence》一书的作者。有一天发现,发现那本绝版了很久的,也被很多人提及的书《人工智能的未来》居然到货了。这才发现原来是同一本书,真是如获至宝!
书很薄,字体很大,很快就翻完了。说是很快,那是因为读来很爽,作者关于智能的解释实在是深得我心。我曾经有过一些关于记忆的思考,记忆片段是如何关联的,在书里都解释得清清楚楚。有些概念在geb里也提到过,比如我的大脑里一定有根神经是关于楼下那只猫的。其实对每一个你认识的人,每一个单词字母...关于这个世界的每一个物体,在你的大脑里都有个抽象的概念,有一根神经对应着,这想来很不可思议。原来,柏拉图的理想国是很有道理的。
作者认为,大脑新皮层只是在原有古脑的基础上加上了一个记忆系统,于是就带来了所谓的智能。而智能并不需要计算,而只是直接提取现成答案。所以说要想成功,需要10万小时的努力是有道理的,你需要有很多的答案,才能提取。有时候我们说,一个人很聪明,很灵活,其实是见多识广的缘故。因为见得多了,你的知识就很丰富,各种关联就很多,要找到答案就很容易。
记忆来自感知,所以跟一个人的经历有关。你之所以是你,是你的经历造就了你的记忆,而记忆是你行为的基础。我们制造的智能机器,其感知跟我们不同,其智能形式必然不同,或者说其思考和行为方式不同。就像有些人,她的行为你不可理喻,实在是因为经历不同,记忆不同,所以世界模型也不同。
作者说,智能并不需要外在的行为。比如,你只是阅读这上面的文字,虽然你不动声色,但是我知道你已经懂了。
人工智能的未来读后感篇二
趁着alphago掀起的热潮,这周看完了《人工智能的未来》,一本谈论人工智能关于计算机技术原理、神经学、哲学的书籍。
关于人工智能的定义,技术上和哲学上都颇具争议。
图灵测试提供了一种技术的、可衡量的手段;但在哲学上,人工智能永远回避不了关于意识或自由意志的问题。
关于自由意志,叔本华提出:“你可以做你想做的,但在生活中任何给定的时刻,你只能想做一件确定的事情,除此之外,绝对没有任何其它事情。”这种决定论的思想,和我们认为我们可以选择我所爱、做我所选大相径庭。
而作者认为,当机器说出它们的感受和感知经验,而我们相信它们所说的是真的时,它们就真正成了有意识的人。
作者通过思维模式识别理论、隐马尔可夫层级模型、遗传算法等人工智能技术,阐述了人工职能领域的进展,同时基于信息科技遵循指数增长的规律,提出了加速回报定律,乐观预计智能机器人在未来几十年内会出现。
从最初的人工耳蜗、人工眼球到人工大脑的扩展,非生物系统的引入(特别是人工大脑技术),是否会产生另外的我,而我们大部分思想(甚至全部)存在云端,是否就可以得到“永生”。
数学家斯坦·乌拉姆说过:“技术的加速发展和对人类生活模式的改变的进展在朝着人类历史上某种类似奇点的方向发展,在这个奇点之后,我们现在熟知的社会将不复存在”。
人工智能的未来读后感篇三
人工智能的未来已经成为了时下科技领域的热门话题。在近年来,人工智能发展迅猛,它的应用不断地出现在各个领域中。而我也因此对人工智能产生了浓厚的兴趣。在学习和了解人工智能的过程中,我深深感受到人工智能对于未来的发展会产生怎样的深远影响,故有了下文的发言。
[第一段]。
人工智能在未来的发展及应用将会越来越广泛,也越来越普及。通过人工智能我们可以更加高效地解决问题,也能够更好的满足人们的需求。而人工智能也将会深度地融合到我们的日常生活中。例如,人工智能能够根据我们当天的日程安排,推荐最合适的路径和交通工具,让我们在出门前就可以规划好最合适的路线。这对我们的日常生活有着巨大的帮助。
[第二段]。
我认为,人工智能的未来还是会有很多挑战和难点需要攻克。例如,机器学习领域还面临着很多问题,需要更加深入的研究。另外,数据的质量和可靠性也是人工智能的一个重要挑战。只有通过对大量数据进行分析整理、建立数据模型并进行机器学习,才能够让人工智能更加合理、更加智能的工作。
[第三段]。
人工智能将会对各行各业带来深刻的变革。例如,医疗领域可以借助人工智能对患者病情进行精准预测,大大提高医疗水平。在产业上也有很多运用。例如,金融领域可以利用人工智能来实时进行交易决策,减小风险和成本等。
[第四段]。
虽然人工智能的未来发展充满了挑战和困难,但我们可以看到,人工智能的好处也是显而易见的。它能够帮助我们解决很多现实问题,在各个领域都有不同的应用前景。由于在各个领域各有所长,我们还可以进行跨领域的应用,使得人工智能能够更加灵活地应用于工业以及我们的日常生活中。
[第五段]。
虽然人工智能的应用前景非常广阔,但是我们也应当认识到,它并不能完全替代人类的工作,现有的技术仍然需要人类去监督和管理。因此,人工智能的未来需要我们保持高度的警惕和观察。在未来的应用过程中,我们也应当严格把控人工智能的发展,借助技术发展的优点,实现良性的人工智能应用,为人类社会带来更加积极的效应。
[结语]。
总之,人工智能的未来不仅有无限的潜力和机会,也存在着巨大的挑战和困难,我们有必要深入研究,不断改善和完善技术。更加重要的是要以人为本,发挥人类的主体作用,防止人工智能失控带来不可预知的后果。只有这样,我们才能够让人工智能更好地为我们的生活和产业服务,并为人类的发展做出贡献。
人工智能的未来读后感篇四
因为我本人硕士毕业论文用到的就是bp神经网络,所以我也是对人工智能的底层逻辑大体上了解一些皮毛。我个人觉得人工智能就是机器或者系统可以像人一样进行学习经验、思考判断,通过输入层,中间层,输出层来最终做出决策。而其中中间层是一个设定好规则的黑箱,里面具体运算方式其实很复杂,就像人类大脑,思考了哪些、信号怎么传递的,其实一般人也是不知道的,但就是能做出决策来。
这本书介绍了人工智能的历史,基本原理,需要关注的地方,对人类社会的挑战,以及各国做出的策略。
但是我认为本书最大的作用是让我对于人工智能开拓了视野,原来只是去考虑机器怎么思考,是有形的机器还是无形的系统。实际上人工智能的安全问题(战争机器人的出现、阿西莫夫机器人三定律),伦理问题(是否要给机器人以人的地位),道德问题(由于设计人员或多或少的原因导致机器识别黑人为黑猩猩这种道德问题),法律问题(无人骑车撞人事件是处罚研发人还是拥有者还是机器本身),对人类工作的挑战,可能会导致大多数人失业等问题。
我觉得对于人工智能的时代,目前来看还是炒概念,不可否认随着阿尔法狗的出现代表着新时代的人工智能算法层级的一大进步,但是人工智能如果想进入到目前各行各业还是要走很长时间的。但是很多专业领域可以操作使用,尤其在仅仅靠系统判断的领域,比如预测,投资等。因为真正需要作业的工作,不仅仅要系统智能还要硬件上可以配套。但是人工智能的时代可期,十年后应该可以渗透到人的身边。还有上面谈的法律伦理道德等问题。这些问题的抛出者一般是政府方面,我认为如果对于新兴事物政府要是全想到了社会的前面就不会有什么创新了。等发展起来再说,就是我的想法,当然政府需要制定个像机器人三定律的类似宪法底线的东西就行了。就像说无法判断无人车撞人是谁的错,有人驾驶的车能判断出来谁的责任,但是该撞还是撞了,汽车出现了100多年了,规则还是在修改和变动的。还有机器取代人工作的问题,很多人找不到工作的事情,这是肯定的,就像以前一艘不到1万吨的船上要有几十上百人,现在20万吨的船都不需要超过20人。那些船员干啥去了?时代会进步的,有些岗位自然会被取代,但是人作为可以适应不同环境的智慧生物,肯定可以适应新时代的。
总之科技的进步是无人可以阻挡的,为了不被时代的车轮压死就只能推着时代走。
人工智能的未来读后感篇五
以人工智能为主要研究方向的计算机科学领域,近几年来发展迅猛,并对人类生活产生着日益深远的影响。人工智能技术的不断进步已经让许多传统行业发生了颠覆性变革,并为人类的生活和发展带来了诸多机遇与挑战。笔者在深入学习了人工智能相关的理论与技术后,对于人工智能的未来发展和可能带来的影响,产生了一些体会和思考。本文将从五个方面进行探讨,以期为读者提供一些有益的参考。
随着人工智能技术的逐步成熟,越来越多的人们开始意识到,人工智能有可能重新定义人类文明的未来。在计算机视觉、自然语言处理、机器学习等领域,人工智能技术已经取得了一系列极为显著的成果,如深度学习、神经网络、机器翻译、人脸识别、无人驾驶等等。这些技术的进步不仅大大地提高了人类的效率和生活质量,更逐渐实现了人机交互和智能决策,这标志着人工智能已经进入了一个新的发展阶段。
人工智能的优势在于它可以高速地处理和分析海量的数据,并在其基础上对情境进行智能判断和决策。在很多任务和领域,人工智能系统已经表现出了超越人类智慧的能力。然而,人工智能在一些方面还存在着一定的局限,如对未知情境的适应性不足,判断的模糊性较大等。这也限制了人工智能应用的范围和水平,并暗示着对人工智能系统的研究和优化仍然在继续。
人工智能技术在人机交互和智能决策方面具有独特的优势,也给人造成了一定程度上的压力和冲击。与此同时,人工智能的应用也需要更多地考虑人类的需求和利益。要实现人机互动和合作,需要更高级的人工智能技术和更完善的应用场景。同时,还需要进一步探讨人机互动和合作的道德和法律问题,以确保人工智能的发展能够更好地服务于人类的进步和发展。
未来,人工智能将进一步发展成为人类智慧的重要组成部分,并为人类的生活和社会带来一系列变革。笔者认为,人工智能领域未来的发展趋势包括:
1.智能化和自动化应用的加速发展。
2.人机协同的智能应用成为主流。
3.更加普惠的人工智能服务得以普及和推广。
4.新一代人工智能系统将兼顾自我学习和自我进化的功能。
5.人工智能在跨学科之间的整合和应用将进一步深化。
人工智能的面临的挑战包括政策法规、道德准则、数据隐私、资源调度等多个方面。未来,人工智能将更多地涉及到金融、医疗、教育等领域,这将给人类带来巨大的机遇和挑战。如何将人工智能系统更好地服务于人类社会,如何平衡人工智能的发展与社会进步的要求,是人工智能未来面临的最重要的挑战。
综上所述,在人工智能的未来发展中,要注重人机协同的智能应用,平衡人工智能的发展与社会进步的标准,加强相关的政策法规和道德准则等。只有这样,人工智能才能更好地为人类社会的发展和进步作出贡献,走向更加美好和有益的未来。
人工智能的未来读后感篇六
机器人技术从本质上来说是一门多学科交叉的科学。例如自主导航的研究融合了物理学、电子学、力学和计算机科学的知识。对于交通行业来说,发展无人驾驶汽车是为了提高道路安全,改善交通管理,以及提高能源使用效率。然而随着技术的进步,未来自主导航的研究在其他领域也会起到重要作用。
就硬件来说,自主导航涉及高运算能力,测距法,传感技术(譬如:全球定位系统,激光测距仪,超声波,红外传感技术)和3d地图。从软件的角度看,自主导航涉及图像识别、色彩、特征、形状、障碍物信息收集以及为判断制定提供持续的统计分析。而这种技术未来在医疗、制造、能源、农业、环境或空间探索等领域都将起到主要作用。
在医疗领域,人工智能和图像处理会成为医疗诊断和外科手术的关键工具。计算算法能帮助识别受损的组织器官,并预测在一个生命周期中可能会出现什么情况。机器在处理大量的信息时表现会更好,在健康医疗领域提供多一种诊断方法可能会成为“实际上的标准”。随着机器人的敏捷度和准确性的'提高,及其在高难度手术中可以辅助外科医生,未来手术治疗的效果将变得更好。
在制造业,图像处理技术将会重新构造现有的生产方案。随着计算机视觉的敏捷度变得更高,有望诞生新的生产模式和组装线/拆卸线。这些新的模式很可能补足工厂的劳动力,对于工厂的工作内容,机器人更适合从事生产类的工作,而人类更适合做质量检验、管理、产品设计和创新。
在能源领域,计算机技术也能发挥很多作用。随着可再生能源成为现实,我们同样需要在全球范围内为发电/能源转换和配电网建设基础设施。这里应用的概念是分散化(从更多不同的来源收集更多不同种类的能源)。我们将应用人工智能,模式识别和决策算法控制能量流,并解决发电商和用户之间信息不对等的问题。这种高效的能源管理方式(智能电网)有可能扩大能源的来源,最终降低发电/能源转换/用电的成本。
农业是另一个受人工智能影响很大的领域。随着世界人口的不断增加,我们需要寻找新的食物生产方式。举个例子,自动驾驶车辆的技术可以转化为能应用在农业领域的自动行走车。人工智能和图像处理技术能帮助实现拖拉机的自动控制,令其不间歇地在农场根据农作物生产情况执行灌溉、施肥、投放农药等任务。播种和灌溉将会成为自动农用机器的日常工作,同理,无人飞行器(uavs)将在未来应用于农业检查、处理和制图。这些技术进步将促使农业的成本下降,从而降低粮食价格。
在航天机器人方面,太空探索的自动化程度将提高,这将使轨道机器人得以协助宇航员完成更多任务,譬如发射卫星,开启/关闭舱门或设备清洗等。
同样,机器人也可能成为废料收集和回收利用的重要工具。应用机器人和人工智能技术将使公园、甚至是海洋或其他区域的清洁成为现实,这样的功能会对环境产生积极影响。
看到这里,大家应该知道,当我们进行自主导航的研究时,受益的不仅是自动驾驶汽车,实际上,也在推动机器人和人工智能技术延伸到人类生活的其他方面。
人工智能的未来读后感篇七
截至目前,已出现过3次ai热潮:第一次因为图灵测试,第二次因为语言识别,第三次因为深度学习与大数据发展与结合。
目前正处第三次热潮中,最大特点是:
ai在语音识别、机器视觉、数据挖掘等多个领域走进了业界的真实应用场景,与商业模式紧密结合,开始在产业界发挥出真正的价值。
人工智能是人类对科技无限探索和发展的智慧成果,将带领人类社会进入一个相对富足的丰产时代。
ai作为工具,对生产效率的大幅改进,对人类劳动的部分替代,对生活方式的根本变革,而必然触及社会、经济、政治、文学、艺术等人类生活的方方面面,将为我们创造巨大的价值,帮助我们降低甚至消除贫穷和饥饿、获得更多时间和自由是人类全新的一次大发现、大变革、大融合、大发展的开端。
在不久的未来,ai将取代人类50%左右的工作,ai会取代工厂的工人、建筑工人、操作员、分析师、会计师,司机、助理、仲介等,甚至部分医师、律师及老师的专业工作。
反之,那些最能体现人的综合素质的技能,例如,人对于复杂系统的综合分析、决策能力,对于艺术和文化的审美能力和创造性思维,由生活经验及文化熏陶产生的直觉、常识等。基于人自身的情感(爱、恨、热情、冷漠等)与他人互动的能力……这些是人工智能时代最有价值,最值得培养、学习的技能。
我们不一定要做时代的弄潮儿,但是,随着时代、科技的发展,我们必须要赶上时代的步伐,不能被时代所抛弃。
ai只是一种新的工具,不会取代人类,只会丰富人类生活。未来是一个人类和机器共存,协作完成各类工作的全新时代。
我们无需担忧和恐惧这个时代的到来,我们所要做的,应当是尽早认清ai与人类的关系,了解变革的规律,尽早制定更能适应新时代需求的科研战略、经济发展布局、社会保障体系、教育制度等,以便更好地迎接这个时代的到来。
人工智能的未来读后感篇八
所谓人工智能,是研发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用的一门新的技术科学。它是计算机科学的一个分支,企图凭借了解智能的实质来生产出一个类似于人类智能对事情做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等方面。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科研成果,将会是人类智慧的体现。人工智能可以对人的意识、思维的信息过程的模拟。人工智能指的是虽然不是人的智能,但能像人那样思考、也可能通过发展演变成超过人的智能。
人工智能是研究使计算机来模拟人的某些思维过程和智能行为,比如学习、推理、思考、规划等方式,主要包括通过计算机实现智能的原理或者制造类似于人脑智能的计算机,使计算机能实现更高层次的应用。人工智能涉及计算机科学、心理学、哲学和语言学等多门学科,其范围已远远超出了计算机科学的范畴,成为一门综合学科。人工智能与思维科学的关系是实践和理论的关系,人工智能是处于思维科学的技术应用层次,是它的一个应用分支。从思维观点看,人工智能不仅限于逻辑思维,要考虑形象、灵感思维才能促进人工智能的突破性的发展。数学常被认为是多种学科的基础科学,数学也进入语言、思维领域,人工智能学科也必须借用数学工具。数学进入人工智能学科,它们将互相促进而更快地发展。数学给予人工智能学科计算方法和逻辑思维,人工智能学科给数学计算和发展提供了可靠的未来。
人工智能就其本质而言,是对人的思维的信息过程的模拟。对于人的思维模拟可以从两条道路进行:一是结构模拟,仿照人脑的结构机制,制造出类似人脑一样思考方式的机器;二是功能模拟,暂时撇开人脑的内部结构,而从其功能过程进行模拟思考。现代电子计算机的产生便是对人脑思维功能的模拟,是在对人脑思维的信息过程的模拟过程中产生的。人工智能的起源最早要从1955年的一个叫做学习机讨论会的小会开始,然后就是公认的1956年达特茅斯会议,这是人工智能史上最重要的里程碑,被公认为人工智能之开始。达特茅斯会议中的讨论预示了人工智能随后几十年关于“结构与功能”两个阶级,两条路线的斗争。他们讨论着一个主题:用机器来模仿人类学习以及其他方面的智能。他们公布了的“逻辑理论家”是当时唯一可以工作的人工智能软件,引起了会议代表极大的兴趣与关注。会议的召集人麦卡锡给这个活动起了个别出心裁的名字:人工智能夏季研讨会。这是人工智能一词正式在学术会议中亮相,而1956年也就成为了人工智能元年。虽然之后一段时间内对人工智能并没有大规模投入资金和大量科研人员,但是毋庸置疑的打开了新发展的大门,为后来的道路提供了方向和目标。
数学哲学有三大派:逻辑主义、形式主义以及直觉主义。自动定理证明起源于逻辑,初衷就是把逻辑演算自动化。而人工智能中的符号派的思想源头和理论基础就是定理证明,不懂定理证明就没法深入了解符号派。虽然归结的简单性引起了人们的重视,但它也有组合问题,在人类面对如何驾驭归结没有拥有理论和经验的共识之前,整个邻域已经改朝换代,至于问题是否解决,已经无人关心。定理的证明过程,都是一个归纳的过程,无论是逻辑派还是形式派。自动定理证明研究这个数学过程的全自动化。但毕竟是作为人的辅助工具,有时候证明过程是人机互动的,尽管整个过程可能是机器主导的,但是人也可以在证明过程中给予干预。不过有的机器证明的定理本身并不长,而有的则太长,人根本看不过来。对于全自动的定理证明,验证过程更加容易机械化,而计算机辅助证明可能各种各样,很难有一个统一的过程。自动定理证明依靠的工具是计算机,而正是计算模糊了理性判断和经验的边界。我们可以认为:计算是知识演化的基础,也是知识大众化的工具。人工智能尤其是定理证明,都是开始把大部分的简单问题解决了,之后就一直很难,进展缓慢,很少有新的发展和突破。深度学习领域近来的进步更多得益于硬件的发展和进步,而定理证明即使是硬件再发达也很难再到达新的高度。定理证明是极端的符号派,所有符号派的人工智能技术的基础都是定理证明。
它是一种凭借大量节点相互连接构成的运算模型,每个节点都是一个特定的函数。人工神经网络与其它传统方法相结合,将推动人工智能和信息处理技术不断发展。尽管它在20世纪80年代的光芒被后来的互联网掩盖,但互联网所产生的大量数据也给了神经网络更大的机会,人工智能学者也逐渐成为公共知识分子。神经网咯由一层层的“神经元”构成。层数越多,学习就越深,所谓深度学习就是用很多的层数构成的神经网络达到能让机器学习的功能。网络越深,表达能力越强,但伴随而来的训练复杂程度也就越大。
“机定胜人,人定胜天”,这是对计算机在棋类中的概括。下棋一直是人类智能的挑战和表现,自然而然就成为了科学家们研发人工智能的目的和标志之一。在1951年,第一款跳棋程序在曼切斯特诞生。1956年,第二个跳棋程序诞生,它的特点是自学习,这也是最早的机器学习程序之一。而到了2007年,计算机翻过了跳棋这一页。然后到了1996年,出现了名为“深蓝”的项目,对着国际象棋发起冲锋。到了1997年5月11日,“深蓝”成为第一位战胜当时世界冠军的机器。在此之后人们更多的把机器作为教练,有利于人类棋手的进步。在此之后,计算机开始面对更具挑战的围棋。由于围棋的性质和变化多端,使其被视为计算机难以翻越的大山以及人类捍卫在棋类方面主导地位的堡垒,但是alphago的出现成为了里程碑。它使用了强化学习的方式使得机器和自己下棋对弈学习,最后打出了战胜李世石的成名之战。
自然语言处理是计算机科学领域与人工智能领域中的一个重要方向。它研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法。自然语言处理是计算机科学,人工智能,语言学关注计算机和人类以及自然语言之间的相互作用的领域,其目的在于研发出有效实现自然语言通信的计算机系统。自然语言复杂而多样,如何将这些知识较完整地加以收集和整理出来,又如何找到合适的形式,将它们存入计算机系统中去,以及如何有效地利用它们来消除歧义,都是工作量极大且十分困难的工作。这不是少数人短时期内可以完成的,还有待长期的、系统的工作来解决这些问题。从简单的翻译,到“计算语言学”概念的第一次提出,再到对句法分析、查找资料、语音记录和翻译、与人进行语言交流。
遗传算法是根据大自然中生物体进化规律而设计提出的。从生物学里找计算的模型一直是人工智能的研究算法之一。一般有两条发展线路:一是神经网络演化的深度学习;另一个是细胞自动机经过遗传算法和编程演化变成的强化学习。遗传算法有着“优胜劣汰”的含义,遗传编程数学性质更加复杂。强化学习是机器学习的范式和方法论之一,用于描述和解决智能体在与环境的交互过程中通过学习策略以达成回报最大化或实现特定目标的问题,即学习系统想最大化环境对随着人工智能的快速发展,随之而来的是与哲学的冲突。人工智能发展中的漏洞和不完善经常遇到哲学家的批判。哲学家很喜欢对人工智能说三道四,原因可能是人工智能关心的问题,例如意识、生命、思维、自由意志等概念,都是哲学家自认固有的地盘。但我们难以要求哲学家能够很了解科学家们讨论的有所体会。“人是机器吗”这是一个古老的哲学问题。但如果我们把“智能”当作人类特有的性质,那么“人是机器吗”就转变为了“机器有智能吗”。开始我们可能不会去在意这个问题,但随着人工智能的发展,我们的思维正在逐步被改变。如果是纯逻辑问题,最重要的发明图灵机可能和人没多大区别,但在非逻辑问题上两者就有了差异性,这也是理性和感性之间的矛盾。
人工智能的未来读后感篇九
时光易逝,白云苍狗,我们的世界无时无刻不在变化之中。科技是第一生产力,从第一次科技革命到第二次科技革命,再到现在的信息革命,科学技术曾给人类带来的无穷的变化。当谷歌人工智能“阿尔法围棋”人机围棋大战”中以4:1击败韩国著名棋手李世石九段后,人类不仅在感叹机器智能领域取得又一个里程碑式的胜利,也感叹一个新的时代—智能时代的到来。机器依靠大数据和智能算法“赢了”人类的大脑。"我认为任何一种对人类心灵的冲击都比不过一个发明家亲眼见证人造大脑变为现实。"-尼古拉特斯拉曾这么说。每一次科技革命,都会带来翻天覆地的变化,人工智能作为21世纪科技发展的最新成就和智能革命,深刻揭示了科技发展为人类社会带来的巨大影响,大数据与智能时代已经到来。
人工智能即ai,是计算机科学的一个分支,可以对人的意识、思维的信息过程进行模拟,与人类智能相似,人工智能的产品上到宇航太空,下到深海潜艇,大若巨人,小若米粒,已经在不断延伸到各行各业中,有些早已深入日常家庭生活中。本书是著名媒体人杨澜的第一部跨界作品,杨澜以媒体人的身份,深入人工智能的科技领域,带领团队走访美国、英国、日本、中国等国家和城市,用媒体人的人文视角记录了那些改变世界的人和事,探寻人工智能的发展历史和未来道路。
英国狄更斯曾说过“这是最好的时代,也是最坏的时代”。在全球智能时代下,ai改变着社会和经济,一方面改善人类生活,带来各行各业的便利,极大地提高社会资源的利用率,是社会精细化发展;另一方面机器抢到了人的饭碗,失业随之而来,创造了无隐私的社会,也带来伦理上的冲突等负面作用。杨澜在书中记录了走访著名学府和国际性知名大企业,领略人工智能在视觉识别、语音识别、机器人制造、自动驾驶等领域的'最新科研成果,也理性地指出人工智能在社会、经济、伦理等方面的观察与思考。
本书由腾讯一流团队与工信部高端智库倾力创作。内容全面,条分缕析,循序渐进的将人工智能前世今生,以及未来的发展预测呈现给读者。不仅展现了当下人工智能产业全貌和最新进展,也对人工智能给个人、企业、社会带来的机遇与挑战进行了深入分析。在阅读时候,一边感叹科技和智能革命带来的翻天地覆,也在思考智能革命的何去何从。
任何事物都有两面性,科技也不例外。科技技术是一把双刃剑,我们是人类,我们希冀于自己的人脑创造更强大更智慧的机器来帮助我们解决难题,而不是用机器来固化我们的大脑。如今的人工智能应用广泛,机器翻译、图像识别、辅助诊断等等,方便快捷了我们的生活,也应该警惕技术带来的挑战,人工智能就像一面镜子,照见人类智能的神奇与伟大。我们提出,拓展发展新空间,实施网络强国战略,实施“互联网+”行动计划,发展分享经济,实施国家大数据战略,提升制造业数字化、网络化、智能化水平,培育一批网络化、智能化、精细化的现代产业新模式。大到国家上层建筑,小到企业和我们个人,希望在人工智能革命的时代下能够大有作为。
人工智能的未来读后感篇十
对于人工智能我是有学习的欲望的,而且是强烈的愿望,因为后续所有的软件技术、产品一定都会和人工智能扯上关系,否则就会被社会淘汰,这是必然趋势,谁也抵挡不了。
先来介绍两位作者吧。
李开复:博士,1988年获卡内基-梅隆大学计算机科学博士学位,他的博士论文主题是关于世界上第一个“非特定人连续语音识别系统”,并于1988年由《商业周刊》杂志授予该系统“科学创新奖”。职业生涯开源于苹果,并官至苹果交互式多媒体部门副总裁。1998年创办微软中国研究院,同年他开发的“奥赛罗”人机对弈系统击败人类世界团体比赛冠军选手。而后,他转任微软全球副总裁、谷歌全球副总裁兼大中华区总裁,20xx年创立创新工场。
engineer、资深技术经理等职,参与或负责研发的项目包括桌面搜索、谷歌拼音输入法、产品搜索、知识图谱、谷歌首页涂鸦(doodles)等,在输入法、知识图谱、分布式系统、html5动画/游戏引擎等技术领域拥有深厚的积累。
这本书分为六个章节:
第三章是“ai真的会挑战人类?”,这章主要介绍了alphago带给我们的启示,以及来自霍金等科学家的警告,并且介绍了人工智能还不能做什么。
第六章是“迎接未来:ai时代的教育和个人发展”,这个章节主要介绍了应该如何学习、该学什么、教育应该关注什么,以及有了人工智能之后人生还有什么意义等,这些内容。
总的来说这本书属于人工智能科普类书籍,不是针对专业人士的,对于搞软件的人,或是产品经理来说,这倒是一本入门书。
人工智能的未来读后感篇十一
粗略通读了开复老师的这本科普读物,极力推荐像我这样的小白们花些时间读一遍。对于专业人士,也是本不错的书,相信会从很多角度启发你的思考。
开复老师能把原本非常抽象的概念讲得通俗易懂,例如把深度学习比喻成一堆水管的组合,就让我这个外行也能了解深度学习大概是怎么运作的。在此之前读过很多介绍深度学习的文章,但读了后还是让我云里雾里不知所以。
此外,开复老师写这样一本书的优势在于他自己是ai方面的专家,因此有很多压箱底的经历和感悟可以娓娓道来。例如他感慨自己生不逢时那部分时,能感受到他内心深深的遗憾。又例如在讨论我们在人工智能汹涌而来时,该如何找到自己的定位,如何学习以及如何与人工智能相处时,有许多真知灼见。相信如果没有长期深入的思考,是无法获得这些有启发意义的阐述的。
书中还提到了很多电影、动画、科幻作品对人工智能的理解,开复老师对这些素材一一作了评论,借这些素材表达了自己的看法,有表示赞赏的,也有直抒不同看法的。这种写作方法很值得借鉴,让读者不会觉得作者是一个人在唱独角戏,而是请来了很多位嘉宾轮番上阵和作者pk。
最后,忍不住要对书的封面设计吐槽下。封面上的开复老师虽然看着精力充沛且睿智非凡,加上身旁的kai-fu机器人也很贴合主题,但是总让人有种成功励志读物的感觉。把知名作者的形象放到封面上,这样的设计对书籍的销量应该很有帮助,我这么开导自己。
人工智能的未来读后感篇十二
5月13日,一场探讨“人工智能与未来教育”的高峰论坛在华东师范大学举行。十余名专家作了主题演讲,探讨人工智能将如何影响教育、改变教育等问题。
多名学者认为,目前看来,因为情感能力、认知能力等方面的局限,人工智能尚无法取代教师,但凭借数据处理等方面的优势,人工智能在教育领域大有可为。
也有专家指出,人工智能神经元呈指数型成长,未来完全可以承担创造性工作,甚至获得情感能力。
【本文地址:http://www.xuefen.com.cn/zuowen/17136288.html】