在教学过程中,教案具有指导作用,可以帮助教师合理规划教学内容和教学步骤。教案的编写要符合教学纲要和教育政策的要求,保持教学与社会需求的紧密联系。以下是一些优秀教师分享的教案范文,大家可以一起学习和借鉴。
人教版八年级数学教案及说课稿篇一
学习目标:
1、巩固对整式乘法法则的理解,会用法则进行计算。
2、在学生大量实践的基础上,是学生认识单项式乘以单项式法则是整式乘法的关键,“多乘多”、“单乘多”都转化为单项式相乘。
3、在通过学生练习中,体会运算律是运算的通性,感受转化思想。。
4、进一步培养学生有条理的思考和表达能力。
学习重点:整式乘法的法则运用。
学习难点:整式乘法中学生思维能力的培养。
学习过程。
1.学习准备。
1.你能写出整式乘法的法则吗?试一试。
2.谈谈在整式乘法的学习过程中,你有什么收获?有什么不足?
利用课下时间和同学交流一下,能解决吗?
2.合作探究。
1.练习。
(1)(-5a2b)(2a2bc)(2)(-ax)(-bx3)。
(3)(2x104)(6x105)(4)(x)•2x3•(-3x2)。
2、结合上面练习,谈谈在单项式乘单项式运算中怎样进行计算?要注意些什么?
3、练习。
(1)(-3x)(4x2-x+1)(2)(-xy)(2x-5y-1)。
(3)(2x+3)(4x+1)(4)(x+1)(x2-2x+3)。
4、结合上面练习,体会单项式乘多项式、多项式乘多项式运算中,都是以单项式乘单项式为基础、运用乘法分配律进行计算。
3.自我测试。
1、3x2•(-4xy)•(-xy)=。
2、若(mx3)•(2xn)=-8x18,则m=。
3、一个长方体的长、宽、高分别为3x-4,2x和x,它的体积是。
4、若m2-2m=1,则2m2-4m+的值是。
5、解方程:1-(2x+1)(x-2)=x2-(3x-1)(x+3)-11。
6、当(x2+mx+8)(x2-3x+n)展开后,如果不含x2和x3的项,求(-m)3n的值.
7、计算:(y+1)(y2-y+1)+y(1+y)(1-y),其中y=-.
8、(北京)已知x2-5x=14,(x-1)(2x-1)-(x+1)2+1的值。
9、某公园要建如图所示的形状的草坪(阴影部分),求铺设草坪多少m2?若每平。
方米草坪260元,则为修建该草坪需投资多少元?
人教版八年级数学教案及说课稿篇二
严格的讲教材本节课没有引入的问题,而是在复习和延伸中位数的定义过程中拉开序幕的,本人很同意这种处理方式,教师可以一句话引入新课:前面已经和同学们研究过了平均数的这个数据代表。它在分析数据过程中担当了重要的角色,今天我们来共同研究和认识数据代表中的新成员——中位数和众数,看看它们在分析数据过程中又起到怎样的作用。
人教版八年级数学教案及说课稿篇三
三角形高线、中线及角平分线的概念、几何语言表达及它们的画法.
2.内容解析。
本节内容概念较多,有三角形的高、中线、角平分线和重心等有关概念;需要学生动手的频率也较高,要掌握任意三角形的高、中线、角平分线的画法,培养学生动手操作及解决问题的能力;鼓励学生主动参与,体验几何知识在现实生活中的真实性,激发学生热爱生活、勇于探索的思想感情。
理解三角形高、角平分线及中线概念到用几何语言精确表述,这是学生在几何学习上的一个深入.学习了这一课,对于学生增长几何知识,运用几何知识解决生活中的有关问题,起着十分重要的作用.它也是学习三角形的角、边的延续以及三角形全等、相似等后继知识一个准备.
本节的重点是了解三角形的高、中线及角平分线概念的同时还要掌握它们的画法,难点是钝角三角形的高的画法及不同类型的三角形高线的位置关系.
人教版八年级数学教案及说课稿篇四
1.使学生理解并能证明勾股定理的逆定理.
2.能应用逆定理判断一个三角形是否是直角三角形.
3.使学生进一步加深性质定理与判定定理之间关系的认识.
4.使学生初步了解,用代数计算方法证明几何问题这一数学思想方法对开阔思路,提高能力有很大意义.
人教版八年级数学教案及说课稿篇五
1.重点:勾股定理逆定理的应用.
2.难点:勾股定理逆定理的证明.
3.疑点及分析和解决方法:勾股定理逆定理的证明方法,又是学生前所未见的,是运用代数计算方法证明几何问题,是解析几何中研究问题的方法,以后会逐步见到,这一点要让学生有所认识.
人教版八年级数学教案及说课稿篇六
(1)、这个问题的研究对象是一个样本,主要是反映了统计学中常用到一种解决问题的方法:对于数据较多的研究对象,我们可以考察总体中的一个样本,然后由样本的研究结论去估计总体的情况。
(2)、这个例题另一个意图是交待了当数据个数为偶数时,中位数的求法和解题步骤。(因为在前面有介绍中位数求法,这里不再重述)。
(3)、问题2显然反映学习中位数的意义:它可以估计一个数据占总体的相对位置,说明中位数是统计学中的一个重要的数据代表。
(4)、这个例题再一次体现了统计学知识与实际生活是紧密联系的,所以应鼓励学生学好这部分知识。
2、教材p145例5的意图。
(1)、通过例5应使学生明白通常对待销售问题我们要研究的是众数,它代表该型号的产品销售,以便给商家合理的建议。
(2)、例5也交待了众数的求法和解题步骤(由于求法在前面已介绍,这里不再重述)。
(3)、例5也反映了众数是数据代表的一种。
人教版八年级数学教案及说课稿篇七
1、教材p140探究栏目的意图。
(1)、主要是想引出根据频数分布表求加权平均数近似值的计算方法。
(2)、加深了对“权”意义的理解:当利用组中值近似取代替一组数据中的平均值时,频数恰好反映这组数据的轻重程度,即权。
这个探究栏目也可以帮助学生去回忆、复习七年级下的关于频数分布表的一些内容,比如组、组中值及频数在表中的具体意义。
2、教材p140的思考的意图。
(2)、帮助学生理解表中所表达出来的信息,培养学生分析数据的能力。
3、p141利用计算器计算平均值。
这部分篇幅较小,与传统教材那种详细介绍计算器使用方法产生明显对比。一则由于学校中学生使用计算器不同,其操作过程有差别亦不同,再者,各种计算器的使用说明书都有详尽介绍,同时也说明在今后中考趋势仍是不允许使用计算器。所以本节课的重点内容不是利用计算器求加权平均数,但是掌握其使用方法确实可以运算变得简单。统计中一些数据较大、较多的计算也变得容易些了。
人教版八年级数学教案及说课稿篇八
1某公司销售部有营销人员15人,销售部为了制定某种商品的销售金额,统计了这15个人的销售量如下(单位:件)。
求这15个销售员该月销量的中位数和众数。
假设销售部负责人把每位营销员的月销售定额定为320件,你认为合理吗?如果不合理,请你制定一个合理的销售定额并说明理由。
2、某商店3、4月份出售某一品牌各种规格的空调,销售台数如表所示:
1匹1.2匹1.5匹2匹。
3月12台20台8台4台。
4月16台30台14台8台。
根据表格回答问题:
商店出售的各种规格空调中,众数是多少?
假如你是经理,现要进货,6月份在有限的资金下进货单位将如何决定?
答案:1.(1)210件、210件(2)不合理。因为15人中有13人的销售额达不到320件(320虽是原始数据的平均数,却不能反映营销人员的一般水平),销售额定为210件合适,因为它既是中位数又是众数,是大部分人能达到的额定。
2.(1)1.2匹(2)通过观察可知1.2匹的销售,所以要多进1.2匹,由于资金有限就要少进2匹空调。
人教版八年级数学教案及说课稿篇九
一、教学目标:
1.理解并掌握矩形的判定方法.
二、重点、难点。
1.重点:矩形的判定.
2.难点:矩形的判定及性质的综合应用.
三、例题的意图分析。
本节课的三个例题都是补充题,例1在的一组判断题是为了让学生加深理解判定矩形的条件,老师们在教学中还可以适当地再增加一些判断的题目;例2是利用矩形知识进行计算;例3是一道矩形的判定题,三个题目从不同的角度出发,来综合应用矩形定义及判定等知识的.
四、课堂引入。
1.什么叫做平行四边形?什么叫做矩形?
2.矩形有哪些性质?
3.矩形与平行四边形有什么共同之处?有什么不同之处?
通过讨论得到矩形的判定方法.
矩形判定方法1:对角钱相等的平行四边形是矩形.
矩形判定方法2:有三个角是直角的四边形是矩形.
(指出:判定一个四边形是矩形,知道三个角是直角,条件就够了.因为由四边形内角和可知,这时第四个角一定是直角.)。
人教版八年级数学教案及说课稿篇十
1.积累“磬、攒、鳌头、琉璃、藻井、蟠龙、中轴线、金銮殿”等词语,掌握它们的读音和词义。
2.概述祖国传统的建筑艺术及故宫建筑艺术的独特风格和伟大成就。
3.简述方位词在按照空间顺序说明事物时的重要作用。
过程与方法目标。
1.能够整体把握文意,理清文章的说明顺序,学会按照空间顺序说明复杂事物的写作思路。
2.灵活运用本文重点突出,有详有略地说明事物的写法,学以致用,初步学会写说明文。
情感目标。
通过领略故宫博物院的宏伟艺术魅力,增强学生的民族自豪感,激发他们进一步发扬民族的创造精神,为把我们的祖国建设得更加美好而努力学习。
教学重点。
1.理清本文的说明顺序,探究作者的说明技巧。
2.以太和殿为例,体会本文重点突出、详略得当的写作特色。
教学难点揣摩语言,理解太和殿里作者描绘多姿多彩的龙的用意。
教法选择讨论法和点拨法相结合延伸拓展法图示法。
课前准备故宫图片。
教学过程设计。
教师组织与学生学习任务设计相关预设设计意图反思与改进。
教学过程。
一、导入:显示“故宫”全景图像。
故宫集中体现了中国传统的建筑艺术和独特的民族风格,是中国数千年宫殿建筑艺术的总结性杰作,让我们随着作者去参观故宫,去感受故宫的宏大壮丽和精美绝伦吧!
二、检查预习。
1.学生展示课前收集的有关故宫的图片和资料,由各位同学朗读或用自己的话介绍。学生提供的资料可能包括故宫的修建经过、规模、作用、地位和与故宫有关的重大史实,介绍这些资料,有助于学生熟悉说明对象,为理解课文作准备。
2.请游览过故宫的同学谈谈见闻和感受,也可展示拍摄的照片,激发学生的自豪感和求知欲。
3(1)辨明字音。
磬()攒()鳌()头琉()璃藻()井蟠()龙金銮()殿。
(2)辨析字形卸--御拢--珑湛--斟缀--辍。
谐--楷赐--踢琐--锁蟠--藩。
(2)卸(推卸)--御(抵御)拢(合拢)--珑(玲珑)湛(湛蓝)--斟(斟酌)缀(点缀)--辍(辍学)。
谐(和谐)--楷(楷体)赐(赐予)--踢(踢球)琐(琐碎)--锁(枷锁)蟠(蟠龙)--藩(藩篱)。
3)玲珑:精巧细致。
湛蓝:深蓝。布局:全面安排。肃穆:严肃而恭敬。幽雅:幽静而雅致。悠扬:形容声音时高时低,和谐动听。井然有序:形容整齐的样子。
三、朗读课文,整体感知文意。
1.教师朗读课文,学生听读,初步感知文意。
2.学生大声读课文两遍,给每个自然段加上序号,注意方位词语的运用。
3.教师要求学生画出参观故宫的路线图,同桌之间讨论、交流。
4.选三位同学口述参观故宫的路线,其余同学补充。
四、理清文章的说明顺序。
1.明确空间顺序。
(1)师生一同回顾关于说明文的说明顺序的知识。
常见的说明顺序有时间顺序、空间顺序、逻辑顺序。
说明的时间顺序和记叙的时间顺序相似。说明事物的发展变化宜采用时间顺序。
空间顺序要特别注意弄清空间的位置,注意事物的表里、大小、上下、前后、左右、东南西北等的位置和方向。写建筑物的结构,离开空间顺序难以让读者看明白。
逻辑顺序,常以推理过程来表现。说明事理用逻辑顺序便于体现事理的内部联系。
(2)提问:本文采用了哪一种说明顺序?
明确:本文是按照空间顺序说明介绍故宫的,大体上按照游览参观路线沿中轴线由南向北逐次介绍的。
教师总结:本文在安排说明顺序时着眼于纵贯紫禁城的中轴线,由南到北,逐次介绍建筑物。作者沿着参观路线,以天安门为起点,穿端门,进午门,过汉白玉石桥,来到前三殿。依次介绍了太和殿、中和殿、保和殿,并略提东西两侧的文华殿、武英殿。三大殿和文华殿、武英殿合称为“前朝”。然后继续向北,简单介绍了位于中轴线上的“内廷”建筑:乾清宫、交泰殿、坤宁宫以及御花园。最后出顺贞门到神武门而离开故宫,这样写井然有序,条理分明。
2.理清文章的结构层次,理解课文总说、分说相结合的特点。
五、重点分析课文5~8段,体会课文重点突出,详略得当的写作特色。
1.学生齐读5~8段。
2.学生精读5~8段,思考:
(1)作者介绍了太和殿哪些方面的情况?采用了什么样的说明顺序?
(2)作者为什么把太和殿作为解说的重点?
(3)揣摩文中写“龙”的句子,探究作者这样写的原因。
同桌之间交流,选六位同学回答。
明确:(1)对太和殿,先写使三大殿成为统一整体的台基--台基修建得很高(三层台基高七米),并且设施奇巧(排水管道是一千多个圆雕龙头),这就暗示和渲染了三大殿地位之尊崇,再写太和殿外观气势雄伟(是故宫最大的殿堂),色彩壮丽(金黄色的琉璃瓦重檐屋顶,装饰着青蓝点金和贴金彩画的斗拱、额枋、梁柱,红色大圆柱,金琐窗,朱漆门),内部装饰的庄严富丽(金銮宝座、雕龙屏、金柱、藻井、额枋等上面都装饰着多姿多态的龙);最后从它的位置和功用上(皇帝举行重大典礼的地方)说明它在设计方面的象征意义--过去封建皇帝凭借雄伟的建筑显示威严。使用的说明顺序是由外到内、总说和分说相结合。
(2)因为太和殿是“前朝”以至整个故宫的重点建筑物,是封建皇帝行使统治权力和举行重大典礼的场所,它的地位非常重要;另外它在整个建筑群中最具代表性。所以文章把太和殿作为介绍的重点。
(3)文中写龙的句子有:“仰望殿顶,中央藻井有一条巨大的雕金蟠龙。从龙口里垂下一颗银白色大圆珠,周围环绕着六颗小珠,龙头、宝珠正对着下面的宝座。梁枋间彩画绚丽,有双龙戏珠、单龙翔舞,有行龙、升龙、降龙,多态多姿,龙身周围还衬托着流云火焰。”
写龙,大概是基于这样的考虑:一是说明对象的特征决定的,故宫曾是封建统治的中心,它的建筑是为封建统治者服务的;二是龙有象征意义,历朝历代的皇帝把自己神化为受命于天的“真龙天子”,把龙作为自己的化身,龙是皇权的象征。
教师总结:说明文在以空间顺序说明事物时,要抓住重点,详略分明,这样才能突出说明事物的特征。同学们在今后的写作实践中,要学习作者这种重点突出,有详有略的写作特色。平均使用笔力,只能分散读者的注意力。
六、说话训练。
要求学生采用与本文不同的顺序口头介绍故宫。
教师提示:可以试着以神武门为出发点,沿中轴线前行到午门,介绍沿途的建筑;可以以三大殿为中心分别介绍三大殿前后的建筑;可以以保和殿北面的长方形小广场为中心分别介绍广场以南的建筑--前朝和广场以北乾清门以内的建筑--内廷;可以按不同的功用将故宫里的建筑分成几组逐次介绍。
选四位同学口头介绍,其余同学评价。
七、课堂小结。
故宫博物院是一个庞大的建筑群,值得介绍的东西很多很多(九千多间房屋,九个多万件藏品,九百多万件档案材料),如果全部说明,难免太多太杂,中心不突出。作者抓住中轴线,采用空间说明顺序,运用总--分--总的写法,突出重点,详略分明,使读者对路线、方位、各组建筑物的特点与联系,清晰明了,使文章条理十分清楚。说明对象“故宫博物院”给我们留下了清晰而深刻的印象。
八、布置作业。
阅读下面这段话,指出其说明顺序,并画出说明这种顺序的有关词语。
陵墓的入口位于最南端,标志是一座三间三楼的石牌坊。在明间的檐下,悬挂着孙中山先生手书“博爱”横匾一方。石坊北就是通往陵门的缓长坡道,汽车可循此直达陵门之前。墓道北端有一倾斜台地,东、西两侧各建面阔三间的硬山卷棚小屋一片,为过去守陵卫士的驻所。正面建陵门,高十五米,宽二十四米,深八米,蓝玻璃单檐歇山顶。屋身用花岗石砌成无梁殿式样,正中拱门楣上镌刻着中山先生手书“天下为公”几个金光大字。
(提示:采用空间顺序介绍陵墓,由南向北,依次介绍了石牌坊、墓道、卷棚小屋、陵门)。
导学预设1:
让学生能够自主完成学习任务,正确朗读字音,语句的节奏,作家作品介绍。
评价预设1:
学生分组分层量化评价,按1-6号分别1-6分的办法,同时对作答的学生做口头评价。抢答的形式更具竞争性。
导学预设2:
通过朗读,收集课文信息进行勾画,填写故宫布局图。
评价预设2:
评价预设3:
通过对学生的学习状态和成果的观察,发现评价点,针对特定对象作出评价。
导学预设4:
学生根据教师出示的问题。
评价预设3:
通过对学生的学习状态和成果的观察,发现评价点,针对特定对象作出评价。
导学预设5:
教师要对学生小组回答内容作总结,如本小组在学习中表现的是否积极,每个人是否按要求完成任务了,谁表现的突出,谁表现的不好,得分、失分原因,和其它小组比较还有哪些不足,应该怎样改进等等。
导学预设6:
分析文章语言,让学生根据理解回答,教师对学生回答情况做必要的总结,表扬优秀小组。
导学预设7:。
学生提出质疑,发挥学生的分析理解能力,学生交流后教师总结。
评价预设4:
通过对学生的学习状态和成果的观察,发现评价点,针对特定对象作出评价。
设计意图1:
明确学习任务,让学生养成学会预习的良好习惯。
设计意图2:
训练学生阅读和信息提炼能力能力。
设计意图3:
培养学生语言概括能力,理清文章的说明顺序。
设计意图4:
1.让学生速度课文,掌握信息,准确把握人物特点。
设计意图5:
利用小组评价解决问题,通过评价引导小组派较低层次的同学回答,从而培养小组关注弱势,形成得分策略。同时也为较差学生建立自信和使他们感受成功快乐。
运用小组合作的形式,以激励学生并引发互相之间的竞争意识,在潜移默化中培养学生良好的学习习惯。
设计意图6:
虽然大的方向明确了,但细节上学生思路还不是很明确,所以提示思考方向还是非常必要的,有利于打开他们的思路,也可以平衡各组的成果,增强竞争力。
反思与改进1:
让学生到黑板板书补充内容,更能能调动学习积极性。
反思与改进2:
学生做导游,提示要注意顺序,说明地位和作用,让学生查阅资料。
反思与改进3:
通过对课堂效果观察,口头即时激励性评价优于隐性量化评价,灵活量化评价更具调动性,分层评价应多引导,以内化为小组关注每个成员的主动行为,因此总结性评价就显得尤为重要。
反思与改进4:
学生的自主意识还没有充分建立,所以在完成这个任务中,很多同学缺乏自信,更倾向于与同伴交流。所以培养自主意识还需要引起重视,独立思考、完成任务必须做到独立。口头激励的运用,效果明显,对学生树立自信有一定作用,需要教师有目的的去做这项工作。
反思与改进5:
有意识的随时发现评价点,并有目的的实施相应的评价,无疑是对学生良好学习习惯培养的很好的方式,需要教师重视并加以实施。
板书设计:
故宫博物院。
(空间顺序)。
课后回顾及反馈:
1,突出说明文教学,让学生学会判断说明顺序及说明方法。
2,突出本文详略得当的写作特点。
作业批改记录:
学生作业上交及时,大部分学生作业工整,出现问题采取集中订正和个别辅导的方法。
侯晓旭。
将本文的word文档下载到电脑,方便收藏和打印。
人教版八年级数学教案及说课稿篇十一
1、理解分式的基本性质。
2、会用分式的基本性质将分式变形。
二、重点、难点。
1、重点:理解分式的基本性质。
2、难点:灵活应用分式的基本性质将分式变形。
3、认知难点与突破方法。
教学难点是灵活应用分式的基本性质将分式变形。突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质。应用分式的基本性质导出通分、约分的概念,使学生在理解的基础上灵活地将分式变形。
三、例、习题的意图分析。
1.p7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变。
2.p9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分。值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母。
教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解。
3.p11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号。这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变。
“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5.
四、课堂引入。
1、请同学们考虑:与相等吗?与相等吗?为什么?
2、说出与之间变形的过程,与之间变形的过程,并说出变形依据?
3、提问分数的基本性质,让学生类比猜想出分式的基本性质。
五、例题讲解。
p7例2.填空:
[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变。
p11例3.约分:
[分析]约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变。所以要找准分子和分母的公因式,约分的结果要是最简分式。
p11例4.通分:
[分析]通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母。
(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号。
[分析]每个分式的分子、分母和分式本身都有自己的符号,其中两个符号同时改变,分式的值不变。
解:=,=,=,=,=。
六、随堂练习。
1、填空:
(1)=(2)=。
(3)=(4)=。
2、约分:
(1)(2)(3)(4)。
3、通分:
(1)和(2)和。
(3)和(4)和。
4、不改变分式的值,使下列分式的分子和分母都不含“-”号。
(1)(2)(3)(4)。
七、课后练习。
1、判断下列约分是否正确:
(1)=(2)=。
(3)=0。
2、通分:
(1)和(2)和。
3、不改变分式的值,使分子第一项系数为正,分式本身不带“-”号。
(1)(2)。
八、答案:
六、1.(1)2x(2)4b(3)bn+n(4)x+y。
2、(1)(2)(3)(4)-2(x-y)2。
3、通分:
(1)=,=。
(2)=,=。
(3)==。
(4)==。
4、(1)(2)(3)(4)。
人教版八年级数学教案及说课稿篇十二
1、在本上画一个任意三角形。
2、和同桌交流你前面学习了哪些三角形中的线段?三角形的角有怎样的性质?
设计意图:设计操作活动回顾旧知识,并将操作活动与学生的思维活动、语言表达有机结合,实现数学思考的内化,避免了传统的问答式回顾、参与人数少、顾及不到各层面学生、用时较多等问题。
人教版八年级数学教案及说课稿篇十三
“勾股定理的逆定理”一节,是在上节“勾股定理”之后,继续学习的一个直角三角形的判断定理,它是前面知识的继续和深化,勾股定理的逆定理是初中几何学习中的重要内容之一,是今后判断某三角形是直角三角形的重要方法之一,在以后的解题中,将有十分广泛的应用,同时在应用中渗透了利用代数计算的方法证明几何问题的思想,为将来学习解析几何埋下了伏笔,所以本节也是本章的重要内容之一。课标要求学生必须掌握。
1、通过对勾股定理的逆定理的探索,经历知识的发生、发展与形成的过程。
2、通过用三角形三边的数量关系来判断三角形的形状,体验数与形结合方法的应用。
3、通过勾股定理的逆定理的证明,体会数与形结合方法在问题解决中的作用,并能运用勾股定理的逆定理解决相关问题。
2、在探究勾股定理的逆定理的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神(三)、学情分析:尽管已到初二下学期学生知识增多,能力增强,但思维的局限性还很大,能力也有差距,而勾股定理的逆定理的证明方法学生第一次见到,它要求根据已知条件构造一个直角三角形,根据学生的智能状况,学生不容易想到,因此勾股定理的逆定理的证明又是本节的难点,这样如何添辅助线就是解决它的关键,这样就确定了本节课的重点、难点和关键。
重点:勾股定理逆定理的应用难点:勾股定理逆定理的证明。
关键:辅助线的添法探索。
本节课的设计原则是:使学生在动手操作的基础上和合作交流的良好氛围中,通过巧妙而自然地在学生的认识结构与几何知识结构之间筑了一个信息流通渠道,进而达到完善学生的数学认识结构的目的。
(一)、复习回顾:复习回顾与勾股定理有关的内容,建立新旧知识之间的联系。
(二)、创设问题情境。
一开课我就提出了与本节课关系密切、学生用现有的知识可探索却又解决不好的问题,去提示本节课的探究宗旨。(演示)古代埃及人把一根长绳打上等距离的13个结,然后用桩钉如图那样的三角形,便得到一个直角三角形。这是为什么?……。这个问题一出现马上激起学生已有知识与待研究知识的认识冲突,引起了学生的重视,激发了学生的兴趣,因而全身心地投入到学习中来,创造了我要学的气氛,同时也说明了几何知识来源于实践,不失时机地让学生感到数学就在身边。
(三)、学生在教师的指导下尝试解决问题,总结规律(包括难点突破)。
因为几何来源于现实生活,对初二学生来说选择适当的时机,让他们从个体实践经验中开始学习,可以提高学习的主动性和参与意识,所以勾股定理的逆定理不是由教师直接给出的,而是让学生通过动手折纸在具体的实践中观察满足条件的三角形直观感觉上是什么三角形,再用直角三角形插入去验证猜想。
这样设计是因为勾股定理逆定理的证明方法是学生第一次见到,它要求按照已知条件作一个直角三角形,根据学生的智能状况学生是不容易想到的,为了突破这个难点,我让学生动手裁出了一个两直角边与所折三角形两条较小边相等的直角三角形,通过操作验证两三角形全等,从而不仅显示了符合条件的三角形是直角三角形,还孕育了辅助线的添法,为后面进行逻辑推理论证提供了直观的数学模型。
接下来就是利用这个数学模型,从理论上证明这个定理。从动手操作到证明,学生自然地联想到了全等三角形的性质,证明它与一个直角三角形全等,顺利作出了辅助直角三角形,整个证明过程自然、无神秘感,实现了从生动直观向抽象思维的转化,同时学生亲身体会了动手操作——观察——猜测——探索——论证的全过程,这样学生不是被动接受勾股定理的逆定理,因而使学生感到自然、亲切,学生的学习兴趣和学习积极性有所提高。使学生确实在学习过程中享受到自我创造的快乐。
在同学们完成证明之后,可让他们对照课本把证明过程严格的阅读一遍,充分发挥教课书的作用,养成学生看书的习惯,这也是在培养学生的自学能力。
(四)、组织变式训练。
本着由浅入深的原则,安排了三个题目。(演示)第一题比较简单,让学生口答,让所有的学生都能完成。第二题则进了一层,字母代替了数字,绕了一个弯,既可以检查本课知识,又可以提高灵活运用以往知识的能力。第三题则要求更高,要求学生能够推出可能的结论,这些作法培养了学生灵活转换、举一反三的能力,发展了学生的思维,提高了课堂教学的效果和利用率。在变式训练中我还采用讲、说、练结合的方法,教师通过观察、提问、巡视、谈话等活动、及时了解学生的学习过程,随时反馈,调节教法,同时注意加强有针对性的个别指导,把发展学生的思维和随时把握学生的学习效果结合起来。
(五)、归纳小结,纳入知识体系。
本节课小结先让学生归纳本节知识和技能,然后教师作必要的补充,尤其是注意总结思想方法,培养能力方面,比如辅助线的添法,数形结合的思想,并告诉同学今天的勾股定理逆定理是同学们通过自己亲手实践发现并证明的,这种讨论问题的方法是培养我们发现问题认识问题的好方法,希望同学在课外练习时注意用这种方法,这都是教给学习方法。
(六)、作业布置。
由于学生的思维素质存在一定的差异,教学要贯彻“因材施教”的原则,为此我安排了两组作业。a组是基本的思维训练项目,全体都要做,这样有利于学生学习习惯的培养,以及提高他们学好数学的信心。b组题适当加大难度,拓宽知识,供有能力又有兴趣的学生做,日积月累,对训练和培养他们的思维素质,发展学生的个性有积极作用。
为贯彻实施素质教育提出的面向全体学生,使学生全面发展主动发展的精神和培养创新活动的要求,根据本节课的教学内容、教学要求以及初二学生的年龄和心理特征以及学生的认知规律和认知水平,本节课我主要采用了以学生为主体,引导发现、操作探究的教学方法,即不违反科学性又符合可接受性原则,这样有利于培养学生的学习兴趣,调动学生的学习积极性,发展学生的思维;有利于培养学生动手、观察、分析、猜想、验证、推理能力和创新能力;有利于学生从感性认识上升到理性认识,加深对所学知识的理解和掌握;有利于突破难点和突出重点。
此外,本节课我还采用了理论联系实际的教学原则,以教师为主导、学生为主体的教学原则,通过联系学生现有的经验和感性认识,由最邻近的知识去向本节课迁移,通过动手操作让学生独立探讨、主动获取知识。
总之,本节课遵循从生动直观到抽象思维的认识规律,力争最大限度地调动学生学习的积极性;力争把教师教的过程转化为学生亲自探索、发现知识的过程;力争使学生在获得知识的过程中得到能力的培养。
人教版八年级数学教案及说课稿篇十四
本节课是在七年级学习了角平分线的概念和前面刚学完证明直角三角形全等的基础上进行教学的。内容包括角平分线的作法、角平分线的性质及初步应用。作角的平分线是基本作图,角平分线的性质为证明线段或角相等开辟了新的途径,体现了数学的简洁美,同时也是全等三角形知识的延续,又为后面角平分线的判定定理的学习奠定了基础。因此,本节内容在数学知识体系中起到了承上启下的作用。同时教材的安排由浅入深、由易到难、知识结构合理,符合学生的心理特点和认知规律。
刚进入八年级的学生观察、操作、猜想能力较强,但归纳、运用数学意识的思想比较薄弱,思维的广阔性、敏捷性、灵活性比较欠缺,需要在课堂教学中进一步加强引导。根据学生的认知特点和接受水平,我把第一课时的教学任务定为:掌握角平分线的画法及会用角平分线的性质定理解题,同时为下节判定定理的学习打好基础。
利用多媒体技术可以方便地创设、改变和探索某种数学情境,在这种情境下,通过思考和操作活动,研究数学现象的本质和发现数学规律。
本节课的教学重点为:掌握角平分线的尺规作图,理解角的平分线的性质并能初步运用。教学难点是:1、对角平分线性质定理中点到角两边的距离的正确理解;2、对于性质定理的运用。
教学难点突破方法:(1)利用多媒体动态显示角平分线性质的本质内容,在学生脑海中加深印象,从而对性质定理正确使用;(2)通过对比教学让学生选择简单的方法解决问题;(3)通过多媒体创设具有启发性的问题情境,使学生在积极的思维状态中进行学习。
人教版八年级数学教案及说课稿篇十五
1.这一节课的设计是建立在学生已有的知识经验基础之上,利用多媒体演示,通过猜测、分组讨论、动手作图等方式帮助学生在探索图形变换和坐标变化之间关系的过程中,获得数学知识。
2.教学过程中注重激励学生的学习热情,注重过程评价,注重发现问题与解决问题评价。鼓励学生动脑、动手、动口,积极交流讨论。
3.通过这节课的学习,学生初步掌握了探究数学问题的基本方法,了解怎样建立数学模型解决实际问题,学会从生活中去发现数学,去找到数学的美,把数学和生活紧紧联系在一起,让学生体会到数学形象生动的`一面。
4.存在问题:由于学生还没有经历过图形相似的学习,对于图形的拉伸和压缩可能有一定的难度。解决办法:让学生充分交流讨论,积极动手去验证,自己得出结论,加深他们对这一知识的理解。
人教版八年级数学教案及说课稿篇十六
一、教学目的:
1.掌握菱形概念,知道菱形与平行四边形的关系.
2.理解并掌握菱形的定义及性质1、2;会用这些性质进行有关的论证和计算,会计算菱形的面积.
3.通过运用菱形知识解决具体问题,提高分析能力和观察能力.
4.根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想.
二、重点、难点。
1.教学重点:菱形的性质1、2.
2.教学难点:菱形的性质及菱形知识的综合应用.
三、例题的意图分析。
本节课安排了两个例题,例1是一道补充题,是为了巩固菱形的性质;例2是教材p108中的例2,这是一道用菱形知识与直角三角形知识来求菱形面积的实际应用问题.此题目,除用以巩固菱形性质外,还可以引导学生用不同的方法来计算菱形的面积,以促进学生熟练、灵活地运用知识.
四、课堂引入。
1.(复习)什么叫做平行四边形?什么叫矩形?平行四边形和矩形之间的关系是什么?
2.(引入)我们已经学习了一种特殊的平行四边形——矩形,其实还有另外的特殊平行四边形,请看演示:(可将事先按如图做成的一组对边可以活动的教具进行演示)如图,改变平行四边形的边,使之一组邻边相等,从而引出菱形概念.
人教版八年级数学教案及说课稿篇十七
教学目标:
1.认识“左、右”的位置关系,体会其相对性。
2.能够初步运用左右描述物体的位置,解决实际问题。
3.通过生动有趣的数学活动,使学生体会到学习数学的乐趣。
教学重点:
认识“左、右”的位置关系,体会其相对性。
教学难点:
运用左右描述物体的位置,解决实际问题。
教学过程:
一、创设情境,导入新课。
1.同学对你的同桌说一说,哪只是右手,哪只是左手。
2.我们要来认识“左右”。(板书课题:左右)。
二、联系自身,体验左右。
1.摸一摸。
(2)哪只是左脚?哪只是右脚?
(4)还有左耳和右耳。
(5)还有左眼和右眼。
(6)还有左肩和右肩。……。
(7)生每说一种,教师都引导全体学生用手摸一摸。
三、实际操作,探索新知。
1.摆一摆。
游戏做完了,现在我们要开始摆文具了。同桌的同学互相合作,听清楚老师说的话。
请你在桌上放一块橡皮;。
在橡皮的左边摆一枝铅笔;。
在橡皮的右边摆一个铅笔盒;。
在铅笔盒的左边,橡皮的右边摆一把尺子;。
在铅笔盒的右边摆一把小刀。
生摆好后,师用出示正确的排列顺序,生检查自己的排列。
2.数一数。
从左数橡皮是第几个?从右数橡皮是第几个?
从左数橡皮是第二个,从右数橡皮是第四个。
为什么橡皮一会儿排第二?一会儿又排第四?
什么东西反了?能讲得更清楚一些吗?
(数的顺序反了,开始是从左数,后来是从右数。)。
师小结:也就是说,同样一个物体,从左数和从右数,结果就可能不一样。
3.爬楼梯。上楼梯时我们要靠哪边走?
下楼梯时我们又要靠哪边走?
请你们两位示范一下,把教室中间过道当楼梯,一个从前往后走是下楼梯,另一个从后往前走是上楼梯。
(生观察时师提醒:下楼梯的同学是靠哪边走?)。
(生还是有的说左边,有的说右边。)。
师:教学楼中间有一个楼梯,同学们想不想去走一走?
(全体学生进行室外活动:走上楼梯,又走下楼梯。下楼梯时,师又提醒:下楼梯时你靠哪边走?)。
回到教室。
现在同学们明白下楼梯时靠哪边走吗?
为什么上、下楼梯都靠右边走?
(如果不这样走,上、下楼梯的人就会相撞。)。
对!特别是要做课间操时楼梯比较拥挤,如果相撞就会发生危险。
4.练一练。
(出示课本第61页第3题图)他们都是靠右走的吗?
五、运用新知,解决问题。
1.转弯判断。同学们想不想去公园玩?
那我们就坐这辆大客车去吧!(师拿出玩具客车。)。
准备好,要出发了,请同学们判断客车是往左转还是往右转?
(师在“十字路口图”上演示转弯。)。
小组讨论一下,客车到底是往哪边转。
(生组内讨论交流意见。)。
师生共同小结:站的方向不同,左右也不同。在日常生活中,汽车转弯的方向常常以司机为准。
2.小游戏:我是小司机。
同桌的同学互相配合,左边的同学说命令,右边的同学用玩具小汽车在“十字路口图”上转弯,然后交换角色。
六、课堂总结。
通过这节课,你有哪些收获?你印象最深的是什么?你有什么感想吗?
【本文地址:http://www.xuefen.com.cn/zuowen/9792055.html】