教案的编写需要遵循教学原则和教育教学规律。教案中的评估环节要科学准确,能够反映学生的学习情况。教案的编写要考虑学生的思维规律和心理特点。
一个数乘以小数教案设计篇一
教学目标:
1、知识与技能:掌握除数是小数的除法计算方法,注意被除数位数不够时的计算方法,会正确地计算。
2、过程与方法:经历一个数除以小数的计算过程,体验迁移应用的学习方法。
3、情感、态度与价值观:在学习活动中,体验知识之间的相互联系和数学知识的应用价值,感受发现知识的快乐,激发学习的兴趣。
教学重点:
一个数乘以小数教案设计篇二
教学目标。
(一)理解的意义,掌握的计算方法。
(二)掌握转化的数学思想,提高抽象概括的能力。
教学重点和难点。
重点:掌握的意义和计算方法。
难点:理解的算理。
教学过程设计。
(一)复习准备。
1.说一说。
(1)0.4表示什么?(2)1.2表示什么?
(3)0.85表示什么?(4)1.06表示什么?
2.口算:
3×2=30×20=30×200=3000×2000=。
通过讨论得出:积扩大的倍数,就是被乘数和乘数扩大的倍数的乘积。
根据这一规律,你能很快说出下组题的积吗?
18×4=1800×400=180×40=18000×4000=。
3.写出数量关系,并列式计算。
花布每米6.5元,买2米、3米、4米各用多少元?
(1)总价=单价×数量。
列式:6.5×2=13(元)6.5×3=19.5(元)6.5×4=26(元)。
(2)说出上面各算式的意义。(6.5×2表示2个6.5是多少或6.5的2倍是多少。)。
(二)学习新课。
1.出示例2:花布每米6.5元,买0.5米和0.82米各用多少元?
(1)根据上面的数量关系列式:
6.5×0.56.5×0.82。
观察例2与复习题3有何不同?(复习题中的乘数都是整数。例2中的乘数都是小数。)。
这就是我们今天要研究的。(板书课题)。
(2)理解的意义。
思考:乘数是小数与乘数是整数的意义能相同吗?
学生试着画图理解6.5×0.5和6.5×0.82的意义。
6.5×0.5和6.5×0.82各表示什么?
0.5米的总价:6.5×0.5表示求6.5的十分之五。
0.82米的总价:6.5×0.82表示求6.5的百分之八十二。
说出下列算式的意义:
1.5×0.73.5×0.254.5×0.43.2×0.125。
小结:的意义是什么?(的意义是求这个数的十分之几,百分之几,千分之几,……)。
(3)探讨的计算方法。
怎样计算6.5×0.5呢?
讨论:怎样把小数乘法转化成整数乘法呢?
学生试做后讲解算理:
(被乘数、乘数分别扩大了10倍,积就扩大了10×10=10o倍,要使积不变,就要把积缩小100倍。)。
计算6.5×0.82。
学生计算后讲算理。(被乘数扩大10倍,乘数扩大100倍,积扩大了10×100=1000倍,要使积不变,就要把积缩小1000倍。)。
2.小结:
(1)比较因数和积的小数位数,它们有什么联系?(积的小数位数是因数的小数位数之和。)。
(2)的计算方法是什么?(先按照整数乘法的法则算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。)。
(3)比较的计算方法与小数乘以整数的计算方法有什么关系?(它们的计算方法是一致的。)。
从而得出小数乘法的计算法则:计算小数乘法,先按照整数乘法的法则算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
(三)巩固反馈。
1.课本p4:6;p5:8。
2.根据36×24=864,很快说出下面各题的积。
36×2.4=360×0.24=0.36×0.24=。
3.6×2.4=0.36×2.4=0.036×2400=。
3.先判断积中有几位小数,再计算:
78×0.6=3.24×5.2=。
4.说出下列算式的意义:
0.25×0.6=0.25×6=0.78×0.35=0.78×35=。
思考:乘法算式的意义由什么数决定?(乘法算式的意义由乘数决定。当乘数是整数时,是求几个相同加数的和的简便运算;当乘数是纯小数时,是求这个数的十分之几,百分之几,千分之几,……)。
5.作业:课本p4:5,7;p5:9。
课堂教学设计说明。
是小数乘以整数知识的扩展和延伸,教学中充分利用了已有知识和技能,重点分析了积的小数点位置的确定。首先从观察整数乘法算式得出积的变化规律,即整数相乘的积扩大的倍数为两个因数扩大的倍数的乘积。为理解小数乘法中积的小数位数就是两个因数的小数位数的和奠定了基础。
教学中重视引导学生运用转化的思想及知识的迁移规律,在充分理解算理的基础上,逐步总结出小数乘法的计算法则。
一个数乘以小数教案设计篇三
教学内容:
教学目标:
1.使学生理解除数是小数的除法的计算方法,并能够正确地计算。
2.培养学生的分析、转化及归纳的能力。
3.使学生体验到所学知识与现实生活之间的联系,并能应用所学知识解决生活中的简单问题,从中获得价值体验。
教具、学具准备:多媒体课件。
教学过程:
一、复习旧知,引入新课。
师:前几节课我们学习了除数是整数的小数除法,请同学们试着在练习本上做一做下面的题目。(出示20.4÷24,学生做完后集体订正)。
师:刚才同学们做得都很好,谁能给大家说一说怎样计算除数是整数的小数除法?(生发言)。
师:这节课,我们继续来研究小数除法。(板书课题:一个数除以小数)。
二、创设情境,自主探究。
(一)学习例5。
师:同学们,再过几天就是教师节了,为了庆祝教师节,美术小组的同学精心布置了学校的宣传栏。学校为他们买来一些荧光纸作装饰。(课件出示:学生装饰宣传栏的动画,接着出现对话:荧光纸0.85元一张,买荧光纸共用去7.65元。)。
师:从图上你能得到哪些数学信息?根据这些信息,你能提出什么数学问题?
师:怎样列式呢?
生:7.65÷0.85=(师板书算式)。
师:这个算式和我们刚才做的题目有什么不同?
生:刚才题中的除数是整数,而这道题的除数是小数。
1.初步探究计算方法。
师:请大家想一想,能不能用学过的知识解决呢?如果能,请算一算;如果不能,请试着把它转化为学过的知识来解决。请大家先独立思考,再把自己的想法和小组的同学交流一下。
师:谁愿意把自己的想法告诉大家?
生1:我想,可以把7.65元和0.85元都换成用“分”作单位,这样原式就转化成了765÷85,就可以计算出得数了。
生2:我觉得也可以利用商不变的性质,把被除数和除数同时扩大100倍,这时只要计算765÷85就可以了。
生3:我们刚学过除数是整数的小数除法,我想就把这道题看做7.65÷85来计算,根据商的变化规律,被除数不变,除数扩大了100倍,商就要缩小到它的,这样也可以算出7.65÷0.85的'商。
2.交流,评议。
师:同学们通过动脑筋想到了不同的方法,你认为哪种方法比较好?
生1:因为第1种方法只适合能够进行单位换算的一些数量,而第3种方法换来换去的有点麻烦。所以,我觉得第2种方法比较好。
生2:我也认为第2种方法比较方便,而且适合各种情况。
师:通过比较我们发现,可以利用商不变的性质,把7.65÷0.85转化成765÷85,也就是把“除数是小数的除法”转化成“除数是整数”的除法。
3.竖式的书写格式。
师:在转化时要注意“除数和被除数同时扩大相同的倍数”,这一转化过程如何在除法竖式中体现呢?(出示竖式)。
师:要想把除数转化成整数,要扩大到它的100倍,小数点可以向右移动两位。其实,只用划去除数中的零和小数点就可以了。(划去除数中的零和小数点)。
师:要想把被除数转化成整数,用同样的道理,只用划去被除数中的小数点就可以了。(划去被除数中的零和小数点)。
师:这时,原式就转化成了765÷85。
师:请同学们自己也照这样试一试,并把竖式补充完整。
(学生完成7.65÷0.85并组织学生相互评价)。
(二)练习。
(处理第22页“做一做”第1题)。
师:请大家先认真看清题意,可以同桌两人先互相说一说,然后再计算。
(三)总结归纳小数除法的计算方法。
师:同学们,今天我们一起研究了除数是小数的除法的计算方法,请大家想一想,怎样计算除数是小数的除法呢?(小组讨论之后,汇报交流)。
1组:我们认为,在计算除数是小数的除法时,关键是要把“除数是小数的除法”转化成“除数是整数的除法”,然后再按除数是整数的除法进行计算。
2组:在转化时要利用商不变的性质,就是说,除数扩大多少倍,被除数也要扩大相同的倍数。
3组:转化时,也可以看除数有几位小数,就把小数点各右移几位,同时被除数的小数点也要同时向右移动几位。
师:在计算除数是小数的除法时,先要看清除数有几位小数;再把除数和被除数的小数点同时向右移动相同的位数,使除数变成整数,然后再按照除数是整数的方法进行计算。
三、巩固练习。
(一)小组接力赛。
1.处理练习四第1题第一行。
(先独立完成,再同桌交流,然后用展台让部分学生的作业向全班展示,并评价。同时提醒答案不正确的要订正。)。
2.处理练习四第2题。
师:根据这些信息,你能提出什么数学问题?
生:鸵鸟的体重是天鹅的多少倍?
师:谁能把信息和问题连起来说一说?
(课件出示:鸵鸟是世界上最大的鸟,重134.9千克,天鹅只有9.5千克,鸵鸟的体重是天鹅的多少倍?)。
师:这个问题大家有信心解答吗?
生(齐):有!
(生独立完成,交流订正。)。
四、全课总结。
师:通过今天的学习,你有哪些收获?
生1:我学会了怎样计算除数是小数的小数除法。
生2:我知道了在遇到新问题时,要善于动脑,把新知识转化成已学过的知识,就能解决问题了。
生3:我还认识到了学习数学是很有用的,它可以帮我们解决生活中的一些数学问题。
一个数乘以小数教案设计篇四
知识与能力:掌握除数是小数的除法的计算方法,理解算理,能正确进行计算。
过程与方法:经历一个数除以小数算法的探究过程,培养学生转化的数学思想,提高发现问题,分析问题解决问题的能力。
情感态度与价值观:树立良好的学习习惯,激发学习兴趣。
掌握将除数转化为整数的算理,正确运用算法进行计算。
除数是小数的除法的正确计算。
师:上课,同学们好,请坐!
师:你的手举得最高,就请你。哦,熊大的奶奶在编中国结,已经编织了好多,挂满了整个屋子,充满了中秋的气氛。
师:哦,你说编一个中国结需要0.85m的丝绳,奶奶手里还有7.65m的丝绳。
师:你观察的很认真,同学们,根据他们发现的信息,你能提出一个数学问题吗?
师:7.65米的丝绳还可以编多少个这样的中国结呢?
师:这个问题很有价值,谁来解答一下怎样列式呢?
师:同学们,观察一下,这个算式和学过的除法算式有什么不同呢?
师:回答的非常好,之前学的除数是整数,而这个式子的除数是小数!
师:那想一想,除数是小数的怎么计算?能不能将除数转化为整数来计算呢?请同学们同桌之间相互探讨并完成学习单。
师:穿红衣服女生,你利用了单位转换的方法,0.85m单位转换后是85cm,7.65m单位转换后是765cm,765除以85商是9。
师:你可真是学习小能手,有同学用不同方法吗?
师:穿蓝衣服男生,在列竖式计算时,把除数乘100,0.85转化为85,就可以计算了。
师:你说也把被除数乘100,7.65转化为765,用765÷85商是9。
师:第三排男生,请你来说,哦,除数0.85转化为85,小数点向右移动两位,被除数7.65转化为765,小数点也向右移动两位。
师:你举手最快请你来说,12.6÷0.28。
师:非常棒,同学们观察一下这个式子,除数和被除数的小数位数不相同,该怎样转化为整数计算呢?大家可以参照我们刚刚那道题的转化过程,下面我们四人小组一起来讨论,完成后小组组长举手示意老师,开始吧!
师:看同学们都完成了,谁来分享一下你的成果呢?
师:第二组请你来说,利用商不变的性质,要把除数转化为整数,除数乘100,0.28转化为28。
师:如果使商不变,被除数如何转化呢?
师:你说被除数也要乘100,12.6乘100得数是1260,是1260÷28商是45。
师:那列竖式时小数点该怎样移动呢?被除数小数位数不够该怎么办呢?
师:探索王国的小精灵给我们送锦囊来了,我们一起来看大屏幕:如果被除数和除数的小数位数不同,在进行转化时,可以先看除数有几位小数,当除数的小数点向右移动几位时,被除数的小数点也向右移动几位,如果被除数的末尾位数不够,要用0补足。
师:同学们根据提示,请把竖式写在自己的学习单上吧,老师挑一位同学来黑板上板演。
师:看到同学们都完成了,我们一起来看板演同学写的,0.28的小数位数有两位,小数点向右移动两位,那么12.6的小数点也向右移动两位,但它只有一位小数,所以我们可以在后面填0补足,就转化成了1260.按照整数除法,商是45,所以12.6÷0.28商是45。
师:你们都做对了吗?看来大家都学会了计算了,下面我们一起来总结一下除数是小数的计算方法吧。
师:计算除数是小数的除法时,先移动除数的小数点,使它变成整数;除数的小数点向右移动几位,被除数的小数点也向右移动几位(位数不够的,在被除数的末尾用0补足);然后按除数是整数的小数除法进行计算。
师:经过交流合作我们学会了怎样计算除数是小数的除法,同学们掌握了吗?嗯,那下面老师要考考大家了,请看大屏幕中提,请同学写在自己作业本上,开始吧!
师:都一样啊!看来同学们都掌握了今天所学内容,老师为你们点赞!
师:学习了怎样计算除数是小数的除法,转换为整数计算,在移动小数点时,还要注意在被除数位数不够时要在末尾用0不足。
师:看来大家的收获还真不少呢!最后老师再送给大家一个开放性的数学作业,课后跟爸爸妈妈交流一下你今天的所学内容,同时寻找一下生活中遇到的小数除法问题,相信你们会从中感受到学习数学的价值,好,这节课就上到这里,同学们,下课。
一个数乘以小数教案设计篇五
1.知识与技能:理解除数是小数的除法算理。
2.过程与方法:掌握一个数除以小数的计算方法,并能正确的进行计算。
3.情感态度与价值观:自主探索、合作交流的过程中,培养学生的分析、转化和归纳概括的能力。
理解算理,掌握算法。
当被除数、除数的小数位数不同时,以除数作为标准转化为除数是整数的除法。
一、复习旧知并板书课题。
复习商不变的性质。
二、探究新知。
(一)自主探究理解算理。
课件出示信息:奶奶编“中国结”编一个中国结需要0.85米,现在有一根拉直的丝绳长7.65米。
师:从这个图上你能得到哪些数学信息?根据这些信息,你能提出哪些数学问题?
生交流。
师:同学们这个问题你能自己解决吗?该怎样列式呢?试着用自己的方法解出来。
生:1。
生:2。
生:1。
生:2。
(二)尝试用迁移法,来掌握算法。
师:这个题如果用竖式小数点又该怎么移动呢?你准备用什么方法计算,试着做出来。
集体交流。
生:1被除数和除数一定都要扩大相同的倍数,否则结果就错了。
(2)学生自主用竖式计算,师巡视。
反馈交流,统一竖式方法。
课件展示老师的方法并回顾竖式的书写过程。
师小结并屏显例5。
集体核对。
出示做一做1、2、3。
师:一个数除以小数的知识我们已经讲完了,大家来回顾一下它的计算法则是什么?
生:1。
生:2。
师屏显课件学生讨论情况。
师屏显老师总结的“一看”“二移”“三算“。
三、课堂达标基础过关。
(1)算一算强化巩固技能,深入理解方法。
(2)运用所学知识解决问题。
四、课堂总结。
1、通过本节课的学习,你有哪些收获?。
2、师小结:通过本节课的学习,我们学会了用转化和迁移的方法把除数是小数的除法,转化成整数,然后再用除数是整数的方法进行计算。在计算中一定我们还要注意在把被除数和除数扩大和缩小相同倍数时,一定要看除数小数的位数。
一个数乘以小数教案设计篇六
(二)掌握转化的数学思想,提高抽象概括的能力。
(一)复习准备。
1、说一说。
(1)0.4表示什么?
(2)1.2表示什么?
(3)0.85表示什么?
(4)1.06表示什么?
2、口算:
3×2=30×20=。
300×200=3000×20xx=。
18×4=1800×400=。
180×40=18000×4000=。
3、写出数量关系,并列式计算。
花布每米6.5元,买2米、3米、4米各用多少元?
(1)总价=单价×数量。
列式:6.5×2=13(元)6.5×3=19.5(元)6.5×4=26(元)。
(2)说出上面各算式的意义。
6.5×2表示2个6.5是多少或6.5的2倍是多少。
(二)学习新课。
1、出示例2:花布每米6.5元,买0.5米和0.82米各用多少元?
(1)根据上面的数量关系列式:
6.5×0.5。
6.5×0.82。
观察例2与复习题3有何不同?(复习题中的乘数都是整数。例2中的乘数都是小数。)这就是我们今天要研究的“一个数乘以小数”。(板书课题)。
思考:乘数是小数与乘数是整数的意义能相同吗?
学生试着画图理解。
6.5×0.5和6.5×0.82的意义。
6.5×0.5和6.5×0.82各表示什么?
0.5米的总价:6.5×0.5表示求6.5的十分之五。
0.82米的总价:6.5×0.82表示求6.5的百分之八十二。
说出下列算式的意义:
1.5×0.7。
3.5×0.25。
4.5×0.4。
3.2×0.125。
小结:一个数乘以小数的意义是什么?(一个数乘以小数的意义是求这个数的十分之几,百分之几,千分之几,……)。
怎样计算6.5×0.5呢?
讨论:怎样把小数乘法转化成整数乘法呢?
学生试做后讲解算理:
(被乘数、乘数分别扩大了10倍,积就扩大了10×10=100倍,要使积不变,就要把积缩小100倍。)。
计算6.5×0.82.
学生计算后讲算理。(被乘数扩大10倍,乘数扩大100倍,积扩大了10×100=1000倍,要使积不变,就要把积缩小1000倍。)。
2、小结:
(1)比较因数和积的小数位数,它们有什么联系?(积的小数位数是因数的小数位数之和。)。
(2)一个数乘以小数的计算方法是什么?(先按照整数乘法的法则算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。)。
(3)比较一个数乘以小数的计算方法与小数乘以整数的计算方法有什么关系?(它们的计算方法是一致的。)。
从而得出小数乘法的计算法则:计算小数乘法,先按照整数乘法的法则算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
(三)巩固反馈。
1、课本p4:6;p5:8。
2、根据36×24=864,很快说出下面各题的积。
3、先判断积中有几位小数,再计算:
78×0.6=3.24×5.2=。
4、说出下列算式的意义:
0.25×0.6=0.25×6=0.78×0.35=0.78×35=。
思考:乘法算式的意义由什么数决定?(乘法算式的意义由乘数决定。当乘数是整数时,是求几个相同加数的和的简便运算;当乘数是纯小数时,是求这个数的十分之几,百分之几,千分之几,……)。
5、作业:课本p4:5,7;p5:9.
一个数乘以小数是小数乘以整数知识的扩展和延伸,教学中充分利用了已有知识和技能,重点分析了积的'小数点位置的确定。首先从观察整数乘法算式得出积的变化规律,即整数相乘的积扩大的倍数为两个因数扩大的倍数的乘积。为理解小数乘法中积的小数位数就是两个因数的小数位数的和奠定了基础。
教学中重视引导学生运用转化的思想及知识的迁移规律,在充分理解算理的基础上,逐步总结出小数乘法的计算法则。
(略)。
一个数乘以小数教案设计篇七
练习五的第3-10题。
使学生理解和掌握除数是小数的除法的计算法则,能够正确地计算除数是小数的除法。
小黑板出示复习用的口算题。
1、小黑板出示下面的口算题,指名口算。
3.2?0.8=40.81?0.09=92.4?1.2=2。
42?0.7=606.4?0.08=8036?0.06=600。
2.6?0.13=20xx?0.5=704.8?0.04=120。
84?0.7=1206.3?0.09=7072?0.6=120。
指名说一说口算“6.4?0.08”、“36?0.06”和“2.6?0.13”时,是怎样移动被除数的小数点的。
2、教师出示下在两道题,请两名学生板演,其他学生在练习本上做。
85.1?0.23=3704644?0.86=5400。
做完后,让两名学生对照自己做题的过程,说一说除数是小数的小数除法的计算法则。
1.练习五第3题。
让学生审题,找出每道题错在哪里?原因是什么,教师指名回答。
2.练习五第4题。
学生独立计算。
3.练习五第5题。
让学生把答案直接写在书上,做完后,集体订正。
4.练习五第6题。
先让学生观察左面一栏各题被除数和除数的小数点的移动情况。要求学生根据第1小题的计算结果,直接写出第2、3小题的得数。教师巡视时,注意学生是怎样根据除数和被除数同时缩小相同的倍数,而使商不变的。
教师让学生自己计算右面一栏的.3小题。做完后问:被除数和除数各有什么变化?商有什么变化?(被除数不变。除数是第2题比第1题缩小100倍,也就是除数的小数点向左移动两位;商扩大了100倍,也就是小数点向右移动了两位。第3题的除数比第1题的除数缩小1000倍,也就是小数点向左移动三位;商扩大了1000倍,也就是小数点向右移动三位。)。
5.练习五第7题。
让学生先审题,第4道小题的被除数和除数有什么特点?怎样根据这些特点来做题。做完后,教师让学生说一说:“是怎样根据被除数和除数的特点来计算的?”“哪道题的商比被除数大?”
6.练习5第8题中第1行的3道小题。
让学生独立计算。做完后,集体订正。
7.练习五第9题。
教师要求学生按照题意列式计算。做完后集体订正。
练习五第8题中第2、3行的6道小题和第10题。
一个数乘以小数教案设计篇八
1.说一说。
(1)0.4表示什么?(2)1.2表示什么?
(3)0.85表示什么?(4)1.06表示什么?
2.口算:
3×2=30×20=30×200=3000×=。
通过讨论得出:积扩大的倍数,就是被乘数和乘数扩大的倍数的乘积。
根据这一规律,你能很快说出下组题的积吗?
18×4=1800×400=180×40=18000×4000=。
3.写出数量关系,并列式计算。
花布每米6.5元,买2米、3米、4米各用多少元?
(1)总价=单价×数量。
列式:6.5×2=13(元)6.5×3=19.5(元)6.5×4=26(元)。
(2)说出上面各算式的意义。(6.5×2表示2个6.5是多少或6.5的2倍是多少。)。
(二)学习新课。
1.出示例2:花布每米6.5元,买0.5米和0.82米各用多少元?
(1)根据上面的数量关系列式:
6.5×0.56.5×0.82。
观察例2与复习题3有何不同?(复习题中的乘数都是整数。例2中的乘数都是小数。)。
这就是我们今天要研究的“一个数乘以小数”。(板书课题)。
思考:乘数是小数与乘数是整数的意义能相同吗?
学生试着画图理解6.5×0.5和6.5×0.82的意义。
6.5×0.5和6.5×0.82各表示什么?
0.5米的总价:6.5×0.5表示求6.5的十分之五。
0.82米的总价:6.5×0.82表示求6.5的百分之八十二。
说出下列算式的意义:
1.5×0.73.5×0.254.5×0.43.2×0.125。
小结:一个数乘以小数的意义是什么?(一个数乘以小数的意义是求这个数的十分之几,百分之几,千分之几,……)。
怎样计算6.5×0.5呢?
讨论:怎样把小数乘法转化成整数乘法呢?
学生试做后讲解算理:
(被乘数、乘数分别扩大了10倍,积就扩大了10×10=10o倍,要使积不变,就要把积缩小100倍。)。
计算6.5×0.82。
学生计算后讲算理。(被乘数扩大10倍,乘数扩大100倍,积扩大了10×100=1000倍,要使积不变,就要把积缩小1000倍。)。
2.小结:
(1)比较因数和积的小数位数,它们有什么联系?(积的小数位数是因数的.小数位数之和。)。
(2)一个数乘以小数的计算方法是什么?(先按照整数乘法的法则算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。)。
(3)比较一个数乘以小数的计算方法与小数乘以整数的计算方法有什么关系?(它们的计算方法是一致的。)。
从而得出小数乘法的计算法则:计算小数乘法,先按照整数乘法的法则算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
(三)巩固反馈。
1.课本p4:6;p5:8。
2.根据36×24=864,很快说出下面各题的积。
36×2.4=360×0.24=0.36×0.24=。
3.6×2.4=0.36×2.4=0.036×2400=。
3.先判断积中有几位小数,再计算:
78×0.6=3.24×5.2=。
4.说出下列算式的意义:
0.25×0.6=0.25×6=0.78×0.35=0.78×35=。
思考:乘法算式的意义由什么数决定?(乘法算式的意义由乘数决定。当乘数是整数时,是求几个相同加数的和的简便运算;当乘数是纯小数时,是求这个数的十分之几,百分之几,千分之几,……)。
5.作业:课本p4:5,7;p5:9。
课堂教学设计说明。
一个数乘以小数是小数乘以整数知识的扩展和延伸,教学中充分利用了已有知识和技能,重点分析了积的小数点位置的确定。首先从观察整数乘法算式得出积的变化规律,即整数相乘的积扩大的倍数为两个因数扩大的倍数的乘积。为理解小数乘法中积的小数位数就是两个因数的小数位数的和奠定了基础。
教学中重视引导学生运用转化的思想及知识的迁移规律,在充分理解算理的基础上,逐步总结出小数乘法的计算法则。
一个数乘以小数教案设计篇九
1、使学生初步掌握除数是小数的除法的计算法则。
2、提高学生的知识迁移能力。
3、培养学生细心做题的好习惯。
1.把下列各数的小数点去掉,原数扩大了多少倍?
13.84.670.725。
2、除数扩大10倍,要使商不变,被除数应怎样怎样变化?
4、把5.34扩大10倍,小数点应怎样移动?要扩大1000倍呢?
5、学生填写括号里的数:
被除数15150()。
除数550500。
商()()3。
学生小结运用了什么规律?(商不变的性质)。
学生做43.5÷5=8.7。
然后改题:4.35÷0.5猜一猜得数是多少?为什么?
(1)教师:图上有那些信息?根据信息分析题意,列出算式:7.65÷0.85。
(2)问:想一想,除数是小数怎么计算?(转化成除数是整数的`除法来计算。)。
(3)问:怎样转化?组织学生分组讨论,把讨论的意见写在纸上,让一个组的学生在视频展示台上展示出来,边展示边讲解,讲解后问台下的学生“你们对我们讨论的结果有什么意见?”台下的学生给台上的学生提建议,从而引发全班讨论.多让几个小组的学生上台讲解自己组的意见。
生讨论得出:把除数0.85扩大100倍变成85,被除数7.65也要扩大100倍,这样商不变。注意:原竖式中除数的小数点和前面的0及被除数的小数点划去。
教师:你们是怎样处理被除数和除数小数位数不同的问题的呢?
引导学生说出在被除数的小数末尾添0,使除数和被除数的小数位数相同以后,再把除数和被除数同时扩大相同的倍数。小数位移不够,在小数末尾添0。
小结:学生说一说学到了什么?教师适当小结。
1、书上第22页“做一做”
2、练习:判断并改错:
一个数乘以小数教案设计篇十
(一)复习准备。
1.说一说。
(1)0.4表示什么?
(2)1.2表示什么?
(3)0.85表示什么?
(4)1.06表示什么?
2.口算:
3×2=30×20=。
300×200=3000×20xx=。
18×4=1800×400=。
180×40=18000×4000=。
3.写出数量关系,并列式计算。
花布每米6.5元,买2米、3米、4米各用多少元?
(1)总价=单价×数量。
列式:6.5×2=13(元)6.5×3=19.5(元)6.5×4=26(元)。
(2)说出上面各算式的意义。(6.5×2表示2个6.5是多少或6.5的2倍是多少。)。
(二)学习新课。
1.出示例2:花布每米6.5元,买0.5米和0.82米各用多少元?
(1)根据上面的数量关系列式:
6.5×0.56.5×0.82。
观察例2与复习题3有何不同?(复习题中的乘数都是整数。例2中的乘数都是小数。)这就是我们今天要研究的“一个数乘以小数”。(板书课题)。
思考:乘数是小数与乘数是整数的意义能相同吗?
学生试着画图理解6.5×0.5和6.5×0.82的意义。
6.5×0.5和6.5×0.82各表示什么?
0.5米的总价:6.5×0.5表示求6.5的十分之五。
0.82米的总价:6.5×0.82表示求6.5的百分之八十二。
说出下列算式的意义:
1.5×0.73.5×0.254.5×0.43.2×0.125。
小结:一个数乘以小数的意义是什么?(一个数乘以小数的意义是求这个数的十分之几,百分之几,千分之几,……)。
怎样计算6.5×0.5呢?
讨论:怎样把小数乘法转化成整数乘法呢?
学生试做后讲解算理:
(被乘数、乘数分别扩大了10倍,积就扩大了10×10=100倍,要使积不变,就要把积缩小100倍。)。
计算6.5×0.82。
学生计算后讲算理。(被乘数扩大10倍,乘数扩大100倍,积扩大了10×100=1000倍,要使积不变,就要把积缩小1000倍。)。
2.小结:
(1)比较因数和积的小数位数,它们有什么联系?(积的小数位数是因数的'小数位数之和。)。
(2)一个数乘以小数的计算方法是什么?(先按照整数乘法的法则算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。)。
(3)比较一个数乘以小数的计算方法与小数乘以整数的计算方法有什么关系?(它们的计算方法是一致的。)。
从而得出小数乘法的计算法则:计算小数乘法,先按照整数乘法的法则算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
(三)巩固反馈。
1.课本p4:6;p5:8。
2.根据36×24=864,很快说出下面各题的积。
36×2.4=360×0.24=0.36×0.24=。
3.6×2.4=0.36×2.4=0.036×2400=。
3.先判断积中有几位小数,再计算:
78×0.6=3.24×5.2=。
4.说出下列算式的意义:
0.25×0.6=0.25×6=。
0.78×0.35=0.78×35=。
思考:乘法算式的意义由什么数决定?(乘法算式的意义由乘数决定。当乘数是整数时,是求几个相同加数的和的简便运算;当乘数是纯小数时,是求这个数的十分之几,百分之几,千分之几,……)。
5.作业:课本p4:5,7;p5:9。
一个数乘以小数是小数乘以整数知识的扩展和延伸,教学中充分利用了已有知识和技能,重点分析了积的小数点位置的确定。首先从观察整数乘法算式得出积的变化规律,即整数相乘的积扩大的倍数为两个因数扩大的倍数的乘积。为理解小数乘法中积的小数位数就是两个因数的小数位数的和奠定了基础。
教学中重视引导学生运用转化的思想及知识的迁移规律,在充分理解算理的基础上,逐步总结出小数乘法的计算法则。
板书设计(略)。
一个数乘以小数教案设计篇十一
(二)掌握转化的数学思想,提高抽象概括的能力。
教学重点和难点。
教学过程设计。
(一)复习准备。
1.说一说。
(1)0.4表示什么?
(2)1.2表示什么?
(3)0.85表示什么?
(4)1.06表示什么?
2.口算:
3×2=30×20=。
300×200=3000×=。
18×4=1800×400=。
180×40=18000×4000=。
3.写出数量关系,并列式计算。
花布每米6.5元,买2米、3米、4米各用多少元?
(1)总价=单价×数量。
列式:6.5×2=13(元)6.5×3=19.5(元)6.5×4=26(元)。
(2)说出上面各算式的意义。(6.5×2表示2个6.5是多少或6.5的2倍是多少。)。
(二)学习新课。
1.出示例2:花布每米6.5元,买0.5米和0.82米各用多少元?
(1)根据上面的数量关系列式:
6.5×0.56.5×0.82。
观察例2与复习题3有何不同?(复习题中的乘数都是整数。例2中的乘数都是小数。)这就是我们今天要研究的“一个数乘以小数”。(板书课题)。
思考:乘数是小数与乘数是整数的意义能相同吗?
学生试着画图理解6.5×0.5和6.5×0.82的意义。
6.5×0.5和6.5×0.82各表示什么?
0.5米的总价:6.5×0.5表示求6.5的十分之五。
0.82米的总价:6.5×0.82表示求6.5的百分之八十二。
说出下列算式的意义:
1.5×0.73.5×0.254.5×0.43.2×0.125。
小结:一个数乘以小数的意义是什么?(一个数乘以小数的意义是求这个数的十分之几,百分之几,千分之几,……)。
怎样计算6.5×0.5呢?
讨论:怎样把小数乘法转化成整数乘法呢?
学生试做后讲解算理:
(被乘数、乘数分别扩大了10倍,积就扩大了10×10=100倍,要使积不变,就要把积缩小100倍。)。
计算6.5×0.82。
学生计算后讲算理。(被乘数扩大10倍,乘数扩大100倍,积扩大了10×100=1000倍,要使积不变,就要把积缩小1000倍。)。
2.小结:
(1)比较因数和积的小数位数,它们有什么联系?(积的小数位数是因数的小数位数之和。)。
(2)一个数乘以小数的计算方法是什么?(先按照整数乘法的法则算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。)。
(3)比较一个数乘以小数的计算方法与小数乘以整数的计算方法有什么关系?(它们的计算方法是一致的。)。
从而得出小数乘法的计算法则:计算小数乘法,先按照整数乘法的法则算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
(三)巩固反馈。
1.课本p4:6;p5:8。
2.根据36×24=864,很快说出下面各题的积。
36×2.4=360×0.24=0.36×0.24=。
3.6×2.4=0.36×2.4=0.036×2400=。
3.先判断积中有几位小数,再计算:
78×0.6=3.24×5.2=。
4.说出下列算式的意义:
0.25×0.6=0.25×6=。
0.78×0.35=0.78×35=。
思考:乘法算式的意义由什么数决定?(乘法算式的意义由乘数决定。当乘数是整数时,是求几个相同加数的和的简便运算;当乘数是纯小数时,是求这个数的十分之几,百分之几,千分之几,……)。
5.作业:课本p4:5,7;p5:9。
课堂教学设计说明。
一个数乘以小数是小数乘以整数知识的扩展和延伸,教学中充分利用了已有知识和技能,重点分析了积的小数点位置的确定。首先从观察整数乘法算式得出积的变化规律,即整数相乘的积扩大的倍数为两个因数扩大的倍数的乘积。为理解小数乘法中积的小数位数就是两个因数的小数位数的和奠定了基础。
教学中重视引导学生运用转化的思想及知识的迁移规律,在充分理解算理的基础上,逐步总结出小数乘法的计算法则。
板书设计(略)。
一个数乘以小数教案设计篇十二
教学的节奏是由教师来把握,但是把我的前提是学生接受的程度,如果大面积的学生显示出需要“加强营养”的话,那我们就得反思自己的教学是不是有什么问题了,如果听之任之的话,将会收获一堆青涩的果实。
这是一节关于《一个数除以小数》的计算课,本节课由回顾“商不变的性质”导入新课,让学生再次感受当被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。从而自然而然的让学生面对一道一个数除以小数的题目让孩子们自己想解决问题的方法,大多数学生想到了利用商不变的性质去解决。但是从个别学生的表情上我观察到了一种茫然,于是我想到了再次让学生跟着我一起回顾上学期学习过的“商不变的性质”,用最简单的整数除法的例题引导她掌握规律,充分的进行相关的练习,直到离下课还剩下5分钟的时候才给这个孩子出了一道简单的例题:45÷1.5,让这几个学生探索,让他们先观察这个算式与45÷15的不同之处,然后再想想有没有什么方法去解决问题,如果这里的除数是什么样的数字就好办了?学生立刻想到了如果是整数就好办了,可是如果把除数变成整数的话,得出来的商肯定要发生变化的不是吗?因此,让孩子们跟着我来回忆商不变的性质是怎么说的……耐心的讲解和启发,是会让一朵朵小花开的很灿烂的!这种静待花开的感觉真好!
这样的教学还是初次尝试,但是基本上想要达到的效果还是有的。希望每天的花都能开的更美更艳丽,希望每天的教学都能够跟好更精彩!
一个数乘以小数教案设计篇十三
学生试算,小组交流。(学生出现了几种列式计算方法,有的对,有的错了。)。
交流讨论:四人小组讨论:你认为这几种方法对吗?(在学生交流的基础上,师生归纳出:先把除数扩大成整数,再根据整数除法的`法则进行计算。)。
1.再次尝试:26.88÷0.96。
2.校对交流:除数是小数的除法,既可以把被除数和除数都转化成整数,也可以中把除数转化成整数,这两种方法都是正确的。
3.感受发现:先把除数扩大成整数,再根据整数除法的法则进行计算方便多了。
4.归纳小结。
1.判断:0.81÷0.9=81÷9。
6.6÷0.2=6÷2。
2.列式算一算:7.56÷1.2和3.216÷0.16。
3.实践运用。
学校要修建数学活动室,现有三家承包商参加招标,情况如下:在建造时间不超过6天的前提下,请你算一算,哪家承包商每平方米造价最便宜?(1)你会先考虑什么?再考虑什么?(2)四人小组讨论交流。(3)代表汇报。
承包商。
活动室设计面积(平方米)。
平均每天建造面积(平方米。
总造价(元)。
甲
14.4。
3.6。
374.4。
乙
15.6。
2.6。
413.4。
丙
19.6。
2.8。
446.88。
1.基本练习。
我认为教学成功的关键在于让学生主动参与学习数学,获得成功的体验,取得预设的教学目标,为以后的学习打好基础。
一个数乘以小数教案设计篇十四
“除数是小数的除法”是小学数学教学中的一个重点,又是难点,它在计算教学中处于关键地位。这一内容是在学生掌握了整数除法,除数是整数的小数除法及商不变规律的基础上教学的。本节课的教学重点是让学生理解并掌握一个数除以小数的算理和计算方法。教学难点是让学生理解“被除数的小数点位置的移动要随着除数的变化而变化”。
一、以商不变的性质为突破点。
除数是整数的小数除法学生较容易掌握。但除数是小数的除法却是个难点。而商不变性质正是联系旧知与新知的桥梁,也是新知的最佳生长点。在教学中,复习旧知后,我要求学生根据表格的数据总结出商不变的规律。这是学习层面的一个飞跃,但却是有根据、有基础的飞跃。学生能根据商不变性质来说理,就证明了这个飞跃是学生能够接受的。紧紧抓住商不变性质这根线索,这部分内容就能轻松获得突破。
二、突出“转化”的数学思想。
引导学生将新知识转化成旧知识(将一个数除以小数转化成小数除以整数)进行学习,注重“转化”的'数学思想方法。计算除数是小数的除法,要根据商不变性质先转化为除数是整数的小数除法来计算,再反推出原式的商。计算除数是小数的除法,最根本的是要先按照除数是整数的除法算出商,教学中让学生在计算前多说一说除数和被除数要同时扩大到原数的多少倍,小数点同时向右移动几位。使学生习惯于把除数是小数的除法转化成除数是整数的除法来计算。
三、坚持以学生为主体的原则。
课堂上注意给学生充分独立思考的时间和机会。比如,列出算式7.65÷0.85后,问学生“这个算式和我们以前学的除法算式有什么不一样?你会算吗?自己先试试”。尊重学生原有的知识结构,让学生有一个独立思考的时间,通过思考出现认知冲突,从而激起学生的学习兴趣。
在本节课的实际教学中,自己有很多做得不够的地方,如:学生在汇报完自己的想法,引导学生观察、比较、分析例题与复习题之间的联系与区别时,太急于归纳“一个数除以小数”的计算法则,而没有让很多的学生通过更多的练习经历自己进行归纳;练习的设计虽然有层次,但是还可以设计一些体现怎样移动小数点,使除数是小数的除法如何转换成除数是整数的除法,这样的练习不需要学生计算,这样可以更好的提高教学效率,加强学生对本节课教学重点的掌握。
一个数乘以小数教案设计篇十五
教学目标:
1.初步理解并掌握除数是小数的除法的计算法则,并能正确地进行计算。
2.掌握将小数的除法转化成除数是整数的除法的'推导过程,初步培养学生转化的思想。
教学重点:
理解除数是小数的除法的计算法则和算理。
教学难点:
掌握被除数的小数点向右移动时,如果位数不够,要在被除数末尾用0补足的方法。
教学工具:
课件,实物投影。
教学过程:
1.复习除数是整数的小数除法。
5.046=50.460=。
(1)竖式计算5.046=。
(2)不计算说出50.460的商。(根据被除数和除数变化相同,商不变)。
2.新课引入。
奶奶编中国结,编一个要用0.85米丝绳,7.65米丝绳,可以编几个中国结?
(1)列式。
(3)能转化成除数是整数的除法来算吗?为什么?
(4)怎样列竖式?
小结:一个数除以小数,根据被除数和除数的变化相同,商不变,可通过把除数和被除数的小数点同时向右移动相同的位数,转化为除数是整数的除法来计算。
3.基本练习一。
竖式计算下列各题。
(1)说一说,怎样以上各式转化成除数是整数的除法。
(2)竖式计算,学生1号本上演算,三位学生板演。
(3)集体评讲。注意第三题,被除数的小数位数不够时,怎么办?(用0补足)。
基本练习二。
1.80.24=211.4=。
小结:当被除数的小数位数不够足时,用0补足。
4.基本练习三。
独立完成书22页做一做的第2题,先判断对错,说明错在哪里并且改正。
6.作业布置。
一个数乘以小数教案设计篇十六
一个数除以小数是人教版五年级上册第三单元的内容。是在学生学习过除数是整数的除法后进行的。除法的学习由口算过渡到笔算,在三年级学生已经接触到了,不过所认识的都是除数是一位数的除法,学生基本上明白了要怎样去操作,但是到了五年级学生学习小数除数时,他们往往都存在着不同程度的疑惑,主要是小数点的位置把握不准。由于对教材把握不太透彻,这节课有地方讲的不够透彻。在作业反馈中,我发现学生计算错误较多。主要表现在以下几个方面:
一、不能顺利的移动小数点。通过移动小数点把除数变成整数,所有的学生都知道,
也都能顺利完成,关键是后进生总是忘了同样移动被除数的小数点。或者移动得次数与除数不一致。虽然他们知道除数与被除数的小数点移动是根据商不变的性质来的,但是他们在做作业的时候,就忘记了。
二、在完成竖式的过程中,数位对不齐。这也是部分学生错误的原因之一。
三、商的小数点与被除数原来的小数点对齐。
四、算时用用商乘以移动小数点后的除数。
五、除到哪位商那位,不够时忘记在商的位置上写0,再拉下一个数。还有部分学生用余数再除一次。
时地指点,这样或许效果会好许多。
就应该当作整数除法来算,当整数部分除完还有余数时,应该先在商中间打上小数点,再添0计算。我改学生的.作业时发现,很多学生移动小数的位数错误,导致了计算思路不清晰,影响计算结果!而商不变的性质是小学中高阶段很重要的性质,它对于分数的学习也至关重要,但真正能把这个性质弄懂弄透,并不容易,很多学生不能体会这个性质的内涵,当利用商不变的性质解题时,其实是将小数除法的计算过程进行简化的,但是当被除数和除数发生相应的改变后,学生的思路跟不上,造成计算失误严重。在以后的教学中,要尽量避免以上情况。
一个数乘以小数教案设计篇十七
教学目标:
1.初步理解并掌握除数是小数的除法的计算法则,并能正确地进行计算。
2.掌握将小数的除法转化成除数是整数的除法的推导过程,初步培养学生转化的思想。
教学重点:
理解除数是小数的`除法的计算法则和算理。
教学难点:
掌握被除数的小数点向右移动时,如果位数不够,要在被除数末尾用“0”补足的方法。
教学工具:
课件,实物投影。
教学过程:
1、复习除数是整数的小数除法。
5.04÷6=50.4÷60=。
(1)竖式计算5.04÷6=。
(2)不计算说出50.4÷60的商。(根据被除数和除数变化相同,商不变)。
2、新课引入。
(1)列式。
(2)与前面两题比较有何不同。(板书:一个数除以小数)。
(3)能转化成除数是整数的除法来算吗?为什么?
(4)怎样列竖式?
小结:一个数除以小数,根据“被除数和除数的变化相同,商不变”,可通过把除数和被除数的小数点同时向右移动相同的位数,转化为除数是整数的除法来计算。
3、基本练习一。
竖式计算下列各题。
62.4÷2.6=0.544÷0.16=12.6÷0.28=。
(1)说一说,怎样以上各式转化成除数是整数的除法。
(2)竖式计算,学生1号本上演算,三位学生板演。
(3)集体评讲。注意第三题,被除数的小数位数不够时,怎么办?(用“0”补足)。
基本练习二。
1.8÷0.24=21÷1.4=。
小结:当被除数的小数位数不够足时,用“0”补足。
4、基本练习三。
独立完成书22页“做一做”的第2题,先判断对错,说明错在哪里并且改正。
5、总结:通过今天的学习,说一说一个数除以小数的计算方法是什么?
6、作业布置。
一个数乘以小数教案设计篇十八
教学目的:
1、使学生初步理解并掌握除数是小数的除法的计算法则,并能正确地进行计算。
2、掌握将除数是小数的除法转化成除数是整数的除法的推导过程,初步培养学生转化的数学思想。
3、培养学生利用旧知识解决新问题的能力,提高学生知识迁移的能力。
教学重点:理解除数是小数的除法的计算法则和算理。
教学难点:掌握被除数的小数点向右移动时,如果位数不够,要在被除数末尾用0补足的方法。
教学过程:
一、复习旧知:
1、把下列各数的小数点去掉,原数扩大了多少倍?
13.84.670.725。
2、把5.34扩大10倍,小数点应怎样移动?要扩大1000倍呢?
3、学生填写括号里的数:
被除数15150()。
除数550500。
商()()3。
问:运用了什么规律?(商不变的性质)。
4、计算:43.5÷5=8.7。
二、引入新课:
三、新授:
1、出示例5。
观察算式和前面学习的除法算式有什么不同?
今天这节课我们就一起来探讨除数是小数除法的计算方法。
问:怎样转化?组织学生分组讨论,把讨论的意见写在纸上,让一个组的学生在视频展示台上展示出来,边展示边讲解,讲解后问台下的学生“你们对我们讨论的结果有什么意见?”台下的学生给台上的学生提建议,从而引发全班讨论.多让几个小组的学生上台讲解自己组的意见。
问:为什么要把除数和被除数同时扩大10倍?
生讨论得出:把除数0.85扩大100倍变成85,被除数7.65也要扩大100倍,这样商不变。注意:原竖式中除数的小数点和前面的0及被除数的小数点划去。
2、出示例6:
教师:你们是怎样处理被除数和除数小数位数不同的问题的呢?引导学生说出在被除数的小数末尾添0,使除数和被除数的小数位数相同以后,再把除数和被除数同时扩大相同的倍数。小数位移不够,在小数末尾添0。
小结:学生说一说学到了什么?你能说一说除数是小数的除法如何计算?教师引导学生从一看、二移、三算三个方面进行归纳。
四、巩固练习:
1、p22做一做。
2、判断并改错:
1.44÷1.8=811.7÷2.6=4.54.48÷3.2=1.4。
五、小结:今天的内容你学会了吗?
一个数乘以小数教案设计篇十九
我认为教学成功的关键在于让学生主动参与学习数学,获得成功的体验,取得预设的教学目标,为以后的学习打好基础。这节课我努力做到以下几点:
一、情境教学培养数学兴趣。
数学来源于生活,创设生活情境,列举生活中的问题,更能唤起学生的生活经验,产生很想解决生活问题的冲动。这种生活味的数学带来的现实感和亲切感更能激发学生学习数学的兴趣。使枯燥的计算生活性、生动性、趣味性,让学生愿算、会算、算准、算活!
二、计算方法学生自主探索。
课前,教师出示问题,简便快速地引出这节课的问题----如何计算除数是小数的除法。因为之前学生已经掌握了相关的知识及小数除以整数的除法,所以学生可以利用这些知识经验探索一个数除以小数的计算方法。之所以能放手让学生在自主探索、反馈校正中获得经验,得出计算方法,关键在于我对计算教学有了新的认识:着眼学生可持续发展能力的培养。计算教学的目标不仅仅是让学生学会计算,还要对学生探究能力、知识迁移、合作交流能力进行培养。为以后的数学学习积累经验,打下基础。
三、学生自主优化计算方法。
《数学课程标准》非常强调:计算教学时,要鼓励算法多样化,要避免繁杂的运算,避免将运算与应用割裂开来。课堂上,我引导学生呈现各种方法,学生在理解各种方法的过程中,不仅思维得到锻炼,而且提高了自己对方法的优化。教师不强求学生用一种固定的方法,这会局限学生的思维,同时应该引导学生掌握好的方法。教学时我也注意到了不能一味地追求算法的多样化,而是让学生积极、主动地去探索众多算法中更简便的方法。学生在选择合理方法进行计算时,处理了算法的多样化与一般化之间的关系,渗透策略优化的思想。
四、实践应用感受数学价值。
过去的.解决问题,总是一些数学模式化后的习题。学生按照模式能很快地找到解决问题的方法。可以说,这些数学化的习题,降低了学生分析问题的能力。而本节课的实践应用,较真实地呈现给学生各种方案,学生在进行了比较的时候,自然地发现要运用今天所学的知识解题。这样的习题设计,一方面巩固了学生知识技能的掌握,另一方面也培养了学生学习数学的兴趣。
【本文地址:http://www.xuefen.com.cn/zuowen/11958890.html】