教案的编写过程需要教师经过认真思考和准备,确保教学的有效性和高效性。教师应当不断反思和调整教学策略,提高教学的有效性。在以下教案范文中,你会看到一些有关课堂互动、评价和反思的设计想法和建议。
七年级数学教案设计篇一
(二)能力训练目标:
1、经历探索有理数乘法的运算律的过程,发展观察、归纳的能力。
2、能运用乘法运算律简化计算。
(三)情感与价值观要求:
1、在共同探索、共同发现、共同交流的过程中分享成功的喜悦。
2、在讨论的过程中,使学生感受集体的力量,培养团队意识。
乘法运算律的运用。
乘法运算律的运用。
探究交流相结合。
创设问题情境,引入新课。
[活动1]。
问题2:计算下列各题:
(1)(-7)×8;。
(2)8×(-7);
(5)[3×(-4)]×(-5);
(6)3×[(-4)×(-5)];
[师生]由学生自主探索,教师可参与到学生的讨论中。
像前面那样规定有理数乘法法则后,乘法的交换律和结合律与分配律在有理数乘法中仍然成立。我们可以通过问题2来检验。(略)。
[师]同学们自己采用上面的方法来探究一下分配律在有理数范围内成立吗?
[生]例如:5×[3十(-7)]和5×3十5×(-7);(略)。
[师](-5)×(3-7)和(-5)×3-5×7的结果相等吗?
(注意:(-5)×(3-7)中的3-7应看作3与(-7)的和,才能应用分配律。否则不能直接应用分配律,因为减法没有分配律。)。
讲授新课:
[活动2]用文字语言和字母把乘法交换律、结合律、分配律表达出来。
应得出:
1、一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等。
2、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
3、一般地,一个数同两个数的和相乘,等于这个数分别同这两个数相乘,再把积相加。
[活动3][师生]教师引导学生讨论、交流,从中体会学习的快乐。
3、用简便方法计算:
[活动4]。
练习(教科书第42页)。
这节课我们学习乘法的运算律及它们的运用,使我们体验到了掌握一般的正常运算外,还要灵活运用运算律,能简便的一定要简便,这样做既快又准。
课后作业:课本习题1.4的第7题(3)、(6)。
用简便方法计算:
(1)6.868×(-5)+6.868×(一12)+6.868×(+17)。
(2)[(4×8)×25一8]×125。
七年级数学教案设计篇二
2.内容解析。
有理数的乘法是继有理数的加减法之后的又一种基本运算.有理数乘法既是有理数运算的深入,又是进一步学习有理数的除法、乘方的基础,对后续代数学习是至关重要的.
与有理数加法法则类似,有理数乘法法则也是一种规定,给出这种规定要遵循的原则是“使原有的运算律保持不变”.本节课要在小学已掌握的乘法运算的基础上,通过合情推理的方式,得到“要使正数乘正数(或0)的规律在正数乘负数、负数乘负数时仍然成立,那么运算结果应该是什么”的结论,从而使学生体会乘法法则的合理性.与加法法则一样,正数乘负数、负数乘负数的法则,也要从符号和绝对值来分析.由于绝对值相乘就是非负数相乘,因此,这里关键是要规定好含有负数的两数相乘之积的符号,这是有理数乘法的本质特征,也是乘法法则的核心.
基于以上分析,可以确定本课的教学重点是两个有理数相乘的符号法则.
二、目标及其解析。
1.目标。
(1)理解有理数乘法法则,能利用有理数乘法法则计算两个数的乘法.
(2)能说出有理数乘法的符号法则,能用例子说明法则的合理性.
2.目标解析。
达成目标(1)的标志是学生在进行两个有理数乘法运算时,能按照乘法法则,先考虑两乘数的符号,再考虑两乘数的绝对值,并得出正确的结果.
达成目标(2)的标志是学生能通过具体例子说明有理数乘法的符号法则的归纳过程.
三、教学问题诊断分析。
有理数的乘法与小学学习的乘法的区别在于负数参与了运算.本课要以正数、0之间的运算为基础,构造一组有规律的算式,先让学生从算式左右各数的符号和绝对值两个角度观察这些算式的共同特点并得出规律,再以问题“要使这个规律在引入负数后仍然成立,那么应有……”为引导,让学生思考在这样的规律下,正数乘负数、负数乘正数、两个负数相乘各应有什么运算结果,并从积的符号和绝对值两个角度总结出规律,进而给出有理数乘法法则,在这个过程中体会规定的合理性.上述过程中,学生对于为什么要讨论这些问题、什么叫“观察下面的乘法算式”、从哪些角度概括算式的规律等,都会出现困难.为了解决这些困难,教师应该在“如何观察”上加强指导,并明确提出“从符号和绝对值两个角度看规律”的要求.
本课的教学难点是:如何观察给定的乘法算式;从哪些角度概括算式的规律.
四、教学过程设计。
教师引导学生从有理数分类的角度考虑,区分出有理数乘法的情况有:正数乘正数、正数与0相乘、正数乘负数、负数乘正数、负数乘负数.
设计意图:有理数分为正数、零、负数,由此引出两个有理数相乘的几种情况,既复习有关知识,为下面的教学做好准备,又渗透了分类讨论思想.
问题2下面从我们熟悉的乘法运算开始.观察下面的乘法算式,你能发现什么规律吗?
3×3=9,
3×2=6,
3×1=3,
3×0=0.
追问1:你认为问题要我们“观察”什么?应该从哪几个角度去观察、发现规律?
如果学生仍然有困难,教师给予提示:
(1)四个算式有什么共同点?——左边都有一个乘数3.
(2)其他两个数有什么变化规律?——随着后一个乘数逐次递减1,积逐次递减3.
设计意图:构造这组有规律的算式,为通过合情推理,得到正数乘负数的法则做准备.通过追问、提示,使学生知道“如何观察”“如何发现规律”.
教师:要使这个规律在引入负数后仍然成立,那么,3×(-1)=-3,这是因为后一乘数从0递减1就是-1,因此积应该从0递减3而得-3.
追问2:根据这个规律,下面的两个积应该是什么?
3×(-2)=,
3×(-3)=.
练习:请你模仿上面的过程,自己构造出一组算式,并说出它的变化规律.
设计意图:让学生自主构造算式,加深对运算规律的理解.
先让学生观察、叙述、补充,教师再总结:都是正数乘负数,积都为负数,积的.绝对值等于各乘数绝对值的积.
设计意图:先得到一类情况的结果,降低归纳概括的难度,同时也为后面的学习奠定基础.
问题3观察下列算式,类比上述过程,你又能发现什么规律?
3×3=9,
2×3=6,
1×3=3,
0×3=0.
鼓励学生模仿正数乘负数的过程,自己独立得出规律.
设计意图:为得到负数乘正数的结论做准备;培养学生的模仿、概括的能力.
追问1:要使这个规律在引入负数后仍然成立,你认为下面的空格应各填什么数?
(-1)×3=,
(-2)×3=,
(-3)×3=.
练习:请你模仿上面的过程,自己构造出一组算式,并说出它的变化规律.
先让学生观察、叙述、补充,教师再总结:都是负数乘正数,积都为负数,积的绝对值等于各乘数绝对值的积.
追问3:正数乘负数、负数乘正数两种情况下的结论有什么共性?你能把它概括出来吗?
设计意图:让学生模仿已有的讨论过程,自己得出负数乘正数的结论,并进一步概括出“异号两数相乘,积的符号为负,积的绝对值等于各乘数绝对值的积”.既使学生感受法则的合理性,又培养他们的归纳思想和概括能力.
问题4利用上面归纳的结论计算下面的算式,你能发现其中的规律吗?
(-3)×3=,
(-3)×2=,
(-3)×1=,
(-3)×0=.
追问1:按照上述规律填空,并说说其中有什么规律?
(-3)×(-1)=,
(-3)×(-2)=,
(-3)×(-3)=.
设计意图:由学生自主探究得出负数乘负数的结论.因为有前面积累的丰富经验,学生能独立完成.
问题5总结上面所有的情况,你能试着自己给出有理数乘法法则吗?
学生独立思考后进行课堂交流,师生共同完成,得出结论后再让学生看教科书.
学生独立思考、回答.如果有困难,可先让学生看课本第29页有理数乘法法则后面的一段文字.
设计意图:让学生尝试归纳乘法法则,明确按法则计算的关键步骤.
例1计算:
(1)。
;(2)。
;(3)。
学生独立完成后,全班交流.
教师说明:在(3)中,我们得到了。
=1.与以前学习过的倒数概念一样,我们说。
与-2互为倒数.一般地,在有理数中仍然有:乘积是1的两个数互为倒数.
追问:在(2)中,8和-8互为相反数.由此,你能说说如何得到一个数的相反数吗?
设计意图:本例既作为巩固乘法法则,又引出了倒数的概念(因为这个概念很容易理解),同时说明了求一个数的相反数与乘-1之间的关系(反过来有-8=8×(―1)).
设计意图:利用有理数乘法解决实际问题,体现数学的应用价值.
小结、布置作业。
请同学们带着下列问题回顾本节课的内容:
(2)用有理数乘法法则进行两个有理数的乘法运算的基本步骤是什么?
(3)举例说明如何从正数、0的乘法运算出发,归纳出正数乘负数的法则.
(4)你能举例说明符号法则“负负得正”的合理性吗?
设计意图:引导学生从知识内容和学习过程两个方面进行小结.
作业:教科书第30页,练习1,2,3;第37页,习题1.4第1题.
五、目标检测设计。
1.判断下列运算结果的符号:
(1)5×(-3);。
(2)(-3)×3;。
(3)(-2)×(-7);。
(4)(+0.5)×(+0.7).
2计算:
(1)6×(-9);(2)(-6)×0.25;(3)(-0.5)×(-8);。
(4)。
;(5)0×(-6);(6)8×。
设计意图:检测学生对有理数乘法法则的理解情况.
七年级数学教案设计篇三
这节课的内容是一元一次方程第一课时。课后,我对本节课从四方面进行了如下反思:
一:对选择引例的反思。
在小学学生已接触过方程,但没有过多的研究。而本节课是一元一次方程的开篇课,它起着承上启下的作用,通过这节课既要让学生认识到方程是更方便、更有力的数学工具,又要让学生体验到从算术方法到代数方法是数学的进步,这些目标的实现谈何容易!课本上的例题虽然能很好的体现方程的优越性,但难度较高。学生很少有利用方程解应用题的经历,能否理解和接受?斟酌再三,还是放到后面再讲。那么哪个题既简单又能明显地承载着从算术到方程的进步呢?几乎翻阅了所有的有关资料,无独有偶,在新课标教案126页的一道数学名题“啊哈,它的全部,它的一半,其和等于19。”让我眼前一亮,我为自己好不容易找到一个例题而兴奋不已,立刻拿去和我们数学组经验丰富的老教师交流一下我的想法,他们觉得这个例子倒挺好的,可是也提出了一个让我深思的问题,这个题不是能够很好地体现出从算术到方程的进步,因为题很简单,方程的优越性体现的不够明显。刚才的新奇和兴奋迅速冷却了下来,陈老师的一句话彻底点醒了我,如果实在找不到合适的例题,不妨就用这个题,通过这个题从语言和方法上突破它,可以先让学生感知方程的优越性,后面学习中再不断地渗透方程的优越性。听完陈老师的一席见解,我顿时豁然开朗,增加了以这个题作为引例的信心。事实证明,这个引例既富有创新又能激发学生的兴趣,既符合学生的已有经验和知识水平,又符合学生的认知规律。
二:对选题的反思。
我在备课中【活动3】最初选用的题是:
修改后的题是:
判断下列各式是方程的有:
(1)(2)(3)(4)(5)。
考虑到学生初对方程概念的研究,不在数字上人为的设置障碍,因为是否是方程与数字的大小根本无关,于是把数字全部统一成了6、2、8三个数,利于学生从未知数和等号的角度进一步理解方程的概念。最初选用的题数字太多,显得题很多且条理性不强,容易分散学生对概念本质的把握。改进后的题目更利于学生观察方程的特征,从而更深刻地掌握概念的本质。需要特别说明的是,如果说前5个小题是为了让学生抓住方程的两个要点,那么后3个小题则是对概念本质的提升,即:是否是方程与未知数所在的位置、未知数的个数、未知数的次数等均无关。
三:对课堂实践的反思。
本节课的设计思路:首先以“名题欣赏”导入,引入概念,通过四组练习让学生深刻理解方程和一元一次方程的概念,最后由学生自己归纳小结。
当环节进行到【活动3】时,我让学生写出一个或几个方程,在给学生判断点评时,我发现学生在黑板上写的全部都是未知数在等号左边的方程,这时我突然意识到学生在模仿我前面呈现的方程,不禁暗自责怪自己考虑不周,怎么没出一个等号两边都含有未知数的方程呢?它给我敲响了一个警钟。正当我想写一个等号两边都含有未知数的方程来弥补设计上的不足时,我忽然发现最后一排的一位男生已经高高地举起了手,他提出问题:“老师:等号两边都含有未知数的式子是不是方程,例如:2y-1=3y”?我为有学生能提出这样的问题而感到庆幸,一是因为它及时弥补了我备课中的不足;二是由学生提出问题要比我提出问题更有价值。这可以反映出该生善于思考,同时也反映出了学生真实的疑惑。为了提高学生的探究能力,我并没有急于解释,而是把问题抛给学生,让学生来解决。我立刻提出:“谁能解决这位同学提出的`问题呢?”这时我看到后面几位学生已经高高地举起了手。我随机点了一名学生,这位同学回答到:“判断一个式子是不是方程只要看是否含有未知数和等号就ok了,与未知数的位置无关!”他精彩的回答引起听课教师一阵喝彩!我也顿时惊喜万分,他说的太好了,不管是语言表达还是准确性上都无可挑剔。我为敢于给学生这样一个机会又一次感到庆幸;通过这个同学精彩的回答,我深深地感受到:“教师给学生一个机会,学生就会还你一个惊喜。”
四:教后整体反思。
成功之处:
1.引例、练习题的选择都很恰当。
2.思路清晰,重点突出,注意到了学生的自主探索,节奏把握较好。
3.数学文化的渗透比较自然。
4.“写一个或几个一元一次方程”此环节的设计体现了从理论到实践的过程,使学生的能力得到提升,学习效果得到落实。
5.语言简练,教态大方,师生互动比较热烈,充分调动了学生的积极性。
6.板书设计较为合理。本节课的主要内容都以提炼的方式呈现出来。
不足之处:
1.在处理三道实际背景题时留给学生的思考时间偏少,显得仓促。
2.在后面两组题环节之间的过渡语言不是很自然。
3.授课语言仍需加强锤炼。
这节课的准备和每个环节的设计我颇费了一些心思,上完课之后总的感觉是达到了我预期的目标。非常感谢评委组的老师们中恳的建议,以及同行们的肯定,这让我受益匪浅。在今后的教学中,我将扬长避短,力争做的更好!
七年级数学教案设计篇四
2、会把省略加号和括号的有理数加减混合运算看成几个有理数的加法运算;
3.进一步感悟“转化”的思想。
把有理数的加减法混合运算统一为加法运算。
省略负数前面的加号的有理数加法,运用运算律交换加数位置时,符号不变。
根据有理数的减法法则,有理数的加减速混合运算可以统一为加法运算。
1、完成下列计算:
(1)3+7-12;(2)(-8)-(-10)+(-6)-(+4)。
归纳:根据有理数的减法法则,有理数的`加减混合运算可以统一为运算;
省略负数前面的加号和()后的形式是______________________;
展示交流。
1、把下列运算统一成加法运算:
2、将下列有理数加法运算中,加号省略:
(1)12+(-8)=________________;
3、将下列运算先统一成加法,再省略加号:
=___[]______________________。
4、仿照本p37例6,完成下列计算:
盘点收获。
个案补充。
1.计算:
本p39习题2。5第6题(1)、(3)、(5),第7题。
七年级数学教案设计篇五
1、这堂课从简单问题入手,由浅至深,比较符合初一学生的认知性,学生了解了概念后马上让他们开启自己的智慧大门,并让学生自己找到符合概念的条件,加深印象。穿插式的练习,让学生能够趁热打铁,更加熟练的掌握和理解一元一次方程的一些概念。在上课的过程中更重视的是学生的探索学习,以及数学“建模”能力的培养。为后面学习打下基础。
3、在课堂的第二个环节中,通过实际问题的'引入,让学生动起脑来,阶梯型问题的设置使得一些后进生也投入到课堂中来,体现了差异性的教学。在学生慢慢列出方程的同时其实也培养了他们的逻辑思维能力,也体会到了列方程它与算式相比较之下的优点,合作式的学生活动增进了学生的合作交流能力,我并通过一些激励性的话语激发学生参与数学的兴趣,在列完方程的最后让学生归纳出列方程解应用题的基本步骤。使学生加深对知识的掌握也培养了他们的语言组织能力以及学会标准的数学用语。
二、从教学方法反思。
本节课本着“尊重差异”为基础,先“引导发现”,后“讲评点拨”,所以再讲解前面概念的时候,我稍稍放慢速度让后进生听的明白,因为方程是解应用题的基础,抓住基础知识再去发展他们的逻辑思维能力对后进生是十分重要的。
三、从学生反馈反思。
这堂课学生能积极思考,认真学习,课后作业都能及时完成。作业质量较好,但是对于稍难点的实际问题得列式还是有一些问题。在应用题的列式方面是所有学生学习的一个难点,这是我后面课堂要注意的地方:如何去教会学生找到数量关系去列方程。
七年级数学教案设计篇六
2?培养学生的观察、比较、分析、归纳、概括能力,以及学生的探索精神;
3?渗透分类讨论思想?
重点:有理数乘方的运算?
难点:有理数乘方运算的符号法则?
1?求n个相同因数的积的运算叫做乘方?
2?乘方的结果叫做幂,相同的因数叫做底数,相同因数的个数叫做指数?
一般地,在an中,a取任意有理数,n取正整数?
应当注意,乘方是一种运算,幂是乘方运算的结果?当an看作a的n次方的结果时,也可以读作a的n次幂。
例1计算:
(1)2,2,2,24;(2)-2,2,3,(-2)4;。
(3)0,02,03,04?
教师指出:2就是21,指数1通常不写?让三个学生在黑板上计算?
引导学生观察、比较、分析这三组计算题中,底数、指数和幂之间有什么关系?
(1)模向观察。
正数的任何次幂都是正数;负数的奇次幂是负数,偶次幂是正数;零的任何次幂都是零?
(2)纵向观察。
互为相反数的两个数的奇次幂仍互为相反数,偶次幂相等?
(3)任何一个数的偶次幂都是什么数?
任何一个数的偶次幂都是非负数?
你能把上述的结论用数学符号语言表示吗?
当a0时,an0(n是正整数);
当a。
当a=0时,an=0(n是正整数)?
(以上为有理数乘方运算的符号法则)。
a2n=(-a)2n(n是正整数);
=-(-a)2n-1(n是正整数);
a2n0(a是有理数,n是正整数)?
例2计算:
(1)(-3)2,(-3)3,[-(-3)]5;。
(2)-32,-33,-(-3)5;。
(3),?
让三个学生在黑板上计算?
课堂练习。
计算:
(1),,,-,;
(2)(-1)20xx,322,-42(-4)2,-23(-2)3;。
(3)(-1)n-1?
让学生回忆,做出小结:
1?乘方的有关概念?2?乘方的符号法则?3?括号的作用?
1?计算下列各式:
(-3)2;(-2)3;(-4)4;;-0.12;。
-(-3)3;3(-2)3;-6(-3)3;-(-4)2(-1)5?
2?填表:
3?a=-3,b=-5,c=4时,求下列各代数式的值:
4?当a是负数时,判断下列各式是否成立?
(1)a2=(-a)2;(2)a3=(-a)3;(3)a2=;(4)a3=。
5*?平方得9的数有几个?是什么?有没有平方得-9的有理数?为什么?
6*?若(a+1)2+|b-2|=0,求a20xxb3的值?
七年级数学教案设计篇七
本节课的重难点都是从实际于问题中寻找相等关系,从而列方程解决实际问题,为了更好地突出重点、突破点,在教学过程中着力体现以下几方面的特点:
1、突出问题的应用意识。首先用一个学生感兴趣的突出问题引入课题,然后运用算术方法给出答案,在各环节的安排上都设计成一个个问题,引导学生能围绕问题开展思考、讨论,进行学习。
2、体现学生的主体意识。始终把学生放在主体地位,让学生通过对列算式与列方程的比较,分别归纳出它们的特点,从感受到从算术方法到代数方法是数学的进步。通过学生之间的合作与交流,得了出问题的不同解答方法,让学生对这节课的学习内容、方法、注意点等进行归纳。
3、体现学生思维的层次性。首先引导学生尝试用算术方法解决问题,然后逐步引导学生列出含未知数的式子,寻找相等关系列出方程。在寻找相等关系,设未知数及练习和作业的布置等环节中,都注意了学生思维的层次性。
4、渗透建模的思想。把实际问题中的数量关系用方程的形式表示出来,就是建立一种数学模型,有意识地按设未知数、列方程等步骤组织学生学习,就是培养学生由实际问题抽象出数学模型的能力。
从当堂练习和作业情况来看,收到了很好的教学效果,绝大部分学生都能根据实际问题准确地建立数学模型,但也有少数几个学生存在一定的问题,不能很好地列出方程。
【拓展阅读】。
七年级数学教案设计篇八
1,掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;。
2,了解分类的标准与分类结果的相关性,初步了解“集合”的含义;。
3,体验分类是数学上的常用处理问题的方法。
教学难点正确理解分类的标准和按照一定的标准进行分类。
知识重点正确理解有理数的概念。
教学过程(师生活动)设计理念。
探索新知在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出).
问题1:观察黑板上的9个数,并给它们进行分类.
学生思考讨论和交流分类的情况.
学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.
例如,
对于数5,可这样问:5和5.1有相同的类型吗?5可以表示5个人,而5.1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5.1不是整个的数,称为“正分数,,.••…(由于小数可化为分数,以后把小数和分数都称为分数)。
通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数,’.
按照书本的说法,得出“整数”“分数”和“有理数”的概念.
看书了解有理数名称的由来.
“统称”是指“合起来总的名称”的意思.
学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。
有理数的分类表要在黑板或媒体上展示,分类的标准要引导学生去体会。
练一练1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交流.
2,教科书第10页练习.
此练习中出现了集合的概念,可向学生作如下的说明.
数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号.
思考:上面练习中的四个集合合并在一起就是全体有理数的集合吗?
也可以教师说出一些数,让学生进行判断。
集合的概念不必深入展开。
创新探究问题2:有理数可分为正数和负数两大类,对吗?为什么?
教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,逐步得到如下的分类表。
有理数这个分类可视学生的程度确定是否有必要教学。
小结与作业。
课堂小结到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。
本课作业1,必做题:教科书第18页习题1.2第1题。
2,教师自行准备。
本课教育评注(课堂设计理念,实际教学效果及改进设想)。
1,本课在引人了负数后对所学过的数按照一定的标准进行分类,提出了有理数的概。
念.分类是数学中解决问题的常用手段,通过本节课的学习使学生了解分类的思想并进。
行简单的分类是数学能力的体现,教师在教学中应引起足够的重视.关于分类标准与分。
类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不要过多展开。
2,本课具有开放性的特点,给学生提供了较大的思维空间,能促进学生积极主动地参加学习,亲自体验知识的形成过程,可避免直接进行分类所带来的枯燥性;同时还体现合作学习、交流、探究提高的特点,对学生分类能力的养成有很好的作用。
3,两种分类方法,应以第一种方法为主,第二种方法可视学生的情况进行。
七年级数学教案设计篇九
1.教学目标、重点、难点.
教学目标:
(1)了解方程的解的概念.
(2)体验对方程解的估算,会检验一个数是不是某个一元方程的解.
(3)渗透对应思想.
重点:方程解的意义,会检验一个数是不是一个一元方程的解.
难点:方程解的意义,会检验一个数是不是一个一元方程的解.
2.例、习题的意图。
本节课重点是了解方程的解的意义.通过实际问题中对所列方程解的估算,了解什么是方程的解以及由于估算遇到了困难,产生寻求方程解法的需求,为后面的学习做好铺垫.
例1是通过实际问题列出方程,根据(1)题未知数的取值范围以及方程解的概念逐一代入方程来寻求方程的解,使学生亲身体验什么是方程的解,也为例2检验一个数值是不是方程的解做好铺垫.对第(2)、(3)题再采用(1)题方法寻求方程的解已不容易,这又为后边学习解方程奠定了积极的心理储备.
例2是根据方程的解的意义,使学生会检验一个数值是不是方程的解,这一点应切实使学生掌握.
3.认知难点与突破方法。
难点是方程解的意义和检验一个数是不是一个一元方程的解.例1起着承上启下的作用,在估算方程解的过程中,理解方程解的意义,学会检验一个数是不是一个一元方程的解.抓住关键字“等号左右两边相等”,检验一个数是不是一个一元方程的解,要分别计算方程的左右两边,若其值相等,则这个未知数是方程的解,若不相等,则不是方程的解.
二、新课引入。
复习:
1.什么是一元一次方程?
2.练习:当,,时,求式子的值.
答案:,,.
通过练习2强调求式子的值的一般步骤,其中易错易混的地方,如代入的值是负数,应加上括号,数与数相乘时应恢复乘号,运算关系不能混淆等.
三、例题讲解。
例1教材p69中例1。
分析:三个题目中的相等关系分别是:
(1)计算机已使用的时间+继续使用的时间=规定的检修时间.
(2)2(长+宽)=周长.
(3)女生人数—男生人数=.
分析:方程中等号左边有未知数,估算的值代入方程应使等号左边的值等于等号右边的值2450,这样的值才适合方程.由于表示月份,是正整数,不妨让,,……分别代入方程算一算.
由计算结果可以看到,每一个的允许值都使代数式有一个确定的数值,为方便起见,可以列一个表格:
1234567…185021502300245026002750…从表中发现:当时,的值是,也就是,当时,方程中等号的左边:.等号的右边:2450.由此得到方程的左边=右边,就说叫做方程的解,也就是方程中,未知数的值为5.所以,方程的解就是.
教材p71中的小云朵,可以多选几个情况来说明,以加强对方程解得意义的理解.
从表中你还能发现哪个方程的解?(引导学生得出)如方程的解是;方程的解是等等,使学生进一步体会方程解的概念.
方程解的意义:使方程中等号左右两边相等的未知数的值,叫做方程的解.
由于这两个方程估算其解有一定的困难,数不整齐,或方程比较复杂,出现矛盾冲突,引导学生得出:学习解方程的方法十分必要.
怎样检验一个数是否是方程的解呢?
七年级数学教案设计篇十
本节教学的重点是掌握单项式与多项式相乘的法则.难点是正确、迅速地进行单项式与多项式相乘的计算.本节知识是进一步学习多项式乘法,以及乘法公式等后续知识的基础。
1.单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加,即。
其中,可以表示一个数、一个字母,也可以是一个代数式.。
2.利用法则进行单项式和多项式运算时要注意:
3根据去括号法则和多项式中每一项包含它前面的符号,来确定乘积每一项的`符号;
设m=-4x2,a=2x2,b=3x,c=-1,
∴(-4x2)·(2x2+3x-1)。
=m(a+b+c)。
=ma+mb+mc。
=(-4x2)·2x2+(-4x2)·3x+(-4x2)·(-1)。
=-8x4-12x3+4x2.。
这样过渡较自然,同时也渗透了一些代换的思想.。
教学设计示例。
一、教学目标。
1.理解和掌握单项式与多项式乘法法则及推导.。
2.熟练运用法则进行单项式与多项式的乘法计算.。
3.培养灵活运用知识的能力,通过用文字概括法则,提高学生数学表达能力.。
4.通过反馈练习,培养学生计算能力和综合运用知识的能力.。
5.渗透公式恒等变形的数学美.。
二、学法引导。
1.教学方法:讲授法、练习法.。
类项,故在学习中应充分利用这种方法去解题.。
三、重点·难点·疑点及解决办法。
(一)重点。
单项式与多项式乘法法则及其应用.。
(二)难点。
单项式与多项式相乘时结果的符号的确定.。
(三)解决办法。
复习单项式与单项式的乘法法则,并注意在解题过程中将单项式乘多项式转化为单项。
式乘单项式后符号确定的问题.。
四、课时安排。
一课时.。
五、教具学具准备。
投影仪、胶片.。
六、师生互动活动设计。
(一)明确目标。
本节课重点学习单项式与多项式的乘法法则及其应用.。
(二)整体感知。
(三)教学过程。
1.复习导入。
复习:
(1)叙述单项式乘法法则.。
(单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.)。
(2)什么叫多项式?说出多项式的项和各项系数.
2.探索新知,讲授新课。
简便计算:
由该等式,你能说出单项式与多项式相乘的法则吗?单项式与多项式乘法法则:单项式。
与多项式相乘,就是用单项式乘多项式的每一项,再把所得的积相加.。
例1计算:
例2化简:
练习:错例辨析。
(2)错在单项式与多项式的每一项相乘之后没有添上加号,故正确答案为。
(四)总结、扩展。
(99,河北)下列运算中,不正确的为()。
a.b.。
c.d.。
八、布置作业。
参考答案:
略
七年级数学教案设计篇十一
1、教学方法:引导发现法、探究法、讲练法、
(一)重点
准确掌握积的乘方的运算性质、
(二)难点
用数学语言概括运算性质、
(三)解决办法
增强对三种运算性质的理解,并运用对比的方法强化训练以达到准确地区分、
一课时、
投影仪或电脑、自制胶片、
3、通过举例来说明积的乘方性质应如何正确使用,师生共练以达到熟练掌握、
4、多种题型的设计,让学生能从不同的角度全面准确地理解和运用该性质、
(一)明确目标
本节课重点学习积的乘方的运算性质及其较灵活地运用、
(二)整体感知
(三)教学过程
1、创设情境,复习导入
前面我们学习了同底数幂的乘法、幂的乘方这两个寨的运算性质,请同学们通过完成一组练习,来回顾一下这两个性质:
填空:
七年级数学教案设计篇十二
学习目标:
1.会用正.负数表示具有相反意义的量.
2.通过正.负数学习,培养学生应用数学知识的意识.
3.通过探究,渗透对立统一的辨证思想。
学习重点:
用正.负数表示具有相反意义的量。
学习难点:
实际问题中的数量关系。
教学方法:
讲练相结合。
教学过程。
一.学前准备。
通过上节课的学习,我们知道在实际生产和生活中存在着两种不同意义的量,为了区分它们,我们用正数和负数来分别表示它们.
问题1:“零”为什么即不是正数也不是负数呢?
引导学生思考讨论,借助举例说明.
参考例子:温度表示中的零上,零下和零度.
二.探究理解解决问题。
问题2:(教科书第4页例题)。
先引导学生分析,再让学生独立完成。
(2)20xx年下列国家的商品进出口总额比上一年的变化情况是:
美国减少6.4%,德国增长1.3%,
法国减少2.4%,英国减少3.5%,
意大利增长0.2%,中国增长7.5%.
写出这些国家20xx年商品进出口总额的增长率.
解:(1)这个月小明体重增长2kg,小华体重增长―1kg,小强体重增长0kg.
(2)六个国家20xx年商品进出口总额的增长率:
美国―6.4%,德国1.3%,
法国―2.4%,英国―3.5%,
意大利0.2%,中国7.5%.
三.巩固练习。
从0表示一个也没有,是正数和负数的分界的角度引导学生理解.
在学生的讨论中简单介绍分类的数学思想先不要给出有理数的概念.
在例题中,让学生通过阅读题中的含义,找出具有相反意义的量,决定哪个用正数表示,哪个用负数表示.
通过问题(2)提醒学生审题时要注意要求,题中求的是增长率,不是增长值.
四.阅读思考1页。
(教科书第8页)用正负数表示加工允许误差.
问题:1.直径为30.032mm和直径为29.97的零件是否合格?
2.你知道还有那些事件可以用正负数表示允许误差吗?请举例.
五.小结。
1.本节课你有那些收获?
2.还有没解决的问题吗?
六.应用与拓展。
1.必做题:
教科书5页习题4.5.:6.7.8题。
2.选做题。
1).甲冷库的温度是―12°c,乙冷库的温度比甲冷酷低5°c,则乙冷库的温度是.
七年级数学教案设计篇十三
第1教案。
教学目标。
1.能结合实例,了解一元一次不等式组的相关概念。
2.让学生在探索活动中体会化陌生为熟悉,化复杂为简单的“转化”思想方法。
3.提高分析问题的能力,增强数学应用意识,体会数学应用价值。
教学重、难点。
1..不等式组的解集的概念。
2.根据实际问题列不等式组。
教学方法。
探索方法,合作交流。
教学过程。
一、引入课题:
1.估计自己的体重不低于多少千克?不超过多少千克?若没体重为x千克,列出两个不等式。
2.由许多问题受到多种条件的限制引入本章。
二、探索新知:
自主探索、解决第2页“动脑筋”中的问题,完成书中填空。
分别解出两个不等式。
把两个不等式解集在同一数轴上表示出来。
找出本题的答案。
三、抽象:
教师举例说出什么是一元一次不等式组。什么是一元一次不等式组的解集。(渗透交集思想)。
七年级数学教案设计篇十四
重点:列代数式。
难点:弄清楚语句中各数量的意义及相互关系。
本小节是在前面代数式概念引出之后,具体讲述如何把实际问题中的数量关系用代数式表示出来。课文先进一步说明代数式的概念,然后通过由易到难的三组例子介绍列代数式的方法。
列代数式实质是实现从基本数量关系的语言表述到代数式的一种转化。列代数式首先要弄清语句中各种数量的意义及其相互关系,然后把各种数量用适当的字母来表示,最后再把数及字母用适当的运算符号连接起来,从而列出代数式。
如:用代数式表示:比的2倍大2的数。
分析本题属于“…比…多(大)…或…比…少(小)”的类型,首先要抓住这几个关键词。然后从中找出谁是大数,谁是小数,谁是差。比的2倍大2的数换个方式叙述为所求的数比的2倍大2。大和比前边的量,即所求的数为大数,那么比和大之间量,即的2倍则为小数,大后边的量2即为差。所以本小题是已知小数和差求大数。因为大数=小数+差,所以所求的数为:2+2.
(1)要分清语言叙述中关键词语的意义,理清它们之间的数量关系。如要注意题中的“大”,“小”,“增加”,“减少”,“倍”,“倒数”,“几分之几”等词语与代数式中的加,减,乘,除的运算间的关系。
(2)弄清运算顺序和括号的使用。一般按“先读先写”的原则列代数式。
(3)数字与字母相乘时数字写在前面,乘号省略不写,字母与字母相乘时乘号省略不写。
(4)在代数式中出现除法时,用分数线表示。
列代数式是本章教学的一个难点,学生不容易掌握,这样老师在上课时,首先要让学生理解代数式的本质,弄清语句中各种数量的意义及其相互关系,然后设计一定数量的练习题,由易到难,螺旋式上升,使学生能够正确列出代数式。
七年级数学教案设计篇十五
4通过平行公理推论的推理,培养学生的逻辑思维能力和进行推理的能力
1教师教法:尝试法、引导法、发现法
2学生学法:在教师的引导下,尝试发现新知,造就成就感
(一)重点
平行公理及推论
(二)难点
平行线概念的理解
(三)解决办法
通过引导学生尝试发现新知、练习巩固的方法来解决
投影仪、三角板、自制胶片
1通过投影片和适当问题创设情境,引入新课
2通过教师引导,学生积极思维,进行反馈练习,完成新授
3学生自己完成本课小结
(-)明确目标
(二)整体感知
(三)教学过程
创设情境,引出课题
学生齐声答:不是
师:因此,平面内的两条直线除了相交以外,还有不相交的情形,这就是我们本节所要研究的内容(板书课题)
[板书]24平行线及平行公理
探究新知,讲授新课
师:在我们生活的周围,平面内不相交的情形还有许多,你能举例说明吗?
学生:窗户相对的棱,桌面的对边,书的对边……
师:我们把它们向两方无限延伸,得到的直线总也不会相交我们把这样的直线叫做平行线
[板书]在同一平面内,不相交的两条直线叫做平行线
教师出示投影片(课本第74页图2?17)
师:请同学们观察,长方体的棱与无论怎样延长,它们会不会相交?
学生:不会相交
师:那么它们是平行线吗?
学生:不是
师:也就是说平行线的定义必须有怎样的'前提条件?
学生:在同一平面内
师:谁能说为什么要有这个前提条件?
学生:因为空间里,不相交的直线不一定平行
教师在黑板上给出课本第73页图2
学生:两种相交和平行
由此师生共同小结:在同一平面内,两条直线的位置关系只有相交、平行两种
尝试反馈,巩固练习(出示投影)
1判断正误
(1)两条不相交的直线叫做平行线()
(2)有且只有一个公共点的两直线是相交直线()
(3)在同一平面内,不相交的两条直线一定平行()
(4)一个平面内的两条直线,必把这个平面分为四部分()
2下列说法中正确的是()
a在同一平面内,两条直线的位置关系有相交、垂直、平行三种
b在同一平面内,不垂直的两直线必平行
c在同一平面内,不平行的两直线必垂直
d在同一平面内,不相交的两直线一定不垂直
学生活动:学生回答,并简要说明理由
师:我们很容易画出两条相交直线,而对于平行线的画法,我们在小学就学过用直尺和三角板画,下面清同学在练习本上完成下面题目(投影显示)
已知直线和外一点,过点画直线
师:请根据语句,自己画出已知图形
学生活动:学生在练习本上画出图形
师:下面请你们按要求画出直线
注意:(1)在推动三角尺时,直尺不要动;
(2)画平行线必须用直尺三角板,不能徒手画
尝试反馈,巩固练习(出示投影)
1画线段,画任意射线,在上取、、三点,使,连结,用三角板画,,分别交于、,量出、、的长(精确到)
2读下列语句,并画图形
(1)点是直线外的一点,直线经过点,且与直线平行
(2)直线、是相交直线,点是直线、外的一点,直线经过点与直线平行与直线相交于
(3)过点画,交的延长线于
学生活动:学生思考并回答,能画,而且只能画一条
师:我们把这个结论叫平行公理,教师板书
【板书】平行公理:经过直线外一点,有且只有一条直线与这条直线平行
学生:思考后,立即回答,能画无数条
师:请同学们在练习本上完成
(出示投影)
已知直线,分别画直线、,使,
学生活动:学生在练习本上完成
师:请同学们观察,直线、能不能相交?
学生活动:观察,回答:不相交,也就是说
师:为什么呢?同桌可以讨论
学生活动:学生积极讨论,各抒己见
学生活动:教师让学生积极发表意见,然后给出正确的引导
师:我们观察图形,如果直线与相交,设交点为,那么会产生什么问题呢?请同学们讨论
学生活动:学生在教师的启发引导下思考、讨论,得出结论
[板书]如果两条直线都和第三条直线平行,那么这两条直线也互相平行
学生活动:学生思考,回答:不对,给出反例图形,
例如:如图1所示,射线与就不相交,也不平行
师:同学们想一想,当我们说两条射线或线段平行时,实际上是什么平行才可以呢?
生:它们所在的直线平行
尝试反馈,巩固练习(投影)
七年级数学教案设计篇十六
2.初步培养学生观察、分析及概括的能力;。
3.通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。
教学建议。
一、教学重点、难点。
重点:通过具体例子了解公式、应用公式.
难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。
二、重点、难点分析。
人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。
三、知识结构。
本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。
四、教法建议。
1.对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。
2.在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。
3.在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。
教学设计示例。
公式。
五、教具学具准备。
投影仪,自制胶片。
六、师生互动活动设计。
教者投影显示推导梯形面积计算公式的图形,学生思考,师生共同完成例1解答;教者启发学生求图形的面积,师生总结求图形面积的公式.
【本文地址:http://www.xuefen.com.cn/zuowen/9924459.html】