往日的痕迹在脑海中浮现,是时候总结一下了。怎样保持身心健康,享受快乐人生?以下是一些关于总结的示例,供大家参考,希望能够帮助到大家写作。
分割等腰三角形的说课稿篇一
本周三下午第三节,我们全体数学组成员及教研处王主任共同学习了由数学教研组长x老师执教的《等腰三角形》一课。听后,颇受启发及教育。
首先,我觉得x老师很用心的在准备这节课,讲这节课。因为是上学期小组汇报课讲过的“熟课”,不仅学生学过,而且老师们都听过。如果没有新意,很容易使学生及听课老师产生感官疲劳。但x老师匠心独具的是,在课堂导入的环节,巧妙地安排了一场“爱因斯坦的智商”智力游戏,使学生“惊喜”的发现,自己居然和爱因斯坦的智商同样高,自信心无比高涨,后又借机对学生进行具备了爱因斯坦的智商,还要有勤奋学习不说空话的态度,激发了学生的学习动力。
其次,课堂教学中,x老师始终面带微笑,语速不急不缓,使学生如沐春风,在轻松愉快的氛围中完成了整堂课教学。另外,在课堂练习的环节,设计了积分制的回答方式,调动了学生认真思考及回答问题的积极性,效果甚好。
整堂课的设计条理清晰,层次分明,注重学生动手操作,合作探究。既使学生理解并掌握了等腰三角形的性质,同时又培养了学生动手操作勇于探索的能力。
美中稍显不足的是,课件有些简单,背景色调有点刺眼,可以做些改进。课堂习题学生已在上次听课时做过,对答案很熟悉,新鲜感稍差。可在习题设计上做些改动,变换方式和数据,效果会更好的。
总之,我觉得这是一堂很成功的课。也使我体会到要想讲好一堂课,必须要以无比敬业的态度认真去准备,多方搜索,积极探索,不断反思总结改进。
分割等腰三角形的说课稿篇二
本周三下午第三节,我们全体数学组成员及教研处王主任共同学习了由数学教研组长x老师执教的《等腰三角形》一课。听后,颇受启发及教育。
首先,我觉得x老师很用心的在准备这节课,讲这节课。因为是上学期小组汇报课讲过的“熟课”,不仅学生学过,而且老师们都听过。如果没有新意,很容易使学生及听课老师产生感官疲劳。但x老师匠心独具的是,在课堂导入的环节,巧妙地安排了一场“爱因斯坦的智商”智力游戏,使学生“惊喜”的发现,自己居然和爱因斯坦的智商同样高,自信心无比高涨,后又借机对学生进行具备了爱因斯坦的智商,还要有勤奋学习不说空话的态度,激发了学生的学习动力。
其次,课堂教学中,x老师始终面带微笑,语速不急不缓,使学生如沐春风,在轻松愉快的氛围中完成了整堂课教学。另外,在课堂练习的环节,设计了积分制的回答方式,调动了学生认真思考及回答问题的积极性,效果甚好。
整堂课的设计条理清晰,层次分明,注重学生动手操作,合作探究。既使学生理解并掌握了等腰三角形的性质,同时又培养了学生动手操作勇于探索的能力。
美中稍显不足的是,课件有些简单,背景色调有点刺眼,可以做些改进。课堂习题学生已在上次听课时做过,对答案很熟悉,新鲜感稍差。可在习题设计上做些改动,变换方式和数据,效果会更好的。
总之,我觉得这是一堂很成功的课。也使我体会到要想讲好一堂课,必须要以无比敬业的态度认真去准备,多方搜索,积极探索,不断反思总结改进。
3篇1本周三下午第三节,我们全体数学组成员及教研处王主任共同学习了由数学教研组长x老师执教的《等腰三角形》一课。听后,颇受启发及教育。......
分割等腰三角形的说课稿篇三
《等腰三角形的判定》是初中数学的一个重要定理,也是本章的重点内容。本节内容是在学生已有的平行线性质、命题以及等腰三角形的性质等知识基础上进一步研究的问题。特点之一是它揭示了同一个三角形的边、角关系;特点之二是它与等腰三角形的性质定理互为逆定理;特点之三是它为我们提供了证明两条线段相等的新方法,为以后的学习提供了证明和计算依据,有助于培养学生思维的灵活性和广阔性。所以本段教材具有承上启下、至关重要的作用。
在中考题中属于一个考点知识。因此,本节课我主要采用的教法是引导探索法:在数学教学中,作为教师应善于引导学生去观察、去分析、去归纳、去总结,从而培养学生主动求知的探索精神。
本节课按照质疑、猜想、验证、推理的学习过程,遵循学生的认知规律,让学生感受由实践到理论再到实践的学习过程,使学生通过“会学”最终达到“学会”。
教学一开始,学生通过回顾总结等腰三角形的性质为学习等腰三角形的判定做了知识铺垫。之后我将本节课的教学目标展示给学生,让学生做到心中有数,让学生带着问题看书,加强自主探索的能力。通过学生观察、思考例题,自然地渗透分类讨论的数学解题思想。
通过课堂小结,让学生归纳比较等腰三角形的性质和判定的区别,同时将等腰三角形的性质定理与判定定理有机的结合起来,重在培养学生对两个知识点的综合运用,鼓励学生积极思考。整节课的目标基本实现,重点难点落实得比较到位,为以欠缺的是时间有点紧,课堂小结比较仓促。
分割等腰三角形的说课稿篇四
作为一名为他人授业解惑的教育工作者,时常要开展说课稿准备工作,说课稿有利于教学水平的提高,有助于教研活动的开展。优秀的说课稿都具备一些什么特点呢?以下是小编整理的七年级数学《分割等腰三角形》说课稿,仅供参考,欢迎大家阅读。
七年级下学期的学生,从年龄特点看:他们好奇心强,思维活跃,喜欢动手操作,厌倦枯燥乏味的传统教学;从知识储备上看:他们已经掌握了三角形、等腰三角形有关知识,如三角形内角和、等腰三角形的性质、等腰三角形的判定等等;从技能水平上看:他们已经初步具有自主探索能力、合作交流能力。
1、经历可以分割成两个等腰三角形的条件的探索过程,培养探索精神和合情推理能力;
2、在活动中,体会知识的运用和数学思考的方法;
3、通过探索条件的实践过程,体会数学推理的乐趣,增强合作交流意识。
1、创设情境,激发兴趣。
2、小组活动,探求新知。
3、梳理概括,形成结构。
4、布置作业拓展延伸。
授人以鱼,不如“授人以渔”整节课中我始终贯彻“自主参与,自主探究,合作交流,自主构建”的教育理念,采用“探,疑、研,悟”等环节主体探究。让学生在自主,合作,探究的浓厚氛围中掌握知识,形成技能,培养感情。充分体现科学性和人文性的统一。
1、创设情境,激发兴趣。
情景一、学生阅读第120页的《阅读理解》。
这样设计:可以让学生通过阅读理解,初步认识图形分割的意义,培养数学阅读的兴趣和方法。也为后面的如何分割做了复习。
情景二:在动听的音乐声中,大屏幕上循环播放生活中有关的等腰三角形的图片。图片最后出现等腰三角形花坛。
这样设计:一是用他们熟悉或感兴趣的问题情境引出学习主题,激发了学生探究知识的欲望,能够较好地调动学生的学习兴趣。二是进一步体味数学就在我们身边,生活中处处都有数学。
学生上台演示。这时,教师可以引导学生有两种分割方法:一种是分割线经过顶角顶点;一种是分割线经过底角顶点。
这样设计:为后面的.分类讨论思想打下铺垫。
2、小组活动,探求新知。
合作:小组合作设计两个三角形,使这两个三角形都可以被分割成两个等腰三角形。
学生展示图片,讲解分割思路。(教师反问:为何不从顶角的顶点分割?)。
归纳小结:当顶角小于底角时,分割线经过底角的顶点,反之,顶角大于底角时,分割线经过顶角的顶点。
这样设计:从特殊的三角形出发,加上学生对这个三角形比较熟悉,学生比较好操作,再到一般三角形,从而产生质疑:不是所有的等腰三角形都可以分成两个等腰三角形,起了承上启下的作用。
第二部分:探索能分割成两个等腰三角形的这个等腰三角形每个内角的关系?
学生动手画顶角分别是锐角、直角、钝角的等腰三角。
这样设计:让学生感知等腰三角形的多样性,为分类讨论思想打下铺垫。
设底角为x度,小组合作作图,并求出顶角的度数(x的代数式表示):第一、二组研究分割线经过顶角的顶点的情况,后两组研究分割线经过底角的顶点的情况。
这样设计:是让学生亲历科学发现的全过程,初步掌握研究性学习的学习方法。
通过作图求解,学生可以求出:顶角是底角的2倍、3倍、倍。对于倍,教师适当引导。
第三部分:探索能分割成两个等腰三角形的这个等腰三角形每个内角是几度?学生根据内角和180度,求出角度。
3、梳理概括,形成结构。
知识:分割成两个等腰三角形的条件和方法;体验:探究活动中的感悟。教师适当引导补充,并对学生的表现适当评价,给予鼓励。
4、布置作业拓展延伸。
分层作业:必做题:把一个角为36°的等腰三角形分成4个等腰三角形。
选做题:把角度分别20°、20°、140°等腰三角形分成三个等腰三角形。
这样设计:一是想以动手操作开始,再以动手操作结束,使课堂教学浑然一体;二是让学习从课上走到课下,让一种学法得以构建,让一种思想得以延续。
我努力给学生创造自主探索、合作交流的舞台,无论环节设计,还是作业的安排,都关注了学生的个体差异,注重了学生的数学体验。通过操作、观察、质疑、验证、深化等自主探索活动。丰富知识、提升能力、获得体验。使学生初步具有自主学习之法、终身学习之愿、快乐学习之情。
分割等腰三角形的说课稿篇五
今天我聆听了林**老师的公开课,让我学习的地方很多,不只是老师的设计以及上课的感染力吸引我,更多的是看到她的设计以及课堂的驾驭能力,如教学设计内容的取舍,教师的启发引导,课堂生成资源的利用,课堂小结与归纳等。下面我就林老师的《等腰三角形的判定定理》这节课谈谈自己的几点感受:
1.我们知道,数学学习是连贯的,每节课都起到承上启下的作用。林文娟老师首先复习回顾了等腰三角形的性质,然后通过合作学习让学生动笔作图,思考线段ab与ac相等吗?从而引出课题。这种以旧引新的方式符合学生认知特点,也符合数学新课程标准提出的“动手操作-----建立模型----解释与应用模型”的课堂模式。
2.在课堂教学中,提炼方法,结论成为课堂的一个亮点,往往这些是学生缺的东西,而当我们学习新知识后,教师要引导学生善于将新知识纳入到旧的体系中,形成新的知识体系。培养学生善于总结反思的习惯。达到知识,方法迁移,触类旁通的效果。这节课对判定定理的大前提“在同一个三角形中”分析的很到位,成为本节可的亮点。
3.数学课堂是培养学生思维的主阵地,思维是数学的灵魂,是形成数学能力、意识的桥梁.但是,数学思维具有高度抽象性,学生往往不易理解.特别是初中学生,从具体思维向抽象思维过度的时期,往往会受到阻碍。教学中教师如何通过启发诱导开启学生受阻的思维很见功底。
本课教学中,林老师在证明判定定理时,有启发学生通过添加辅助线构造等腰三角形“三线合一”,层层诱导,通过问题串的形式启发:1.添加怎样的辅助线?2过a作一条辅助线,有没有什么要求?(预设:四种添法,有高线,角平分线,中线,随意一条线)3.辅助线如何书写,4.如何应用。
1.新课的引入问题。本课的引入如果能用几何画板展示,效果应该会更好。
2.定理得出后,应该给出几何语言。教师准确而规范的例题示范是本节课甚至整个基础教育数学教学最最关键的环节。
(1)多媒体的使用问题:数学课不能整课使用多媒体,而只是某些重点难点的突破和例题的题目可以使用,其他环节应该取消。也就是把多媒体用成数学中的“微课”,如果声光电一起上,推导、演绎、结论啪啪啪的响,学生下课以后什么都没有,甚至连书写的规范都没有。思维训练等于0,长久后,学生得不到数学学习的乐趣,这也是导致高年级或者高中数学差生很多很多的主要原因。
(2)数学教师要学好几何画板。几何画板在课堂中就是微课使用10分钟以内,随时可以形成动画,能写成文本,能形成思维流。
(3)什么是数学好课?我觉得掌声、笑声、辩论声都在一节课出现就是好课,成功的课。只有掌声的课肤浅且做作,只有笑声的课庸俗,只有辩论声的课没有生命的意义。
分割等腰三角形的说课稿篇六
本节课教学设计较为简单,有利于学生掌握新知识。思路清晰,语言流畅,具有亲和力,课堂教学节奏合理,快慢结合,注意顺应学生的思维。知识回顾中用变换图形位置复习旧知识,有助于学生对旧知识的巩固,为本节课作铺垫。学生在教学中思考的时间较多,教师做到了以学生为主,教师为辅,将课堂交还给学生。学生积极性很高,生生互动很多。教学设计中设计了剪折图的活动,引导学生动手探究,体现了新课标中引导学生动手操作探究问题的要求。
建议。
1、要明确教学目标,教学设计要美观才有利于学生的学习。
2、给教学设计给听课教师而不是学生的学案。
3、时间的调控上要把握好。
4、要注重点明命题证明的步骤:审题、画图、写已知、写求证、证明。
分割等腰三角形的说课稿篇七
听了李老师的一节《2.4等腰三角形的判定定理》课。李老师从学生已知掌握的知识出发,积极地引导学生参与教学的每一个环节,努力地探索解决问题的方法,切身经历了“以生为本”的教学全过程,感受了学习数学的快乐,体验成功的喜悦。具体感受如下:
1、提出问题,复习旧知;复习等腰三角形的定义,做到温故而知新,积极的为学生营造了和谐的学习环境,激发学生学习的积极性,使学生纷纷自觉投入到学习活动中。
2、巧妙引导,自主探究,尽展数学证明美。学生有效的学习活动不能单纯的依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。李老师的教学设计充分体现了学生为主体的教学理念,让学生在主动探索等腰三角形的判定定理,充分发挥学生的积极性和主动性。
3、拓展教学资源,一题多解,加强学生“图形语言”、“数学语言”、“文字语言”三种语言的意义。
4、及时、精炼地评价和点拨,教学中李老师通过平易近人的语言不断地鼓励着学生、及时地点拨着学生、评价着学生,给学生以更多的思想和方法上的点拨和引领,使学生体验成功的喜悦。
5、结合实践,加强新知的应用,体验学习数学的意义。
6、板书规范完整,形象直观。
分割等腰三角形的说课稿篇八
本节课的活动是从回顾轴对称图形的性质入手。因为等腰三角形是一种特殊的三角形,而等腰三角形是轴对称图形。为此,教材把本节内容安排在了轴对称之后。我利用旧知的复习唤起学生对等腰三角形的记忆。然后通过让学生预习,折纸、剪纸、猜想、验证等腰三角形的性质,并运用全等三角的知识加以论证。使学生思维由形象直观过渡到抽象的逻辑演绎,层层展开,步步深入,使学生在生动有趣的数学活动中探究出等腰三角形的性质,从而实现教学目的。
在教学设计上,我把重点放在了学生交流展示和解疑点评上,由个别形象到一般抽象,体现出了学生从感性认识到理性知识发生发展的认知过程。在教学过程中,我注重引导学生对解题思路和方法进行总结,渗透化归思想与分类讨论数学思想;注重培养学生形成积极探索、主动学习的态度,关注学生学习兴趣和体验,充分体现数学教学主要是数学活动的教学;注重培养学生之间的合作、交流意识与语言表达能力,增强小组合作意识。
1、本课主要放在学生知识的形成过程上,因此对等腰三角形性质的应用及知识的拓展方面较薄弱,显得深度不够。还需要在习题的设计上来补充体现。
2、课堂气氛虽热烈,学生对“三线合一”这一新名词很感兴趣,但还是难免一些同学只是凑热闹,并非真正学得真知的缺陷。要引导学生真正理解和体会几何语言的的魅力。
分割等腰三角形的说课稿篇九
本节课的重点是让学生在操作中发现等腰三角形和等边三角形的特征。我没有呈现几个不同类型的三角形,让学生通过测量边的长度从而发现他们的共同点,我在让学生观察常见的一副三角板,说说每个角的度数,然后再找出比较特殊的三角行,从而引出等腰三角形的。然后利用折纸这个活动,来进一步的体会等腰三角形的特点,先是引导学生看书上的图示,理解做的步骤,然后让学生自己动手去做,学生做得很好,接着我有让学生在探究本上试着画一个等腰三角形,使学生在画图的过程中进一理解特征。对于等边三角形的教学,基本上也就如此,但是,学生似乎不太理解折纸的方法,因此,我就作了示范,学生才勉强制作出了等边三角形。由于在这个部分,我留给学生的时间比较多,后来连书本上的“想想做做”都来不及解决,因此,我决定明天再增加一节练习课,做一个专项训练,看看学生对知识的综合运用情况。
今天教学了等腰三角形和等边三角形,其实学生通过动手操作对等腰三角形和等边三角形的概念还是很容易掌握的,关键在于灵活运用,所以,在练习的时候,我采取了一题多变的'形式。在“想想做做”中有这样一道题目:一根18厘米长的线,可以围成边长几厘米的等边三角形?这个问题很简单,学生很轻易就解决了,然后我又把题目改成:用一根18厘米长的线围成一个等腰三角形,腰是7厘米,底是多少厘米?用一根18厘米长的线围成一个等腰三角形,底是4厘米,腰是多少厘米?通过这两个问题的练习,学生对等腰三角形的性质有了更深的理解,在做《补充习题》的时候正确率高了不少。所以,书上的练习题还有很多值得我们挖掘的地方。
分割等腰三角形的说课稿篇十
2、课时:1。
3、学生课前准备:
(3)完成课后习题。
(1)课堂活动以学生为主体,教师为主导,重点放在如何调动学生的积极性,让学生观。
察、分析、归纳概括,主动获得知识。
(2)组织学生欣赏图片,激发学生的学习兴趣,让学生获得知识,提高能力。
(3)在教学中,向学生渗透数学思想方法,培养学生说理的能力。
1、等腰三角形是在三角形知识基础上的继续深入,如何利用学习三角形的过程中已经形成的思路和观点,也是对理解“等腰”这个条件造成的特殊结果的重要之处。
2、等腰三角形是基本的几何图形之一,在今后的几何学习中有着重要的地位,是构成复杂图形的基本单位,等腰三角形的定理为今后有关几何问题的解决提供了有力的工具。
3、对称是几何图形观察和思维的重要思想,也是解决生活中实际问题的常用出发点之一,学好本节知识对加深对称思想的理解有重要意义。
4、例题中的几何运算,是数形结合的思想的初步体验,如何在几何中结合代数的等量思想是教学中应重点研究的问题。
5、如何把握合情推理的书写及重点问题,本课中的例题也进一步做了示范,可以认真研究。
6、本课对学生的动手能力,观察能力都有一定的要求,对培养学生灵活的思维,提高学生解决实际问题的能力都有重要的意义。
7、本课内容安排上难度和强度不高,适合学生讨论,可以充分开展合作学习,培养学生的合作精神和团队竞争的意识。
8、课本为学生提供自主探索的.空间,然后在进行证明,将探索和证明有机的结合起来,引导学生不断感受证明的必要性。
本节课采用合作探究的教学方法,在教师的引导下,通过合作探究的方式、发现、分析问题并解决问题,为学生提供从事数学活动的机会,帮助学生进行自主探究与合作交流。以活动形式展开教学,综合运用启发式、多媒体演示、互联网探索等教学手段,培养学生的主体意识。
(一)回顾知识。
1、什么叫证明?什么叫定理?
2、证明与图形有关的命题,一般步骤有哪些?
设计说明:师提出问题,回顾旧知识,达到温故而知新的目的,学生以小组为单位讨论交流。
(二)创设情境。
观察图片。
百度图片搜索_等腰三角形金字塔的搜索结果。
1、什么叫做等腰三角形?(等腰三角形的定义)你能用刻度尺华画一个等腰三角形吗?
3、上述性质你是怎么得到的?(不妨动手操作做一做)。
4、这些性质都是真命题吗?能否用从基本事实出发,对它们进行证明?
(三)探索活动。
1、合作与讨论:说明你所画的三角形是等腰三角形。证明:等腰三角形的两个底角相等。
2、思考与讨论:说明你所画的是顶角的平分线。
怎样证明:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。
3、通过上面两个问题的证明,我们得到了等腰三角形的性质定理。
定理:等腰三角形的两个底角相等,(简称:“等边对等角”)。
等边对等角。
bdc4、你能写出上面定理的符号语言吗?
5、总结。
分割等腰三角形的说课稿篇十一
等腰三角形是在学习了轴对称之后编排的,是轴对称知识的延伸和应用。等腰三角形的性质及判定是探究线段相等、角相等及两条直线互相垂直的重要工具,在教材中起着承上启下的作用。
2、教学重点和难点。
本着新课程标准,在吃透教材基础上,我把探索等腰三角形的性质定为本节课的重点,通过创设问题和解决问题来突出重点。把等腰三角形性质的建立定为本课的难点,通过折纸实验和小组合作探究来突破难点。
1、学情分析。
我所教的学生,从认知的特点来看,好奇爱问,求知欲强,想象力丰富;并已初步具有对数学问题进行合作探究的能力。
2、三维目标。
根据教材结构和内容分析,考虑到学生已有的认知结构、心理特征,我制定如下目标:
知识与技能目标:
了解等腰三角形的概念,探索并掌握等腰三角形的性质,并会进行有关的论证和计算,以及运用所学的知识去解决实际问题。
过程与方法目标:
通过对性质的探究活动和例题的分析,培养学生多角度思考问题的习惯,提高学生分析问题和解决问题的能力;使学生进一步了解发现真理的方法(探究-猜想-归纳-论证)。
情感态度与价值观目标:
通过对等腰三角形的观察、试验、归纳,体验数学活动充满着探索性和创造性,数学就在我们身边。在操作活动中,培养学生的合作精神,在独立思考的同时能够认同他人.感受合作交流带来的成功感,树立自信心.
1、教法。
根据教材分析和目标分析,我确定本课主要的教法为探究发现法。采用“问题情境—探索交流—猜想验证——建立模型”的模式安排教学,并在各个环节进行分层施教。
2、学法。
我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中我特别重视学法的指导。本课采用小组合作的学习方式,让学生遵循“观察——猜想——归纳——验证——反馈——实践”的主线进行学习。
《数学课程标准》强调,教师应发扬教学民主,成为学生数学学习活动的组织者、引导者、合作者。因此本节课我分以下六个环节组织教学。
(一)创设情境,激发兴趣。
1、多媒体展示房屋人字架、艾佛尔铁塔、龙塔、香港中国银行大厦的图片,问:你认识图片中的建筑物吗?图片中存在哪些几何图形?(等腰三角形、四边形、梯形)。
(通过实例的电脑展示,唤起学生的好奇心,提出问题,引导学生进入新知识的学习,创造一种探索的情景。在学习中,只有调动学生的非智力因素,特别是内在动机,才能使他们产生强烈的求知欲和以饱满的热情来学习新知识。)。
(二)观察实物,形成概念。
活动:学生通过观察自带的等腰三角形纸片认识等腰三角形的有关概念。
接着,我利用电脑演示等腰三角形定义的数学语言表达方式。
(让学生归纳定义增强学生的成就感,给出数学语言的表达,是为了培养学生文字语言、图形语言和符号语言的转化能力.同时也能培养学生正向思维和逆向思维的能力。)。
分割等腰三角形的说课稿篇十二
安排一课时学习等腰三角形的性质,内容很多,课堂容量很大,本课教学后,有很多方面需要总结。
在证明性质时,不再有同学直接用性质证明性质了,这是一个很大的进步,用三种方法研究性质的证明,要用到小组交流,比较发现有三种方法:取中点,用“sss”证明全等;作垂线,用“hl”证明全等;作角平分线,用“sas”证明全等。通过这样的教学设计,一方面,体会了辅助线不同的作法,就有不同的证法;另一方面,为性质2“三线合一”的教学提供了方便。不足的是,课堂交流的面可以更宽些。
性质2的应用比较多,初学者往往不能灵活应用这条性质优化证题途径,因此要解读这条性质,由图形训练和规范符号语言,把性质一句话改写成三句话或者六句话。
一句话是“等腰三角形的顶角平分线、底边上的中线、底边上的.高相互重合”。
三句话是“1、等腰三角形的顶角平分线平分底边、垂直于底边;2、等腰三角形的底边上的中线平分顶角、垂直于底边;3、等腰三角形的底边上的高平分顶角、平分底边。”
分割等腰三角形的说课稿篇十三
本节是九年制义务教育实验教材小学数学第八册的教学内容,它包括三角形三条边之间的关系以及部分练习。在此之前,学生已经学习了角,初步认识了三角形,知道三角形有3条边、3个顶点、3个角,三角形还具有稳定性等知识,为学生研究三角形的新的特性——任意两边之和大于第三边做好了知识迁移基础。
学好这部分内容,不仅可以从形的方面加深对周围事物的理解,发展学生的空间观念,可以在动手操作、探索实验和联系生活应用数学方面拓展学生的知识面,发展学生的思维和解决实际问题的能力,同时也为学习其他平面图形和立体图形积累知识经验,为进一步学习三角形的内角和、面积等内容打下坚实基础。
本课的重点是:三角形三边关系的实验与探究,这个关系不仅给出了三角形的三边之间的大小关系,更重要的是提供了判断三条线段能否组成三角形的标准;熟练灵活地运用三角形的两边之和大于第三边,是数学严谨性的一个体现,同时也有助于提高学生全面思考数学问题的能力;它还将在以后的学习中起着重要作用。
本节内容的难点是:利用三角形三边之间的关系解决实际问题,在学习和应用这个关系时,“两边之和大于第三边”指的是“任何两边的和”都“大于第三边”,而学生的错误就在于以偏概全。
新课标的基本理念要求“人人学习有价值的数学,人人都能获得必须的数学,不同的人在数学上得到不同的发展”。结合教材,根据学生的知识现状和年龄特点,我制定了以下教学目标:
1、使学生知道“三角形中任意两边的和大于第三边”,运用关系解决简单的实际问题;
2、培养学生的观察、分析、比较、操作能力,进一步发展空间观念,提高学生的探索能力。
3、让学生经历数学学习的过程,感受数学与实际的紧密联系,在学习中培养学生数学运用的意识以及团结协助的精神。
针对平面几何知识教学的特点、以及小学生以形象思维为主、空间观念薄弱的特点,我打算采用创设情境法、实验法、比较法,以及分组讨论、合作学习的形式,并运用多媒体教学课件辅助教学,让学生在观察、感知的基础上,动手操作,比一比,看一看,想一想,分组讨论、合作学习,老师恰当点拨,适时引导,多媒体课件及时验证结论,激发学生的学习兴趣,调动学生的学习积极性,突出学生的主体性,以学生发展为本,转变学生的学习方式,从而达到培养学生的创新精神和实践能力的目的。
在学法指导上,我将充分发挥学生的主体精神,留有足够的时间和空间激发他们主动探索。借鉴杜威“做中学”的思想,在设计课程方案时,将学生分成5人学习小组,同组异质:组内成员分工明确(有组长、记录员、操作员、发言员等),让学生动起来,活起来,让学生在猜想、质疑、验证、探究、测量、实践操作、问题解决等过程中,经历想一想,猜一猜,画一画,比一比等活动,努力营造协作互动、自主探究、议论纷纷的课堂教学氛围,将课堂真正还给学生,让学生在自主活动中得以发展。
1、实验法初步感知。每组拿出课前准备好的几组小棒(或者用纸条),进行操作实验,并详细做好记录,填写在统计表中。
2、讨论交流法发现规律。
a、两条边的和大于第三条边就能组成三角形;
b、最长的那条边小于另外两条边的和才能组成三角形;
c、任意两边的'和一定要大于第三条边才能组成三角形;
d、较短的两条边的和大于最长的边一定能组成三角形;
e、两边的差小于第三边也能组成三角形;
只要孩子们能大胆发表自己的见解,不管正确与否,教师都给予鼓励,并集中对以上的几个结论进行点评,对学生的b、c、d、e的回答予以肯定,对a的回答组织学生讨论,分析错误的原因。
3、画图法验证结论学生小组为单位进行第二层次实验:小组内画出3个任意的三角形,用尺去量出三条边的长短,填入表格。
4、应用规律解释“最近”。“为什么小明上学走中间这条路最近呢?”
5、根据本节课的教学目标,我设计了三个层次的练习:
a、基本练习:下列长度的三条线段能否组成三角形?为什么?
(1)8、9、15;(2)9、6、15;(3)9、6、14。单位:(厘米)。
使学生对初步感知的结论有更加深刻的认识。只有让理论与实践相结合,才能学活知识,使知识起到质的飞跃。
c、课堂延伸:画出一个三角形,让学生量出三个角的度数,再让学生量出三条边的长度,试着让学生寻找最长边与最大角、最短边与最小角的关系。
目的是为了体现因材施教的原则,在面对全体的情况下,促进学有余力学生的思维发展。
分割等腰三角形的说课稿篇十四
本节内容的重点是定理.本定理是证明两条线段相等的重要定理,它是把三角形中角的相等关系转化为边的相等关系的重要依据,此定理为证明线段相等提供了又一种方法,这是本节的重点.推论1、2提供证明等边三角形的方法,推论3是直角三角形的一条重要性质,在直角三角形中找边和角的等量关系经常用到此推论.
本节内容的难点是性质与判定的区别。等腰三角形的性质定理和判定定理是互逆定理,题设与结论正好相反.学生在应用它们的时候,经常混淆,帮助学生认识判定与性质的区别,这是本节的难点.另外本节的文字叙述题也是难点之一,和上节结合让学生逐步掌握解题的思路方法.由于知识点的增加,题目的复杂程度也提高,一定要学生真正理解定理和推论,才能在解题时从条件得到用哪个定理及如何用.
本节课方法主要是“以学生为主体的讨论探索法”。在数学中要避免过多告诉学生现成结论。提倡鼓励学生讨论解决问题的方法,引导他们探索数学的内在规律。具体说明如下:
(1)参与探索发现,领略知识形成过程。
学生学习过互逆命题和互逆定理的概念,首先提出问题:等腰三角形性质定理的逆命题的什么?找一名学生口述完了,接下来问:此命题是否为真命?等同学们证明完了,找一名学生代表发言.最后找一名学生用文字口述定理的内容。这样很自然就得到了定理.这样让学生亲自动手实践,积极参与发现,满打满算了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会。
(2)采用“类比”的学习方法,获取知识。
由性质定理的学习,我们得到了几个推论,自然想到:根据定理,我们能得到哪些特殊的结论或者说哪些推论呢?这里先让学生发表意见,然后大家共同分析讨论,把一些有价值的、甚至就是教材中的推论出来。如果学生提到的不完整,可以做适当的点拨引导。
(3)总结,形成知识结构。
第12页 。
分割等腰三角形的说课稿篇十五
本节课是九年级第一轮复习中为巩固学生对等腰三角形知识的灵活运用而精心设计的一堂几何复习课,结合本节课谈几点感悟:
1、起点的教学设计,有利于调动学生的学习积极性,让学生全面参与,符合让学生发展为本的课改理念,今后应多在课堂教学中使用。
2、学习数学离不开解题,但如果陷入茫茫的题海中,解题千万道,解后抛九霄,是难以达到提高解题能力、发展思维的目的的。初三学生单纯的做、练激不起求知的欲望,在学生掌握课本基础知识和技能的前提下,对先前习题进行适当的挖掘、拓展、整合,是提高学生思维能力和解题能力,较好掌握课本知识与技能的重要方法。既来源于教材,又高于教材,较有新意,又能提高综合应用知识的能力,这才是高层次的复习课。
3、复习课既不像新授课那样有新鲜感,又不像练习课那样有成功感。如何上好一节行之有效的复习课,一直是我关注的教学问题,在教学中要将已学过的知识一一再现在学生面前,同时还要做到在更深的层面系统的处理前后知识的关联,我决定大胆尝试,不按以往传统复习法一章一章的复习,而是以一类问题的解决方法探索来涵盖我要复习的知识点。
4、这堂课涉及的几何基础知识非常广泛,它既能充分的考察学生基础知识的掌握的熟练程度,又能较好的考察学生的观察,分析,比较,概括的能力及发散思维能力。
在本节复习课教学中我注意到避开以下问题:
(1)以教师思维代替学生思维,忽视学生学习的能动性;。
(2)重习题的机械的练,轻认知策略的教学;。
(3)复习方法呆板,缺少生动性和趣味性;。
(4)为追求应试效果、强化训练和解题技巧指导过多,学生独立自主的探究知识学习太少。
分割等腰三角形的说课稿篇十六
定义法:在同一三角形中,有两条边相等的三角形是等腰三角形。
判定定理:在同一三角形中,如果两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。
除了以上两种基本方法以外,还有如下判定的方式:。
1.在一个三角形中,如果一个角的平分线与该角对边上的中线重合,那么这个三角形是等腰三角形,且该角为顶角。
2.在一个三角形中,如果一个角的平分线与该角对边上的高重合,那么这个三角形是等腰三角形,且该角为顶角。
3.在一个三角形中,如果一条边上的中线与该边上的高重合,那么这个三角形是等腰三角形,且该边为底边。显然,以上三条定理是“三线合一”的逆定理。
4.有两条角平分线(或中线,或高)相等的三角形是等腰三角形。
【本文地址:http://www.xuefen.com.cn/zuowen/14828287.html】