一个好的教案可以提高教学效果,让学生更好地理解和掌握知识。教案的编写过程中,需要注重对学生的思维习惯和学习方式的培养。随后是教案范文,供大家学习和参考,希望对大家有所帮助。
高一数学必修教案全册篇一
1、使学生理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项。
(1)理解数列是按一定顺序排成的一列数,其每一项是由其项数确定的。
(2)了解数列的各种表示方法,理解通项公式是数列第项与项数的关系式,能根据通项公式写出数列的前几项,并能根据给出的一个数列的前几项写出该数列的一个通项公式。
(3)已知一个数列的递推公式及前若干项,便确定了数列,能用代入法写出数列的`前几项。
2、通过对一列数的观察、归纳,写出符合条件的一个通项公式,培养学生的观察能力和抽象概括能力。
3、通过由求的过程,培养学生严谨的科学态度及良好的思维习惯。
(1)为激发学生学习数列的兴趣,体会数列知识在实际生活中的作用,可由实际问题引入,从中抽象出数列要研究的问题,使学生对所要研究的内容心中有数,如书中所给的例子,还有物品堆放个数的计算等。
(2)数列中蕴含的函数思想是研究数列的指导思想,应及早引导学生发现数列与函数的关系。在教学中强调数列的项是按一定顺序排列的,“次序”便是函数的自变量,相同的数组成的数列,次序不同则就是不同的数列。函数表示法有列表法、图象法、解析式法,类似地,数列就有列举法、图示法、通项公式法。由于数列的自变量为正整数,于是就有可能相邻的两项(或几项)有关系,从而数列就有其特殊的表示法——递推公式法。
(3)由数列的通项公式写出数列的前几项是简单的代入法,教师应精心设计例题,使这一例题为写通项公式作一些准备,尤其是对程度差的学生,应多举几个例子,让学生观察归纳通项公式与各项的结构关系,尽量为写通项公式提供帮助。
(4)由数列的前几项写出数列的一个通项公式使学生学习中的一个难点,要帮助学生分析各项中的结构特征(整式,分式,递增,递减,摆动等),由学生归纳一些规律性的结论,如正负相间用来调整等。如果学生一时不能写出通项公式,可让学生依据前几项的规律,猜想该数列的下一项或下几项的值,以便寻求项与项数的关系。
(5)对每个数列都有求和问题,所以在本节课应补充数列前项和的概念,用表示的问题是重点问题,可先提出一个具体问题让学生分析与的关系,再由特殊到一般,研究其一般规律,并给出严格的推理证明(强调的表达式是分段的);之后再到特殊问题的解决,举例时要兼顾结果可合并及不可合并的情况。
(6)给出一些简单数列的通项公式,可以求其项或最小项,又是函数思想与方法的体现,对程度好的学生应提出这一问题,学生运用函数知识是可以解决的。
高一数学必修教案全册篇二
课型
新课
教学目标
1.了解中心投影和平行投影的概念;
3.简单组合体与其三视图之间的相互转化.
教学过程
教学内容
备注
一、
自主学习
1.照相、绘画之所以有空间视觉效果,主要处决于线条、明暗和色彩,其中对线条画法的基本原理是一个几何问题,我们需要学习这方面的知识.
二、
质疑提问
下图中的手影游戏,你玩过吗?
光是直线传播的,一个不透明物体在光的照射下,在物体后面的屏幕上会留下这个物体的影子,这种现象叫做投影.其中的光线叫做投影线,留下物体影子的屏幕叫做投影面.
一、中心投影与平行投影
思考2:用灯泡照射物体和用手电筒照射物体形成的投影分别是哪种投影?
投影的分类:
把一个空间几何体投影到一个平面上,可以获得一个平面图形.从多个角度进行投影就能较好地把握几何体的形状和大小,通常选择三种正投影,即正面、侧面和上面,并给出下列概念:
正视图:光线从几何体的前面向后面正投影,得到的投影图.
侧视图:光线从几何体的左面向右面正投影,得到的.投影图.
俯视图:光线从几何体的上面向下面正投影,得到的投影图.
几何体的正视图、侧视图和俯视图,统称为几何体的三视图.
三、
问题探究
思考2:如图,设长方体的长、宽、高分别为a、b、c,那么其三视图分别是什么?
思考3:圆柱、圆锥、圆台的三视图分别是什么?
思考5:球的三视图是什么?下列三视图表示一个什么几何体?
例1:如图是一个倒置的四棱柱的两种摆放,试分别画出其三视图,并比较它们的异同.
四、
课堂检测
五、
小结评价
1.空间几何体的三视图:正视图、侧视图、俯视图;
3.三视图的应用及与原实物图的相互转化.
高一数学必修教案全册篇三
教学目标。
熟悉两角和与差的正、余公式的推导过程,提高逻辑推理能力。
掌握两角和与差的正、余弦公式,能用公式解决相关问题。
教学重难点。
熟练两角和与差的正、余弦公式的正用、逆用和变用技巧。
教学过程。
复习。
两角差的余弦公式。
用-b代替b看看有什么结果?
高一数学必修教案全册篇四
教学准备
教学目标
1、理解平面向量的坐标的概念;
2、掌握平面向量的坐标运算;
3、会根据向量的坐标,判断向量是否共线.
教学重难点
教学重点:平面向量的坐标运算
教学难点:向量的坐标表示的理解及运算的准确性.
教学过程
平面向量基本定理:
什么叫平面的一组基底?
平面的基底有多少组?
引入:
1.平面内建立了直角坐标系,点a可以用什么来
表示?
2.平面向量是否也有类似的表示呢?
高一数学必修教案全册篇五
1.阅读课本练习止。
2.回答问题:
(1)课本内容分成几个层次?每个层次的中心内容是什么?
(2)层次间的联系是什么?
(3)对数函数的定义是什么?
(4)对数函数与指数函数有什么关系?
3.完成练习。
4.小结。
二、方法指导。
1.在学习对数函数时,同学们应从熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质。
2.本节课的主线是对数函数是指数函数的反函数,所有的问题都应围绕着这条主线展开,同学们在学习时应该把两个函数进行类比,通过互为反函数的两个函数的关系由已知函数研究未知函数的性质。
一、提问题。
1.对数函数的自变量和函数分别在指数函数中是什么?
2.两个函数如果互为反函数,则他们的值域,定义域有什么关系?
3.是否所有的函数都有反函数?试举例说明。
二、变题目。
1.试求下列函数的反函数:
(1);(2);(3);(4)。
2.求下列函数的定义域:。
(1);(2);(3)。
3.已知则=;的定义域为。
1.对数函数的有关概念。
(1)把函数叫做对数函数,叫做对数函数的底数。
(2)以10为底数的对数函数为常用对数函数。
(3)以无理数为底数的对数函数为自然对数函数。
2.反函数的概念。
在指数函数中,是自变量,是的函数,其定义域是,值域是;在对数函数中,是自变量,是的函数,其定义域是,值域是,像这样的两个函数叫做互为反函数。
3.与对数函数有关的定义域的求法:
4.举例说明如何求反函数。
一、课外作业:习题3-5a组1,2,3,b组1,
二、课外思考:
1.求定义域:
2.求使函数的函数值恒为负值的的取值范围。
高一数学必修教案全册篇六
教学目标。
3.让学生深刻理解向量在处理平面几何问题中的优越性.
教学重难点。
教学重点:用向量方法解决实际问题的基本方法:向量法解决几何问题的“三步曲”.
教学难点:如何将几何等实际问题化归为向量问题.
教学过程。
由于向量的线性运算和数量积运算具有鲜明的几何背景,平面几何图形的许多性质,如平移、全等、相似、长度、夹角等都可以由向量的线性运算及数量积表示出来,因此,可用向量方法解决平面几何中的一些问题,下面我们通过几个具体实例,说明向量方法在平面几何中的运用。
思考:
运用向量方法解决平面几何问题可以分哪几个步骤?
运用向量方法解决平面几何问题可以分哪几个步骤?
“三步曲”:
(2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题;。
(3)把运算结果“翻译”成几何关系.
高一数学必修教案全册篇七
1. 阅读课本 练习止.
2. 回答问题
(1)课本内容分成几个层次?每个层次的中心内容是什么?
(2)层次间的联系是什么?
(3)对数函数的定义是什么?
(4)对数函数与指数函数有什么关系?
3. 完成 练习
4. 小结.
二、方法指导
1. 在学习对数函数时,同学们应从熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质.
一、提问题
1. 对数函数的自变量和函数分别在指数函数中是什么?
2.两个函数如果互为反函数,则他们的值域,定义域有什么关系?
3.是否所有的函数都有反函数?试举例说明.
二、变题目
1. 试求下列函数的反函数:
(1) ; (2) ;
(3) ; (4) .
2. 求下列函数的定义域:
(1) ; (2) ; (3) .
3. 已知 则 = ; 的定义域为 .
1.对数函数的'有关概念
(1)把函数 叫做对数函数, 叫做对数函数的底数;
(2)以10为底数的对数函数 为常用对数函数;
(3)以无理数 为底数的对数函数 为自然对数函数.
2. 反函数的概念
在指数函数 中, 是自变量, 是 的函数,其定义域是 ,值域是 ;在对数函数 中, 是自变量, 是 的函数,其定义域是 ,值域是 ,像这样的两个函数叫做互为反函数.
3. 与对数函数有关的定义域的求法:
4. 举例说明如何求反函数.
一、课外作业: 习题3-5 a组 1,2,3, b组1,
二、课外思考:
1. 求定义域: .
2. 求使函数 的函数值恒为负值的 的取值范围.
高一数学必修教案全册篇八
3.通过参与编题解题,激发学生学习的爱好.
教学重点是通项公式的熟悉;教学难点是对公式的灵活运用.
实物投影仪,多媒体软件,电脑.
研探式.
一.复习提问
等差数列的概念是从相邻两项的关系加以定义的,这个关系用递推公式来表示比较简单,但我们要围绕通项公式作进一步的理解与应用.
二.主体设计
通项公式反映了项与项数之间的函数关系,当等差数列的首项与公差确定后,数列的每一项便确定了,可以求指定的项(即已知求).找学生试举一例如:“已知等差数列中,首项,公差,求.”这是通项公式的简单应用,由学生解答后,要求每个学生出一些运用等差数列通项公式的题目,包括正用、反用与变用,简单、复杂,定量、定性的均可,教师巡视将好题搜集起来,分类投影在屏幕上.
1.方程思想的运用
(1)已知等差数列中,首项,公差,则-397是该数列的第x项.
(2)已知等差数列中,首项,则公差
(3)已知等差数列中,公差,则首项
这一类问题先由学生解决,之后教师点评,四个量,在一个等式中,运用方程的思想方法,已知其中三个量的值,可以求得第四个量.
2.基本量方法的使用
(1)已知等差数列中,求的值.
(2)已知等差数列中,求.
若学生的题目只有这两种类型,教师可以小结(请出题者、解题者概括):因为已知条件可以化为关于和的二元方程组,所以这些等差数列是确定的,由和写出通项公式,便可归结为前一类问题.解决这类问题只需把两个条件(等式)化为关于和的二元方程组,以求得和,和称作基本量.
教师提出新的问题,已知等差数列的一个条件(等式),能否确定一个等差数列?学生回答后,教师再启发,由这一个条件可得到关于和的二元方程,这是一个和的`制约关系,从这个关系可以得到什么结论?举例说明(例题可由学生或教师给出,视具体情况而定).
如:已知等差数列中,…
由条件可得即,可知,这是比较显然的,与之相关的还能有什么结论?若学生答不出可提示,一定得某一项的值么?能否与两项有关?多项有关?由学生发现规律,完善问题(3)已知等差数列中,求;;;;….
类似的还有
(4)已知等差数列中,求的值.
以上属于对数列的项进行定量的研究,有无定性的判定?引出
3.研究等差数列的单调性
4.研究项的符号
这是为研究等差数列前项和的最值所做的预备工作.可配备的题目如
(1)已知数列的通项公式为,问数列从第几项开始小于0?
(2)等差数列从第x项起以后每项均为负数.
三.小结
1.用方程思想熟悉等差数列通项公式;
2.用函数思想解决等差数列问题.
四.板书设计
等差数列通项公式1.方程思想的运用
2.基本量方法的使用
3.研究等差数列的单调性
4.研究项的符号
高一数学必修教案全册篇九
掌握三角函数模型应用基本步骤:
(1)根据图象建立解析式;
(2)根据解析式作出图象;
(3)将实际问题抽象为与三角函数有关的简单函数模型·。
·利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型·。
一、练习讲解:《习案》作业十三的第3、4题。
(精确到0·001)·。
米的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的水域?
本题的解答中,给出货船的`进、出港时间,一方面要注意利用周期性以及问题的条件,另一方面还要注意考虑实际意义。关于课本第64页的“思考”问题,实际上,在货船的安全水深正好与港口水深相等时停止卸货将船驶向较深的水域是不行的,因为这样不能保证船有足够的时间发动螺旋桨。
练习:教材p65面3题。
三、小结:1、三角函数模型应用基本步骤:
(1)根据图象建立解析式;
(2)根据解析式作出图象;
(3)将实际问题抽象为与三角函数有关的简单函数模型·。
2、利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型·。
四、作业《习案》作业十四及十五。
高一数学必修教案全册篇十
教学目标。
理解以两角差的余弦公式为基础,推导两角和、差正弦和正切公式的方法,体会三角恒等变换特点的过程,理解推导过程,掌握其应用.
教学重难点。
1.教学重点:两角和、差正弦和正切公式的推导过程及运用;。
2.教学难点:两角和与差正弦、余弦和正切公式的灵活运用.
教学过程。
高一数学必修教案全册篇十一
1.要读好课本。
有些“自我感觉良好”的学生,常轻视课本中基础知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,好高骛远,重“量”轻“质”,陷入题海,到正规作业或考试中不是演算出错就是中途“卡壳”。因此,同学们应从高一开始,增强自己从课本入手进行研究的意识。
2.要记好笔记。
首先,在课堂教学中培养好的听课习惯是很重要的。当然听是主要的,听能使注意力集中,要把老师讲的关键性部分听懂、听会。听的时候注意思考、分析问题,但是光听不记,或光记不听必然顾此失彼,课堂效益低下,因此应适当地有目的性的记好笔记,领会课上老师的主要精神与意图。科学的记笔记可以提高45分钟课堂效益。
3.要做好作业。
在课堂、课外练习中培养良好的作业习惯也很有必要.在作业中不但做得整齐、清洁,培养一种美感,还要有条理,这是培养逻辑能力的一条有效途径,必须独立完成。同时可以培养一种独立思考和解题正确的责任感。在作业时要提倡效率,应该十分钟完成的作业,不拖到半小时完成,疲疲惫惫的作业习惯使思维松散、精力不集中,这对培养数学能力是有害而无益的。
4.要写好总结。
一个人不断接受新知识,不断遭遇挫折产生疑问,不断地总结,才有不断地提高。“不会总结的同学,他的能力就不会提高,挫折经验是成功的基石。”自然界适者生存的生物进化过程便是最好的例证。学习要经常总结规律,目的就是为了更一步的发展。
通过与老师、同学平时的接触交流,逐步总结出一般性的学习步骤,它包括:制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面,简单概括为四个环节(预习、上课、整理、作业)和一个步骤(复习总结)。每一个环节都有较深刻的内容,带有较强的目的性、针对性,要落实到位。坚持“两先两后一小结”(先预习后听课,先复习后做作业,写好每个单元的总结)的学习习惯。
1.课前预习教材。课前可以把教材上第二天老师要讲的内容看一下,看看哪些能看懂,哪些不懂。这样老师在讲课的时候我们就能带着问题去听,把自己没看懂的问题听懂。
2.上课专心听讲。这是很重要的,很多同学以为自己什么都弄懂了,就自己做自己的题目。其实即使是自己看懂了的,也可以看看老师也没有另外的理解方法,老师的方法是不是比自己好。听老师有时候讲比自己看更好。
小编推荐:高一数学怎么学才能学好。
3.课后认真复习。刚学的知识,还没完全被消化吸收成为自己的知识,如果不及时复习,就很容易忘记。所以,课后一定要抽出一些时间,及时对所学进行巩固。
4.通过习题巩固。数学是理科,需要通过一定量的习题来巩固,量变积累到了一定量才能质变嘛。这个并非要各位打题海战术,只要求各位做到熟练为止。
5.错题反复研究。自己准备一个错题本,把考试时候做错的题目记录下来,写上做错的原因,反复研究,避免再次出错。
高一数学必修教案全册篇十二
(2)利用平面直角坐标系解决直线与圆的位置关系;
(3)会用“数形结合”的数学思想解决问题、
用坐标法解决几何问题的步骤:
第二步:通过代数运算,解决代数问题;
第三步:将代数运算结果“翻译”成几何结论、
重点与难点:直线与圆的方程的应用、
问 题设计意图师生活动
生:回顾,说出自己的看法、
2、解决直线与圆的位置关系,你将采用什么方法?
生:回顾、思考、讨论、交流,得到解决问题的方法、
问 题设计意图师生活动
3、阅读并思考教科书上的例4,你将选择什么方 法解决例4的'问题
生:自 学例4,并完成练习题1、2、
生:建立适当的直角坐标系, 探求解决问题的方法、
8、小结:
(1)利用“坐标法”解决问对知识进行归纳概括,体会利 师:指导 学生完成练习题、
生:阅读教科书的例3,并完成第
问 题设计意图师生活动
题的需要准备什么工作?
(2)如何建立直角坐标系,才能易于解决平面几何问题?
(3)你认为学好“坐标法”解决问题的关键是什么?
高一数学必修教案全册篇十三
了解数列的概念和几种简单的表示方法(列表、图象、通项公式).
了解数列是自变量为正整数的一类函数。
(2)等差数列、等比数列。
理解等差数列、等比数列的概念。
掌握等差数列、等比数列的通项公式与前项和公式。
能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题。
了解等差数列与一次函数、等比数列与指数函数的关系。
高一数学必修教案全册篇十四
一、除了高等植物成熟的筛管细胞和哺乳动物成熟的红细胞等极少数细胞外,真核细胞都有细胞核。植物的导管细胞是死细胞(主要运输水分、无机盐),筛管主要运输有机物。
二、细胞核控制着细胞的代谢和遗传。
三、细胞核的结构。
2.染色质(主要由dna和蛋白质组成,dna是遗传信息的载体。
4.核孔(实现核质之间频繁的物质交换和信息交流)核孔有选择透过性,上面有载体,大分子物质(蛋白质和mrna)出入细胞需要能量和载体,细胞代谢越旺盛,核孔越多,核仁体积越大。
四、细胞分裂时,细胞核解体,染色质高度螺旋化,缩短变粗,成为光学显微镜下清晰可见的圆柱状或杆状的染色体。分裂结束时,染色体解螺旋,重新成为细丝状的染色质。染色质(分裂间期)和染色体(分裂时)是同样的物质在细胞不同时期的两种存在状态。
五、细胞既是生物体结构的基本单位,又是生物体代谢和遗传的基本单位。
高一数学必修教案全册篇十五
>教学目标
落实情况.
解 绝对值不等式注意不要丢掉 这部分解集.。
五、作业。
1.阅读课本 含绝对值不等式解法.。
2.习题 2、3、4。
课堂教学设计说明。
1.抓住解型绝对值不等式的关键是绝对值的意义,为此首先通过复习让学生掌握好绝对值的意义,为解绝对值不等式打下牢固的基础.
2.在解与绝对值不等式中的关键处设问、质疑、点拨,让学生融会贯通的掌握它们解法之间的内在联系,以达到提高学生解题能力的目的.
3.针对学生解()绝对值不等式容易出现丢掉这部分解集的错误,在教学中应根据绝对值的意义从数轴进行突破,并在练习中纠正这个错误,以提高学生的运算能力.
高一数学必修教案全册篇十六
细胞膜、细胞壁、细胞核、细胞质均不是细胞器。
一、细胞器之间分工。
1.线粒体:细胞进行有氧呼吸的主要场所。双层膜(内膜向内折叠形成脊),分布在动植物细胞体内。
2.叶绿体:进行光合作用,“能量转换站”,双层膜,分布在植物的叶肉细胞。
3.内质网:蛋白质合成和加工,以及脂质合成的“车间”,单层膜,动植物都有。分为光面内质网和粗面内质网(上有核糖体附着)。
4.高尔基体:对来自内质网的蛋白质进行加工、分类和包装,单层膜,动植物都有,植物细胞中参与了细胞壁的形成。
5.核糖体:无膜,合成蛋白质的主要场所。生产蛋白质的机器。
包括游离的核糖体(合成胞内蛋白)和附着在内质网上的核糖体(合成分泌蛋白)。
6.溶酶体:内含有多种水解酶,能分解衰老、损伤的细胞器,吞噬并杀死侵入细胞的病毒或病菌,单层膜。
溶酶体吞噬过程体现生物膜的流动性。溶酶体起源于高尔基体。
7.液泡:主要存在与植物细胞中,内有细胞液,含糖类、无机盐、色素和蛋白质等物质,可以调节植物细胞内的环境,充盈的液泡还可以使植物细胞保持坚挺。与植物细胞的渗透吸水有关。
8.中心体:动物和某些低等植物的细胞,由两个相互垂直排列的中心粒及周围物质组成,与细胞的有丝分裂有关,无膜。一个中心体有两个中心粒组成。
二、分类比较:
1.双层膜:叶绿体、线粒体(细胞核膜)。
单层膜:内质网、高尔基体、液泡、溶酶体(细胞膜、类囊体薄膜)。
无膜:中心体、核糖体。
2.植物特有:叶绿体、液泡动物特有(低等植物):中心体。
3.含核酸的细胞器:线粒体、叶绿体(dna)线粒体、叶绿体、核糖体(rna)。
4.增大膜面积的细胞器:线粒体、内质网、叶绿体。
5.含色素:叶绿体、液泡。
6.能产生atp的:线粒体、叶绿体(细胞质基质)。
7.能自主复制的细胞器:线粒体、叶绿体、中心体。
8.与有丝分裂有关的细胞器:核糖体、线粒体、高尔基体(形成细胞壁)、中心体。
9.发生碱基互补配对:线粒体、叶绿体、核糖体。
10.与主动运输有关:核糖体、线粒体。
高一数学必修教案全册篇十七
(1)理解函数的概念;
(2)了解区间的概念;
(2)了解区间的概念就是指能够体会用区间表示数集的意义和作用;
【问题诊断分析】在本节课的教学中,学生可能遇到的问题是函数的概念及符号的理解,产生这一问题的原因是:函数本身就是一个抽象的概念,对学生来说一个难点。要解决这一问题,就要在通过从实际问题中抽象概况函数的概念,培养学生的抽象概况能力,其中关键是理论联系实际,把抽象转化为具体。
问题1:一枚炮弹发射后,经过26s落到地面击中目标.炮弹的射高为845m,且炮弹距离地面的高度h(单位:m)随时间t(单位:s)变化的规律是:h=130t-5t2.
1.1这里的变量t的变化范围是什么?变量h的变化范围是什么?试用集合表示?
1.2高度变量h与时间变量t之间的对应关系是否为函数?若是,其自变量是什么?
设计意图:通过以上问题,让学生正确理解让学生体会用解析式或图象刻画两个变量之间的依赖关系,从问题的实际意义可知,在t的变化范围内任给一个t,按照给定的对应关系,都有的一个高度h与之对应。
问题2:分析教科书中的实例(2),引导学生看图并启发:在t的变化t按照给定的`图象,都有的一个臭氧层空洞面积s与之相对应。
问题3:要求学生仿照实例(1)、(2),描述实例(3)中恩格尔系数和时间的关系。
设计意图:通过这些问题,让学生理解得到函数的定义,培养学生的归纳、概况的能力。
高一数学必修教案全册篇十八
1、法国路易十四的改革;重商主义经济政策;俄国彼得一世的改革;普鲁士腓特烈二世的改革;奥地利特蕾西亚女皇及其子约瑟夫二世的改革。
2、通过课下分组查阅各国改革的资料,使学生掌握各国改革的原因、目的、主要内容及结果;通过课堂上对各国改革异同点的分析、比较,使学生认识到,这些国家的改革反映了17-18世纪欧洲向在资本主义过渡的总趋势。
3、通过学习欧洲主要国家的改革,使学生认识到:17-18世纪欧洲主要封建国家的改革是在特定历史时期出现的,它从另一个角度反映了欧洲向资本主义迅速过渡的历史发展总趋势;而改革也是封建主义向资本主义过渡的一种途径,一个人只有顺应历史发展的潮流才会有所作为。
教学建议。
教材地位分析。
17、18世纪的欧洲封建国家的改革,发生在英国资本主义制度确立之时,各国封建君主以富国强兵为己任,从而出现了法国的“路易十四时代”,以及欧洲的新兴强国俄、普、奥。尽管各国的改革在很大程度上是被迫的,但在客观上,它却使一个涣散、紊乱、封建的欧洲焕发出勃勃生机,它再一次从另外一个角度反映了当时的阶段特征。
重点分析。
路易十四统治下的法国改革以及对欧洲封建国家改革的评价。因为:首先法国是近代欧洲的一个主要国家;同时,法国的改革具有代表意义。其次,在资产阶级革命的时代,如何看待封建国家的改革,这对于了解那个时代,把握欧洲主要国家在资本主义发展中这一阶段的特点和各国的联系十分重要。总的来看,18世纪的开明君主的改革,是从改革道路向资本主义过渡的起点。尽管改革的道路不如革命道路来得猛烈快捷,也不可能在短时期内实现过渡,但它却是多数国家进入资本主义阶段的途径,爆发革命的国家毕只占少数。改革道路一般都会保留较多的封建残余,尤其是在政治方面。然而它也有相对平稳、保持经济连续发展和破坏性极小的优点。革命和改革都是推动历史前进的有利杠杆。
重点、难点突破方案。
以法、俄、普、奥四国为例,让学生思考“这些国家封建统治者为什么要改革,为什么说这些改革是代表了这个时代的特征?”通过这些问题的思维活动,使学生理解资本主义的发展已成为当时欧洲历史发展的主流,这个时代的主流面前,“适者生存,逆者亡”的历史规律。又可让学生比较中国的封建专制统治与欧洲17-18世纪的封建专制统治的区别,从中再次理解欧洲封建国家的改革对后来历史发展的影响。
难点分析。
腓特烈二世改革与普鲁士军国主义扩张政策的联系及对欧洲封建国家改革的评价。这是因为:第一,普鲁士的军国主义扩张有着深刻的历史渊源;同时,它对近现代德国的对外政策,对两次世界大战的发生,以及世界格局的变化产生了重大的影响。第二,如何客观、全面地看待17—18世纪欧洲封建国家的改革,直接影响到对这一历史时期阶段特征的总体把握。
课内探究活动。
在课前,安排学生分组查阅、整理17-18世纪法国、普鲁士、奥地利、俄国等欧洲国家在政治、经济、社会生活等诸方面的资料。在课堂上,由学生以word文档形式或porpont形式向其他学生展示、讲解。
教学设计示例。
教学设计思想。
在多元智能理论、探究式学习理念的指导下,利用学生的自主合作、探究的的学习方式,有利于激发学生的各种潜能,培养学生的学习兴趣,进一步了解历史学习的基本方法,提高学习的功效。
三、对改革的评价。
1、反映了欧洲资本主义兴起的时代特点。
2、改革是在形成中的资产阶级和封建王权的暂时联盟的条件下进行的。
3、改革的怎样内容是加强王权,推行重商主义。所以,改革在加强封建国家的国力的同时,它有利于资本主义的发展,以及资本的原始积累。
4、改革没有改变封建统治的基础。
高一数学必修教案全册篇十九
1、知识目标:使学生理解指数函数的定义,初步掌握指数函数的图像和性质。
2、能力目标:通过定义的引入,图像特征的观察、发现过程使学生懂得理论与实践的辩证关系,适时渗透分类讨论的数学思想,培养学生的探索发现能力和分析问题、解决问题的能力。
3、情感目标:通过学生的参与过程,培养他们手脑并用、多思勤练的良好学习习惯和勇于探索、锲而不舍的治学精神。
高一数学必修教案全册篇二十
掌握用向量方法建立两角差的余弦公式。通过简单运用,使学生初步理解公式的结构及其功能,为建立其它和(差)公式打好基础。
1.教学重点:通过探索得到两角差的余弦公式;
2.教学难点:探索过程的组织和适当引导,这里不仅有学习积极性的问题,还有探索过程必用的基础知识是否已经具备的问题,运用已学知识和方法的能力问题,等等。
1.学法:启发式教学。
2.教学用具:多媒体。
(一)导入:我们在初中时就知道?,,由此我们能否得到大家可以猜想,是不是等于呢?
(二)探讨过程:
在第一章三角函数的学习当中我们知道,在设角的终边与单位圆的交点为,等于角与单位圆交点的横坐标,也可以用角的余弦线来表示,大家思考:怎样构造角和角?(注意:要与它们的正弦线、余弦线联系起来。)。
展示多媒体动画课件,通过正、余弦线及它们之间的几何关系探索与xx之间的关系,由此得到,认识两角差余弦公式的结构。
提示:
1、结合图形,明确应该选择哪几个向量,它们是怎样表示的?
2、怎样利用向量的数量积的概念的计算公式得到探索结果?
展示多媒体课件。
比较用几何知识和向量知识解决问题的不同之处,体会向量方法的作用与便利之处。
思考:再利用两角差的余弦公式得出。
(三)例题讲解。
例1、利用和、差角余弦公式求、的值。
解:分析:把、构造成两个特殊角的和、差。
点评:把一个具体角构造成两个角的和、差形式,有很多种构造方法,例如:,要学会灵活运用。
例2、已知,是第三象限角,求的值。
解:因为,由此得。
又因为是第三象限角,所以。
所以。
点评:注意角、的象限,也就是符号问题。
(四)小结:本节我们学习了两角差的余弦公式,首先要认识公式结构的特征,了解公式的推导过程,熟知由此衍变的两角和的余弦公式。在解题过程中注意角、的象限,也就是符号问题,学会灵活运用。
高一数学必修教案全册篇二十一
本节课是“空间几何体的三视图和直观图”的第一课时,主要内容是投影和三视图,这部分知识是立体几何的基础之一,一方面它是对上一节空间几何体结构特征的再一次强化,画出空间几何体的三视图并能将三视图还原为直观图,是建立空间概念的基础和训练学生几何直观能力的有效手段。另外,三视图部分也是新课程高考的重要内容之一,常常结合给出的三视图求给定几何体的表面积或体积设置在选择或填空中。同时,三视图在工程建设、机械制造中有着广泛应用,同时也为学生进入高一层学府学习有很大的帮助。所以在人们的日常生活中有着重要意义。
二、教学目标。
(1)知识与技能:能画出简单空间图形(长方体,球,圆柱,圆锥,棱柱等的简易组合)的三视图,能识别上述三视图表示的立体模型,从而进一步熟悉简单几何体的结构特征。
(2)过程与方法:通过直观感知,操作确认,提高学生的空间想象能力、几何直观能力,培养学生的应用意识。
(3)情感、态度与价值观:让感受数学就在身边,提高学生学习立体几何的兴趣,培养学生相互交流、相互合作的精神。
三、设计思路。
本节课的主要任务是引导学生完成由立体图形到三视图,再由三视图想象立体图形的复杂过程。直观感知操作确认是新课程几何课堂的一个突出特点,也是这节课的设计思路。通过大量的多媒体直观,实物直观使学生获得了对三视图的感性认识,通过学生的观察思考,动手实践,操作练习,实现认知从感性认识上升为理性认识。培养学生的空间想象能力,几何直观能力为学习立体几何打下基础。
教学的重点、难点。
(一)重点:画出空间几何体及简单组合体的三视图,体会在作三视图时应遵循的“长对正、高平齐、宽相等”的原则。
(二)难点:识别三视图所表示的空间几何体,即:将三视图还原为直观图。
四、学生现实分析。
本节首先简单介绍了中心投影和平行投影,中心投影和平行投影是日常生活中最常见的两种投影形式,学生具有这方面的直接经验和基础。投影和三视图虽为高中新增内容,但学生在初中有一定基础,在七年级上册“从不同方向看”的基础上给出了三视图的概念。到了九年级下册则是在介绍了投影后,用投影的方法给出了三视图的概念,这一概念已基本接近了高中的三视图定义,只是在名字上略有差异。初中叫做主视图、左视图、俯视图。进入高中后特别是再次学习和认识了柱、锥、台等几何体的概念后,学生在空间想象能力方面有了一定的提高,所以,给出了正视图、侧视图、俯视图的概念。这些概念的变化也说明了学生年龄特点和思维差异。
五、教学方法。
(1)教学方法及教学手段。
针对本节课知识是由抽象到具体再到抽象、空间思维难度较大的特点,我采用的教法是直观教学法、启导发现法。
在教学中,通过创设问题情境,充分调动学生学习的积极性和主动性,并引导启发学生动眼、动脑、动手、同时采用多媒体的教学手段,加强直观性和启发性,解决了教师“口说无凭”的尴尬境地,增大了课堂容量,提高了课堂效率。
(2)学法指导。
力争在新课程要求的大背景下组织教学,为学生创设良好的问题情境,留给学生充分的思考空间,在学生的辩证和讨论前提下,发挥教师的概括和引领的作用。
【本文地址:http://www.xuefen.com.cn/zuowen/9720595.html】