最新数据时代心得体会和方法(通用13篇)

格式:DOC 上传日期:2023-11-09 09:45:15
最新数据时代心得体会和方法(通用13篇)
时间:2023-11-09 09:45:15     小编:HT书生

通过写心得体会,我们可以更好地对自己的学习和工作进行评价,为制定下一步的计划提供依据。写心得体会时,可以列举自己的收获和成长,让读者更能感受到你的进步。小编为大家收集了一些优秀的心得体会范文,希望能够给大家写作提供一些启示。

数据时代心得体会和方法篇一

读了《大数据时代》后,感觉到一个大变革的时代将要来临。虽然还不怎么明了到底要彻底改变哪些思维和操作方式,但显然作者想要“终结”或颠覆一些传统上作为我们思维和生存基本理论、方法和方式。在这样的想法面前,我的思想被强烈震撼,不禁战栗起来。

“在小数据时代,我们会假象世界是怎样运作的,然后通过收集和分析数据来验证这种假想。”“随着由假想时代到数据时代的过渡,我们也很可能认为我们不在需要理论了。”书中几乎肯定要颠覆统计学的理论和方法,也试图通过引用《连线》杂志主编安德森的话“量子物理学的理论已经脱离实际”来“终结”量子力学。对此我很高兴,因为统计学和量子力学都是我在大学学习时学到抽筋都不能及格的课目。但这两个理论实在太大,太权威,太基本了,我想我不可能靠一本书就能摆脱这两个让我头疼一辈子的东西。作者其实也不敢旗帜鲜明地提出要颠覆它们的论点,毕竟还是在前面加上了“很可能认为”这样的保护伞。

近几十年,我们总是在遇到各种各样的新思维。在新思维面前我们首先应该做到的就是要破和立,要改变自己的传统,跟上时代的脚步。即使脑子还跟不上,嘴巴上也必须跟上,否则可能会被扣上思想僵化甚至阻碍世界发展的大帽子。既然大数据是“通往未来的必然改变”,那我就必须“不受限于传统的思维模式和特定领域里隐含的固有偏见”,跟作者一起先把统计学和量子力学否定掉再说。反正我也不喜欢、也学不会它们。

当我们人类的数据收集和处理能力达到拍字节甚至更大之后,我们可以把样本变成全部,再加上有能力正视混杂性而忽视精确性后,似乎真的可以抛弃以抽样调查为基础的统计学了。但是由统计学和量子力学以及其他很多“我们也很可能认为我们不再需要的”理论上溯,它们几乎都基于一个共同的基础——逻辑。要是不小心把逻辑或者逻辑思维或者逻辑推理一起给“不再需要”的话,就让我很担心了!

《大数据时代》第16页“大数据的核心就是预测”。逻辑是——描述时空信息“类”与“类”之间长时间有效不变的先后变化关系规则。两者似乎是做同一件事。可大数据要的“不是因果关系,而是相关关系”,“知道是什么就够了,没必要知道为什么”,而逻辑学四大基本定律(同一律、矛盾律、排中律和充足理由律)中的充足理由律又“明确规定”任何事物都有其存在的充足理由。且逻辑推理三部分——归纳逻辑、溯因逻辑和演绎逻辑都是基于因果关系。两者好像又是对立的。在同一件事上两种方法对立,应该只有一个结果,就是要否定掉其中之一。这就是让我很担心的原因。

可我却不能拭目以待,像旁观者一样等着哪一个“脱颖而出”,因为我身处其中。问题不解决,我就没法思考和工作,自然就没法活了!更何况还有两个更可怕的事情。

其一:量子力学搞了一百多年,为了处理好混杂性问题,把质量和速度结合到能量上去了,为了调和量子力学与相对论的矛盾,又搞出一个量子场论,再七搞八搞又有了虫洞和罗森桥,最后把四维的时空弯曲成允许时间旅行的样子,恨不得马上造成那可怕的时间旅行机器。唯一阻止那些“爱因斯坦”们“瞎胡闹”的就是因果关系,因为爸爸就是爸爸,儿子就是儿子。那么大数据会不会通过正视混杂性,放弃因果关系最后反而搞出时间机器,让爸爸不再是爸爸,儿子不再是儿子了呢?其二:人和机器的根本区别在于人有逻辑思维而机器没有。《大数据时代》也担心“最后做出决策的将是机器而不是人”。如果真的那一天因为放弃逻辑思维而出现科幻电影上描述的机器主宰世界消灭人类的结果,那我还不如现在就趁早跳楼。

还好我知道自己对什么统计学、量子力学、逻辑学和大数据来说都是门外汉,也许上面一大篇都是在胡说八道,所谓的担心根本不存在。但问题出现了,还是解决的好,不然没法睡着觉。自己解决不了就只能依靠专家来指点迷津。

所以想向《大数据时代》的作者提一个合理化建议:把这本书继续写下去,至少加一个第四部分——大数据时代的逻辑思维。

数据时代心得体会和方法篇二

大数据时代成为炙手可热的话题。笔者在这说明信息和数据,只是试图首先说明信息、数据的关系和不同,也试图说明,为什么信息时代转变为了大数据时代?大数据时代带给了我们什么?下面是本站小编为大家收集整理的大数据时代。

欢迎大家阅读。

这本书里主要介绍的是大数据在现代商业运作上的应用,以及它对现代商业运作的影响。

《大数据时代》这本书的结构框架遵从了学术性书籍的普遍方式。也既,从现象入手,继而通过对现象的解剖提出对这一现象的解释。然后在通过解释在对未来进行预测,并对未来可能出现的问题提出自己看法与对策。

下面来重点介绍《大数据时代》这本书的主要内容。

《大数据时代》开篇就讲了google通过人们在搜索引擎上搜索关键字留下的数据提前成功的预测了20xx年美国的h1n1的爆发地与传播方向以及可能的潜在患者的事情。google的预测比政府提前将近一个月,相比之下政府只能够在流感爆发一两个周之后才可以弄到相关的数据。同时google的预测与政府数据的相关性高达97%,这也就意味着google预测数据的置信区间为3%,这个数字远远小于传统统计学上的常规置信区间5%!而这个数字就是大数据时代预测结果的相对准确性与事件的可预测性的最好证明!通过这一事以及其他的案例,维克托提出了在大数据时代“样本=总体”的思想。我们都知道当样本无限趋近于总体的时候,通过计算得到的描述性数据将无限的趋近于事件本身的性质。而之前采取的“样本总体”的做法很大程度上无法做到更进一步的描述事物,因为之前的时代数据的获取与存储处理本身有很大的难度只导致人们采取抽样的方式来测量事物。而互联网终端与计算机的出现使数据的获取、存储与处理难度大大降低,因而相对准确性更高的“样本=总体”的测算方式将成为大数据时代的主流,同时大数据时代本身也是建立在大批量数据的存储与处理的基础之上的。

接下来,维克多又通过了ibm追求高精确性的电脑翻译计划的失败与google只是将所有出现过的相应的文字语句扫描并储存在词库中,所以无论需要翻译什么,只要有联系google词库就会出现翻译,虽然有的时候的翻译很无厘头,但是大多数时候还是正确的,所以google的电脑翻译的计划的成功,表明大数据时代对准确性的追求并不是特别明显,但是相反大数据时代是建立在大数据的基础住上的,所以大数据时代追求的是全方位覆盖的数字测度而不管其准确性到底有多高,因为大量的数据会湮埋少数有问题的数据所带来的影响。同时大量的数据也会无限的逼近事物的原貌。

之后,维克托又预测了一个在大数据时代催生的重要职业——数据科学家,这是一群数学家、统计学与编程家的综合体,这一群人将能够从获取的数据中得到任何他们想要的结果。换言之,只要数据充足我们的一切外在的与内在的我们不想让他人知道的东西都见会在这一群家伙的面前展现得淋漓尽致。所以为了避免个人隐私在大数据时代被这一群人利用,维克托建议将这一群人分为两部分,一部分使用数据为商业部门服务,而另一群人则负责审查这一些人是否合法的获得与应用数据,是否侵犯了个人隐私。

无论如何,大数据时代将会到来,不管我们接受还是不接受!

我觉得《大数据时代》这本书写的很好,很值得一读。因为会给我们很多启发,比如你在相关的社交网站发表的言论或者照片都很有可能被“数据科学家”们利用,从而再将相关数据卖给各大网店。不过,事实就是我们将会成为被预测被引诱的对象。所以说,小心你在网上留下的痕迹。

我喜欢这本书是因为它给我展现了一个新的世界。

读了《大数据时代》后,感觉到一个大变革的时代将要来临。虽然还不怎么明了到底要彻底改变哪些思维和操作方式,但显然作者想要“终结”或颠覆一些传统上作为我们思维和生存基本理论、方法和方式。在这样的想法面前,我的思想被强烈震撼,不禁战栗起来。

“在小数据时代,我们会假象世界是怎样运作的,然后通过收集和分析数据来验证这种假想。”“随着由假想时代到数据时代的过渡,我们也很可能认为我们不在需要理论了。”书中几乎肯定要颠覆统计学的理论和方法,也试图通过引用《连线》杂志主编安德森的话“量子物理学的理论已经脱离实际”来“终结”量子力学。对此我很高兴,因为统计学和量子力学都是我在大学学习时学到抽筋都不能及格的课目。但这两个理论实在太大,太权威,太基本了,我想我不可能靠一本书就能摆脱这两个让我头疼一辈子的东西。作者其实也不敢旗帜鲜明地提出要颠覆它们的论点,毕竟还是在前面加上了“很可能认为”这样的保护伞。

近几十年,我们总是在遇到各种各样的新思维。在新思维面前我们首先应该做到的就是要破和立,要改变自己的传统,跟上时代的脚步。即使脑子还跟不上,嘴巴上也必须跟上,否则可能会被扣上思想僵化甚至阻碍世界发展的大帽子。既然大数据是“通往未来的必然改变”,那我就必须“不受限于传统的思维模式和特定领域里隐含的固有偏见”,跟作者一起先把统计学和量子力学否定掉再说。反正我也不喜欢、也学不会它们。

当我们人类的数据收集和处理能力达到拍字节甚至更大之后,我们可以把样本变成全部,再加上有能力正视混杂性而忽视精确性后,似乎真的可以抛弃以抽样调查为基础的统计学了。但是由统计学和量子力学以及其他很多“我们也很可能认为我们不再需要的”理论上溯,它们几乎都基于一个共同的基础——逻辑。要是不小心把逻辑或者逻辑思维或者逻辑推理一起给“不再需要”的话,就让我很担心了!

《大数据时代》第16页“大数据的核心就是预测”。逻辑是——描述时空信息“类”与“类”之间长时间有效不变的先后变化关系规则。两者似乎是做同一件事。可大数据要的“不是因果关系,而是相关关系”,“知道是什么就够了,没必要知道为什么”,而逻辑学四大基本定律(同一律、矛盾律、排中律和充足理由律)中的充足理由律又“明确规定”任何事物都有其存在的充足理由。且逻辑推理三部分——归纳逻辑、溯因逻辑和演绎逻辑都是基于因果关系。两者好像又是对立的。在同一件事上两种方法对立,应该只有一个结果,就是要否定掉其中之一。这就是让我很担心的原因。

可我却不能拭目以待,像旁观者一样等着哪一个“脱颖而出”,因为我身处其中。问题不解决,我就没法思考和工作,自然就没法活了!更何况还有两个更可怕的事情。

其一:量子力学搞了一百多年,为了处理好混杂性问题,把质量和速度结合到能量上去了,为了调和量子力学与相对论的矛盾,又搞出一个量子场论,再七搞八搞又有了虫洞和罗森桥,最后把四维的时空弯曲成允许时间旅行的样子,恨不得马上造成那可怕的时间旅行机器。唯一阻止那些“爱因斯坦”们“瞎胡闹”的就是因果关系,因为爸爸就是爸爸,儿子就是儿子。那么大数据会不会通过正视混杂性,放弃因果关系最后反而搞出时间机器,让爸爸不再是爸爸,儿子不再是儿子了呢?其二:人和机器的根本区别在于人有逻辑思维而机器没有。《大数据时代》也担心“最后做出决策的将是机器而不是人”。如果真的那一天因为放弃逻辑思维而出现科幻电影上描述的机器主宰世界消灭人类的结果,那我还不如现在就趁早跳楼。

还好我知道自己对什么统计学、量子力学、逻辑学和大数据来说都是门外汉,也许上面一大篇都是在胡说八道,所谓的担心根本不存在。但问题出现了,还是解决的好,不然没法睡着觉。自己解决不了就只能依靠专家来指点迷津。

所以想向《大数据时代》的作者提一个合理化建议:把这本书继续写下去,至少加一个第四部分——大数据时代的逻辑思维。

在《大数据时代》一书中,大数据时代与小数据时代的区别:1、思维惯例。大数据时代区别与转变就是,放弃对因果关系的渴求,而取而代之关注相关关系。也就是说只要知道“是什么”,而不需要知道“为什么”。作者语言绝对,却反思其本质区别。数据的更多、更杂,导致应用主意只能尽量观察,而不是倾其所有进行推理?这也是明智之举2、使用用途。小数据停留在说明过去,大数据用驱动过去来预测未来。笔者认为数据的用途意在何为,与数据本身无关,而与数据的解读者有关,而相关关系更有利于预测未来。3、结构。大数据更多的体现在海量非结构化数据本身与处理方法的整合。大数据更像是理论与现实齐头并进,理论来创立处理非结构化数据的方法,处理结果与未来进行验证。4、分析基础。大数据是在互联网背景下数据从量变到质变的过程。笔者认为,小数据时代也即是信息时代,是大数据时代的前提,大数据时代是升华和进化,本质是相辅相成,而并非相离互斥。

数据未来的故事。数据的发展,给我们带来什么预期和启示?银行业天然有大数据的潜质。客户数据、交易数据、管理数据等海量数据不断增长,海量机遇和挑战也随之而来,适应变革,适者生存。我们可以有更广阔的业务发展空间、可以有更精准的决策判断能力、可以有更优秀的经营管理能力„„可以这些都基于数据的收集、整理、驾驭、分析能力,基于脱颖而出的创新思维和执行。因此,建设“数据仓库”,培养“数据思维”,养成“数据治理”,创造“数据融合”,实现“数据应用”才能拥抱“大数据”时代,从数据中攫取价值,笑看风云变换,稳健赢取未来。

数据时代心得体会和方法篇三

随着信息技术的迅猛发展,大数据已经成为了我们生活中不可或缺的一部分。在教育领域,大数据的应用也已经渗透到了各个环节。在这个大数据教育新时代,我有幸参与了一些大数据教育项目,并且有了一些深入的体会与感悟。本文将从以下五个方面来谈谈在大数据教育新时代的心得体会。

首先,大数据教育让教学更个性化。传统的教育模式往往是以教师为中心,一刀切地对所有学生进行教学。而在大数据教育的时代,人们可以通过大数据技术来收集和分析学生的学习数据,了解每个学生的学习情况和特点。这样一来,教育者可以根据学生的实际情况来制定个性化的学习计划,使学生能够更好地发挥自己的潜力,从而提高学习效果。

其次,大数据教育让教学更科学化。在大数据时代,教育者可以收集和分析大量的学习数据,从中找到规律和蛛丝马迹。通过数据分析,可以发现学生的学习习惯、偏好、困难点等,从而为教育者提供科学依据。教育者可以根据这些数据结果来调整教学策略,创新教学方法,提高教学效果。同时,教育者还可以利用大数据分析来评估教学的成效,及时发现问题并加以解决。

第三,大数据教育让教学变得更高效。在传统的教学模式下,教育者需要花费很多时间和精力来收集、整理和分析学生的学习数据。而在大数据时代,可以借助大数据分析工具自动进行数据的收集和分析。这样,教育者就可以把更多的时间和精力投入到教学过程中,提高教学的效率和质量。另外,大数据教育还可以根据学生的学习特点和需求,为每个学生量身定制学习资料和学习计划,进一步提高学习效果。

第四,大数据教育促进了教育信息化的发展。大数据技术使得教育信息化变得更加便捷和高效。通过大数据技术,教育者能够轻松地获取学生的学习数据,了解学生的学习情况。同时,大数据技术也可以帮助教育者更好地管理教育资源,制定教育政策。除此之外,大数据技术还能为教育者和学生提供更多的学习资源和学习工具,提供了更多的学习机会和途径。

最后,大数据教育也带来了一些新的问题和挑战。随着大数据技术的不断进步,个人隐私保护和数据安全问题也变得越来越重要。在大数据教育时代,教育者需要更加注重学生隐私保护,并加强数据安全管理。同时,大数据教育也会对教育者的专业能力提出更高的要求,教育者需要不断学习和提升自己的大数据分析能力。

综上所述,大数据教育已经成为了教育领域的一大趋势。通过大数据教育,教育者可以更好地了解学生的学习情况和需求,制定个性化的学习计划,提高教学效果。同时,大数据教育也促进了教育信息化的发展,提高了教学效率和质量。然而,大数据教育也带来了一些新的问题和挑战,我们需要加强对个人隐私保护和数据安全的重视,并提升自己的大数据分析能力。只有这样,我们才能更好地利用大数据教育的优势,推动教育事业的发展。

数据时代心得体会和方法篇四

如今,大数据时代成为炙手可热的话题。你知道读大数据时代。

心得体会。

在《大数据时代》一书中,大数据时代与小数据时代的区别:1、思维惯例。大数据时代区别与转变就是,放弃对因果关系的渴求,而取而代之关注相关关系。也就是说只要知道“是什么”,而不需要知道“为什么”。作者语言绝对,却反思其本质区别。数据的更多、更杂,导致应用主意只能尽量观察,而不是倾其所有进行推理?这也是明智之举2、使用用途。小数据停留在说明过去,大数据用驱动过去来预测未来。笔者认为数据的用途意在何为,与数据本身无关,而与数据的解读者有关,而相关关系更有利于预测未来。3、结构。大数据更多的体现在海量非结构化数据本身与处理方法的整合。大数据更像是理论与现实齐头并进,理论来创立处理非结构化数据的方法,处理结果与未来进行验证。4、分析基础。大数据是在互联网背景下数据从量变到质变的过程。笔者认为,小数据时代也即是信息时代,是大数据时代的前提,大数据时代是升华和进化,本质是相辅相成,而并非相离互斥。

数据未来的故事。数据的发展,给我们带来什么预期和启示?银行业天然有大数据的潜质。客户数据、交易数据、管理数据等海量数据不断增长,海量机遇和挑战也随之而来,适应变革,适者生存。我们可以有更广阔的业务发展空间、可以有更精准的决策判断能力、可以有更优秀的经营管理能力„„可以这些都基于数据的收集、整理、驾驭、分析能力,基于脱颖而出的创新思维和执行。因此,建设“数据仓库”,培养“数据思维”,养成“数据治理”,创造“数据融合”,实现“数据应用”才能拥抱“大数据”时代,从数据中攫取价值,笑看风云变换,稳健赢取未来。

这本书里主要介绍的是大数据在现代商业运作上的应用,以及它对现代商业运作的影响。

《大数据时代》这本书的结构框架遵从了学术性书籍的普遍方式。也既,从现象入手,继而通过对现象的解剖提出对这一现象的解释。然后在通过解释在对未来进行预测,并对未来可能出现的问题提出自己看法与对策。

下面来重点介绍《大数据时代》这本书的主要内容。

《大数据时代》开篇就讲了google通过人们在搜索引擎上搜索关键字留下的数据提前成功的预测了20xx年美国的h1n1的爆发地与传播方向以及可能的潜在患者的事情。google的预测比政府提前将近一个月,相比之下政府只能够在流感爆发一两个周之后才可以弄到相关的数据。同时google的预测与政府数据的相关性高达97%,这也就意味着google预测数据的置信区间为3%,这个数字远远小于传统统计学上的常规置信区间5%!而这个数字就是大数据时代预测结果的相对准确性与事件的可预测性的最好证明!通过这一事以及其他的案例,维克托提出了在大数据时代“样本=总体”的思想。我们都知道当样本无限趋近于总体的时候,通过计算得到的描述性数据将无限的趋近于事件本身的性质。而之前采取的“样本总体”的做法很大程度上无法做到更进一步的描述事物,因为之前的时代数据的获取与存储处理本身有很大的难度只导致人们采取抽样的方式来测量事物。而互联网终端与计算机的出现使数据的获取、存储与处理难度大大降低,因而相对准确性更高的“样本=总体”的测算方式将成为大数据时代的主流,同时大数据时代本身也是建立在大批量数据的存储与处理的基础之上的。

接下来,维克多又通过了ibm追求高精确性的电脑翻译计划的失败与google只是将所有出现过的相应的文字语句扫描并储存在词库中,所以无论需要翻译什么,只要有联系google词库就会出现翻译,虽然有的时候的翻译很无厘头,但是大多数时候还是正确的,所以google的电脑翻译的计划的成功,表明大数据时代对准确性的追求并不是特别明显,但是相反大数据时代是建立在大数据的基础住上的,所以大数据时代追求的是全方位覆盖的数字测度而不管其准确性到底有多高,因为大量的数据会湮埋少数有问题的数据所带来的影响。同时大量的数据也会无限的逼近事物的原貌。

之后,维克托又预测了一个在大数据时代催生的重要职业——数据科学家,这是一群数学家、统计学与编程家的综合体,这一群人将能够从获取的数据中得到任何他们想要的结果。换言之,只要数据充足我们的一切外在的与内在的我们不想让他人知道的东西都见会在这一群家伙的面前展现得淋漓尽致。所以为了避免个人隐私在大数据时代被这一群人利用,维克托建议将这一群人分为两部分,一部分使用数据为商业部门服务,而另一群人则负责审查这一些人是否合法的获得与应用数据,是否侵犯了个人隐私。

无论如何,大数据时代将会到来,不管我们接受还是不接受!

我觉得《大数据时代》这本书写的很好,很值得一读。因为会给我们很多启发,比如你在相关的社交网站发表的言论或者照片都很有可能被“数据科学家”们利用,从而再将相关数据卖给各大网店。不过,事实就是我们将会成为被预测被引诱的对象。所以说,小心你在网上留下的痕迹。

我喜欢这本书是因为它给我展现了一个新的世界。

读了《大数据时代》后,感觉到一个大变革的时代将要来临。虽然还不怎么明了到底要彻底改变哪些思维和操作方式,但显然作者想要“终结”或颠覆一些传统上作为我们思维和生存基本理论、方法和方式。在这样的想法面前,我的思想被强烈震撼,不禁战栗起来。

“在小数据时代,我们会假象世界是怎样运作的,然后通过收集和分析数据来验证这种假想。”“随着由假想时代到数据时代的过渡,我们也很可能认为我们不在需要理论了。”书中几乎肯定要颠覆统计学的理论和方法,也试图通过引用《连线》杂志主编安德森的话“量子物理学的理论已经脱离实际”来“终结”量子力学。对此我很高兴,因为统计学和量子力学都是我在大学学习时学到抽筋都不能及格的课目。但这两个理论实在太大,太权威,太基本了,我想我不可能靠一本书就能摆脱这两个让我头疼一辈子的东西。作者其实也不敢旗帜鲜明地提出要颠覆它们的论点,毕竟还是在前面加上了“很可能认为”这样的保护伞。

近几十年,我们总是在遇到各种各样的新思维。在新思维面前我们首先应该做到的就是要破和立,要改变自己的传统,跟上时代的脚步。即使脑子还跟不上,嘴巴上也必须跟上,否则可能会被扣上思想僵化甚至阻碍世界发展的大帽子。既然大数据是“通往未来的必然改变”,那我就必须“不受限于传统的思维模式和特定领域里隐含的固有偏见”,跟作者一起先把统计学和量子力学否定掉再说。反正我也不喜欢、也学不会它们。

当我们人类的数据收集和处理能力达到拍字节甚至更大之后,我们可以把样本变成全部,再加上有能力正视混杂性而忽视精确性后,似乎真的可以抛弃以抽样调查为基础的统计学了。但是由统计学和量子力学以及其他很多“我们也很可能认为我们不再需要的”理论上溯,它们几乎都基于一个共同的基础——逻辑。要是不小心把逻辑或者逻辑思维或者逻辑推理一起给“不再需要”的话,就让我很担心了!

《大数据时代》第16页“大数据的核心就是预测”。逻辑是——描述时空信息“类”与“类”之间长时间有效不变的先后变化关系规则。两者似乎是做同一件事。可大数据要的“不是因果关系,而是相关关系”,“知道是什么就够了,没必要知道为什么”,而逻辑学四大基本定律(同一律、矛盾律、排中律和充足理由律)中的充足理由律又“明确规定”任何事物都有其存在的充足理由。且逻辑推理三部分——归纳逻辑、溯因逻辑和演绎逻辑都是基于因果关系。两者好像又是对立的。在同一件事上两种方法对立,应该只有一个结果,就是要否定掉其中之一。这就是让我很担心的原因。

可我却不能拭目以待,像旁观者一样等着哪一个“脱颖而出”,因为我身处其中。问题不解决,我就没法思考和工作,自然就没法活了!更何况还有两个更可怕的事情。

其一:量子力学搞了一百多年,为了处理好混杂性问题,把质量和速度结合到能量上去了,为了调和量子力学与相对论的矛盾,又搞出一个量子场论,再七搞八搞又有了虫洞和罗森桥,最后把四维的时空弯曲成允许时间旅行的样子,恨不得马上造成那可怕的时间旅行机器。唯一阻止那些“爱因斯坦”们“瞎胡闹”的就是因果关系,因为爸爸就是爸爸,儿子就是儿子。那么大数据会不会通过正视混杂性,放弃因果关系最后反而搞出时间机器,让爸爸不再是爸爸,儿子不再是儿子了呢?其二:人和机器的根本区别在于人有逻辑思维而机器没有。《大数据时代》也担心“最后做出决策的将是机器而不是人”。如果真的那一天因为放弃逻辑思维而出现科幻电影上描述的机器主宰世界消灭人类的结果,那我还不如现在就趁早跳楼。

还好我知道自己对什么统计学、量子力学、逻辑学和大数据来说都是门外汉,也许上面一大篇都是在胡说八道,所谓的担心根本不存在。但问题出现了,还是解决的好,不然没法睡着觉。自己解决不了就只能依靠专家来指点迷津。

所以想向《大数据时代》的作者提一个合理化建议:把这本书继续写下去,至少加一个第四部分——大数据时代的逻辑思维。

数据时代心得体会和方法篇五

随着信息技术的快速发展,大数据教育正成为教育领域的新热点。在大数据背景下的教育,为教育提供了更全面、更准确的数据支持,同时也给教师和学生带来了更广阔的教学和学习空间。在实践的过程中,我深刻地体会到了大数据教育这一新时代的优势与挑战。下面我将从教学设计、学习评估、个性化教育、教育研究和信息安全五个方面,谈一谈自己对大数据教育的心得体会。

首先,大数据教育为教学设计提供了更有力的支持。传统教育往往根据教师的经验和直觉进行教学设计,难以做到针对每个学生的个性化需求。而有了大数据的介入,教师可以更准确地了解学生的学习情况和表现,从而有针对性地进行教学设计。例如,通过分析学生在课堂上的表现,教师可以了解到学生的薄弱环节,并据此调整教学内容和方法,帮助学生更好地掌握知识。此外,教师还可以通过数据分析来发现学生的学习兴趣和潜能,为学生提供个性化的学习资源和指导,提高教学效果。

其次,大数据教育改变了传统的学习评估方式。在传统教育中,评估往往依赖于考试和作业,对学生的全面能力评估有所欠缺。而大数据教育可以帮助实现全方位的学习评估。通过收集和分析学生的学习数据,可以对学生的学习进程、学习过程和学习结果进行实时监测和评估。例如,通过分析学生在学习过程中的行为数据和学习输出数据,可以了解到学生的学习态度、学习策略和学习效果,并及时进行反馈和调整。这种全方位的评估方式更能真实地反映学生的学习情况,有助于引导学生更好地提高学习效果。

第三,大数据教育推动了个性化教育的发展。大数据的应用使教育走出了一刀切的教学方式,实现了因材施教。通过分析学生的学习数据,可以获得学生的学习特点、习惯、喜好等信息,使教师能够更准确地把握学生的个性化需求,采用针对性更强的教学方法和手段。同时,学生也可以根据自身的需要和兴趣进行学习,选择适合自己的学习路径和资源。个性化教育以学生为中心,让每个学生都能在适合自己的学习环境中得到最大程度的发展,提高教育的质量和效果。

第四,大数据教育为教育研究提供了更多可能。教育研究一直致力于探索教育规律和提高教育效果,而大数据的应用为教育研究提供了更多的研究对象和研究方法。通过分析大数据,可以揭示学生学习行为、学习难点、学习效果等方面的规律,发现教育领域的问题和挑战,并为教育改革和教育政策提供参考和支持。此外,大数据还可以用于教师培训和教学团队建设,帮助教师和学校提高教学效果和管理水平。

最后,大数据教育也面临着信息安全的挑战。大数据的应用涉及到大量的个人隐私数据,保护学生和教师的个人隐私和信息安全成为一项重要任务。在大数据教育中,不仅需要加强对学生和教师的隐私保护,还需要建立健全的数据安全管理体系,加强数据权限控制和访问控制,保证数据的安全性和可靠性。

综上所述,大数据教育为教学设计、学习评估、个性化教育、教育研究和信息安全提供了新的可能和挑战。这一新时代的到来,使教育变得更加科学、智能和人性化。但同时也需要我们不断探索和创新,解决其中的问题和挑战,使大数据教育更好地发挥其优势,推动教育的深入发展。

数据时代心得体会和方法篇六

数据时代是一个无处不在的数字世界,我们生活在这个数字化的时代当中,伴随着科技的不断发展和普及,数据也变得日益庞大、重要且不可倒退。在这个时代里,科技正在重塑着我们的社会形态和人类思维,同时也为我们带来了前所未有的机遇和挑战。通过对于数据时代的思考、探索和实践,我们可以更好地理解这个时代所面临的机遇与挑战,在其中找到我们自己的定位,并不断地完善自己。

数据时代有许多的机遇,它不仅仅是一种生产工具,更是一种创新方式和商业模式。在这个时代里,我们可以通过掌握相关技能、获得数据分析能力,集成多渠道的资源、掌握实时数据、深入挖掘数据,如此种种,才能更好的进入数据时代的角色,转化机遇。通过数据分析,我们可以做到精细化营销、用户需求细分以惠及用户、结合多种方式实现新的业务形态。当然,随着数据时代的到来,要充分利用好数据所提供的机遇并不只这些。

数据时代的挑战并不少。数据时代下的问题,已经不仅仅是如何收集和处理数据,而是如何高效地利用数据进行分析和应用。复杂的分析技术、不稳定的模型、部分数据隐私、多样性的数据资源等等,这些都是数据时代所要面对的挑战。同时,我们也需要提高对于数据的素养,了解大数据安全与数据合规的知识,从而提高数据的价值和安全保障。

第四段:探索数据价值的实践。

数据价值是数据时代的重要指标,它对于企业和个人都有着重要的意义。因此,如何获取和提高数据的价值,已成为我们进入数据时代的重要任务之一。首先,我们需要了解数据,并不断探索数据背后所蕴含的价值,从而实现数据资源的优化利用;其次,我们需要整合数据,建立包含全方位视角的数据管理体系,并实现对数据的全面监测;最后,我们需要通过开放数据共享与创新机制等手段,不断推进数据开放与应用,让数据价值得以最大化。

第五段:结语。

对于数据时代的思考不止于一篇文章,它不断地为改变着我们的生产模式,我们的思维模式和我们的价值观。只有不断探索和实践数据时代的价值,我们才能充分地提升我们的竞争力,成为这个数字化时代的中流砥柱。让我们在这样的时代里,积极拥抱变革、把握机遇,去发掘数据价值带来的更多可能。

数据时代心得体会和方法篇七

大数据在信息时代的崛起,给教育领域带来了前所未有的变革和机遇。随着技术的进步,教育数据的采集、分析和应用已经成为教育改革的新方向。在这个大数据教育新时代,我有了一些深刻的体会和感悟。

首先,大数据教育打破了传统教育的边界和束缚,为学习提供了更多个性化的可能。传统教育往往以“一刀切”的方式进行,忽略了每个学生的差异和潜力。而大数据技术可以对学生的学习情况进行实时跟踪和分析,根据学生的兴趣、能力和学习节奏,个性化地设计学习内容和方式。通过大数据教育,学生们可以在更适合自己的环境中学习,更有效地进步和成长。

其次,大数据教育强化了教育评估和质量管理的科学性和客观性。在过去,教育质量的评价往往依靠主观的感受和经验,缺乏客观的数据支持。而大数据教育则可以收集和分析大量的学生学习数据,从而更准确地评估学生的学习成果和教学效果。基于这些数据,教师和学校可以更迅速地发现问题和调整教学策略,以提高教学质量。同时,学生和家长也可以更明确地了解自己的学习情况,并及时调整学习计划。

第三,大数据教育为教育决策提供了更充分的依据和支持。教育决策往往需要依赖大量的数据来分析趋势和预测未来。传统的数据搜集和整理工作非常繁琐,也容易出现错误。而大数据教育则可以通过大规模数据的分析,深入挖掘学生的学习模式、教师的教学方法、课程的效果等多个维度,为教育决策提供更准确的依据。例如,在教育政策制定时,可以通过大数据来衡量教育改革的效果和潜在的影响,有针对性地进行调整和改进。

第四,大数据教育促进了合作和共享。在大数据时代,不同学校、不同区域和不同国家的教育数据可以进行共享和比对。这种共享和比对可以帮助教育者们更全面地了解教育现状和问题,同时也可以借鉴其他地区和国家的成功经验。大数据教育的共享和合作,可以在全球范围内实现教育资源的共享,促进教育的公平和可持续发展。

最后,大数据教育也带来了一些挑战和隐忧。首先,隐私和安全问题是大数据教育面临的重要挑战。大数据教育需要收集和处理大量的个人敏感信息,因此,如何保护学生和教师的隐私和数据安全势在必行。其次,大数据教育虽然可以提供大量的数据支持,但如何从这些海量的数据中提炼出真正有价值的信息,仍然是一个需要解决的难题。此外,大数据教育也需要教育者们具备相关的技术和数据分析能力,以更好地应对和利用大数据。

综上所述,大数据教育的出现给教育领域带来了革新和突破。它改变了传统教育模式,提供了更多个性化的学习机会;它强化了教育评估和质量管理的科学性和客观性;它为教育决策提供了更充分的依据和支持;同时也促进了教育的合作和共享。然而,大数据教育也面临着隐私和安全问题以及数据利用的挑战。我们应当积极探索和应用大数据教育,同时也需警惕其潜在的问题,努力营造一个以数据为基础的智慧教育新时代。

数据时代心得体会和方法篇八

近年来,随着数据技术和网络技术的飞速发展,我们正处于一个大数据信息化时代。随之而来的是海量数据的爆发式增长,对数据的审查、处理和分析带来了前所未有的挑战。大数据信息化时代的到来也改变了人们的生活方式和工作方式,促进了科技进步。在这个时代,我们不仅需要拥有海量的数据,更需要的是对数据的利用价值。因此,大数据信息化时代需要不断地关注数据的价值和意义,以更好地适应信息化时代的发展。

第二段:论述大数据在企业经济效益中的应用。

大数据为企业带来了经济效益,企业可以更好地收集和分析数据,发现并分析出自身经营情况的薄弱环节,及时采取措施,提升管理能力,有效降低成本。同时,大数据能够带来巨大的商业价值,为企业提供更加精准的服务。在这个信息化时代,企业需要关注大数据的价值,通过数据分析找到企业更好的发展之路。

第三段:阐述大数据在医疗行业中的应用。

大数据对于医疗行业来说也是非常重要的。通过收集和分析医疗领域的数据,医疗领域可以更好地预测疾病的发展和预防措施。同时,大数据还能够帮助医疗领域提高诊疗效率,减少医疗成本。医疗领域非常关注如何将现有的数据信息,转换为医疗罕见病的战斗力,科学家们希望能够通过大数据的助力,探索新的治疗方案,并更好地提供医疗服务。

第四段:说明大数据在教育领域的应用。

作为广博的知识体系,教育领域同样需要大数据的帮助。通过收集和分析学生的学习数据,教育领域可以更好地了解学生的学习情况,精准地预测学生未来的学习方向和职业发展。同时,教育领域也可以通过大数据获得学习资源的优化配置,提升学生的学习效果,推动区域教育更好地发展。

大数据信息化时代已经到来,数据是未来时代的核心竞争力。我们需要更加深入地理解大数据背后的价值和意义,结合实际应用,充分挖掘数据的潜在价值。只有这样,我们才能更好地抓住大数据带来的发展机遇,实现我们的个人和企业的发展目标。在未来,大数据的发展将会更加快速和广泛,我们需要不断地跟随时代发展,积极掌握新技术,抓住大数据时代带来的发展机遇。

数据时代心得体会和方法篇九

《大数据时代》这本书主要描述的是大数据时代到临人们生活、工作与思维各方面所遇到的重大变革。

文中清晰的阐述了大数据的基本概念和特点,并列出明确的观点。不管对于产业实践者,还是对于政府和公众机构,都非常具有价值。作者将本书分为3个部分。第一部分提出了大数据时代处理数据理念上的三大转变:抽样等于全体;要效率不要绝对精确;要相关不要因果;第二部分作者从万事万物数据化和数据交叉复用的巨大价值两个方面,讲述驱动大数据战车在材质和智力方面向前滚动的最根本动力;最后一部分,作者描绘了大数据帝国前夜的脆弱和不安,包括产业生态环境、数据安全隐私、信息公正公开等问题。

本书观点掷地有声,作者观念高屋建瓴,从很多实例和经验中萃取普适性观念。例子详实丰富,囊括了进百个学术和商业实例。

引言提出了大数据将给生活、工作于思维带来重大的变革。一个例子是20__年h1n1流行病毒背景下谷歌通过检测检索词条,处理了4.5亿个不同的数据模型,通过预测并与20__年、20__年美国疾控中心记录的实际流感病例进行对比后,确定了45条检索词条组合,并将其用于一个特定的数学模型后,预测的结果与官方数据的相关系数高达97%。按照传统的信息返回流程,通告新流感病毒病例将有一到两周的延迟。对于飞速传播的疾病,信息滞后两周是致命的。而谷歌运用大数据技术,以前所未有的方式,通过海量数据分析得出流感所传播的范围,为世界预测流感提供了一种更快捷的预测工具。此外,我联想到原淘宝董事长马云通过大量数据分析得出20__年经济疲弱,为其商家提前做好迎接经济危机提供了时间缓冲。(补充并清晰描述详细)关于大数据在商业领域的应用, farecast公司是一个成功的典型范例。该公司由奥伦·埃齐奥尼创办,利用机票的销售数据来预测未来的机票价格,旨在帮助用户在购买机票方面做出预测,并对机票价格走势预测的可信度标示出来供消费者查考。farecast系统利用近十万亿条价格记录预测的准确度达75%,使得使用farecast票价预测工具购买机票的旅客,平均每张机票节约50美元。而处理如此多的数据离开了大数据技术将无法进行。

也正是由于我们进入了一个前所未有的信息化时代,人们拥有了如此多的数据,才提供给我们利用大数据的分析处理手段,创造新的价值。也许有人以为我们大数据时代的还未来临。其实大数据技术早已渗透到我们中间,它被应用在垃圾邮件的过滤,新浪微博技术平台,谷歌翻译以及输入文字的自动纠错等。

文中提出的一个观点是,预测是大数据的核心。其实从过去的时代人们就利用掌握的数据进行各种分析,从而对经济等各方面进行预测、矫正。只是进入了大数据时代人们掌握的数据爆炸性的速度在增长,从而数据的存储和分析数据分方法成了释放大数据能量的关键。

关于不是随机样本而是整体数据中。作者指出了随机取样是小数据时代用最少的数据获取最大价值的做法。作者用大数据与乔布斯的癌症治疗例子说明了使用全部数据而非样本的意义。乔布斯成为世界上第一个对自身所有dna和肿瘤dna进行排序的人。乔布斯曾开玩笑说“我要么是第一个通过这种方式战胜癌症的人,要么就是最后一个因为这种方式死于癌症的人”。虽然最后难免死于癌症但这种获得所有数据而不是仅样本的方法将他的生命延长了几年。同样,从事跨境汇款业务的xoom公司侦破一起犯罪集团的诈骗也是由于使用了整体数据。初此之外,他还列举了日本“相扑”等来证明使用全体数据的重要性。

作者同时也指出随着数据使用的越来越多,其得出的结果并一定能越来越精确,毕竟数据不能保证百分之百的正确,特别是大数据时代各种结构化与非结构化类型的数据聚集在一起难免导致结果的不太精确。大数据时代要求我们重新审视精确性的优劣。作者特别举了谷歌翻译成功的例子。谷歌翻译之所以优于ibm的candide系统并不是因为它拥有更好的算法机制。和微软的班科和布里尔一样,谷歌翻译增加了各种各样的数据,并且接受了有错误的数据。(其语库来自于未经过滤的网页内容,会包含一些不完整的句子、拼写错误、语法错误以及其他各种错误)

在不是因果关系,而是相关关系的篇章中。作者指出在大数据时代往往知道是什么要比知道为什么来的更实在。作者列举了林登的亚马逊推荐系统的成功,证实了大数据在分析相关性方面的优势以及在销售中获得的成功。沃尔玛也是充分利用并挖掘各类数据信息的先锋和代表,从以前广为人事的啤酒和尿布的案例,以及作者举的有关蛋挞和飓风天气的案例,都说明了掌握了相关关系对于其策略的帮助。建立在相关关系分析法基础上的预测是大数据的核心。aviva保险公司利用几百种生活方式的数据,如爱好、长浏览网页等间接的预测出哪些人更可能患高血压、糖尿病和抑郁症。ups国家快递公司通过使用预测性分析检测其全美6万辆车队。进行防御性的修理,节约巨大得的成本。这些都充分显示了大数据在预测方面的优势。

本书第二部分讲的是大数据时代的商业变革。

作者用莫里绘制导航图的例子告诉我们,远在信息数字化之前,对数据的运用就已经开始了。莫里利用大量的人力去分析多年保存的航海记录,他从这些大量的数据中获取到新的利用价值。绘制的图表帮助商人节约一大笔钱,使年轻的海员们间接获取了成千上万名经验丰富的航海家的指导。日本先进工业技术研究所越水重臣教授通过安装压力传感器将人屁股特征数据化,进而形成对乘客身份的特征识别。这项技术为汽车防盗系统提供了方案。公司,致力于为顾客预测商品的价格,通过收集处理海量的价格信息,预测准确率高达77%,帮助顾客在购买一个产品时节约了大约100美元。r部门通过分析来自210个国家的15亿信用卡用户的650亿条交易记录,分析得出商业发展和客户消费趋势,如通过分析发现如果一个人下午四点左右给汽车加油的话,他很可能在接下来的一个小时内去购物或者去餐馆吃饭 ,且在这一小时里大约花费35到40美元。商家正可以利用这个分析结果,在加油的小票背面附加上附近商店的优惠券。

这些例子都证明了大数据蕴藏着巨大的商业价值。根据提供价值的不同来源,大数据价值链包括三大构成部分。包括第一种是基于数据本身的公司。这些公司拥有大量数据或者至少可以收集到大量数据,却不一定有从数据中提取价值或者用数据催生创新思想的技能。第二种是基于技能的公司。它们通常是咨询公司、技术供应商或者分析公司。它们掌握了专业技能但并不一定拥有数据或者提出数据创性用途的才能。比如说,沃尔玛和pop-tarts这两个零售商就是借助天睿公司的分析来获得营销点子,天睿就是一家大数据分析公司。第三种是基于思维的公司。皮特.华登,jetpac的联合创始人,就是通过想法获得价值的一个例子,他通过用户分享到网上的旅行照片来为人们推荐下一次旅行目的地。对于某些公司来说,数据和技能并不是成功的关键。挖掘数据的新价值的创新思维才是这些公司脱颖而出的优势所在。

大数据成为许多公司竞争力的来源,未来可能整个行业的结构会发生改变,大公司和小公司最有可能成为赢家。如今的核心竞争力在于快速而廉价地进行大量的数据存储和处理。当然公司要根据自己的情况进行调整。大数据向小数据时代的赢家以及那些线下大公司(如沃尔玛、联邦快递、宝洁公司、雀巢公司、波音公司)提出了挑战。同时,大数据也为小公司带来了机遇。大数据也将会影响国家竞争力。当制造业已经大幅转向发展中国家,而大家都争相发展创新行业的时候,工业化国家因为掌握了数据以及大数据技术,所以仍然在全球竞争中占据优势,但这个优势很难持续。随着技术的发展,西方世界在大数据技术的优势将会慢慢消失。对于大公司而言,好消息是大数据技术可以加剧优胜劣汰。一旦公司掌握了大数据,它不但可能超过对手还可能遥遥领先。

文章第三部分讲了大数据带来无数好处的同时带来的不良影响以及如何面对这些影响。包括如数据的收益的处理问题以及数据中用户资料的隐私和决策过程带来的影响。作者在保护个人隐私方面提出了几种想法。一种是使用数据时征询数据所有个人的知晓和授权。第二个技术途径就是匿名化。作者同时也指出了这两种方式的难度。一方面收集到的数据可能会被后续的多次利用。另一方面,匿名化会在数据收集越来越多和数据的相互结合关联使用时变得无效。作者列列举电影《少数派报告》的情节说明越来越依赖数据时,大数据可能将我们禁锢在可能性之中。当然通过分析犯罪的常发地与常发时间,合理安排警力会对治安防范提供不小的帮助。作者还指出不能尽信数据的分析结果,因为不能保证获取分析结果来源的数据准确性。大数据在给我们生活提供便利的同时,也让隐私保护的法律手段失去了作用。我们必须杜绝对数据的过分依赖。

在高速迈进大数据时代的同时,人类信息管理准则需要重新定位,这将带动社会核心价值观的转变。大数据时代,对原有规范的修修补补已经不足以抑制大数据带来的风险。保护个人隐私就需要对个人数据处理器对其政策和行为承担更多责任。同时必须重新定义公正的概念,以确保人类行为的自由。作者提出了解决这些问题的方向。如个人隐私保护方面,可以让使用者承担更多的社会责任。将责任从民众转移到数据使用者有很多意义,也有充分的理由。因为他们更清楚将如何使用数据且是数据应用最大的受益者。关于公正方面简单的讲就是个人可以并应为他们的行为而非倾向负责。就像公司有内部会计和外部审计人员一样,大数据时代,公司将设置专门的人员--内部和外部算法师对大数据活动进行监督。还有可能出现第三方的机构对大数据行为进行监督和衡量。作者甚至考虑到对大数据存在的垄断情况进行分析并在反垄断反面给了建议。最后结语中作者提出大数据提供给人们的只是参考答案,提醒我们在利用这个工具时要铭记人类的作用是无法完全替代的。

大数据时代是信息化社会发展必然趋势,我们只有紧紧跟随时代发展的潮流,在技术上、制度上、价值观念上做出迅速调整并牢牢跟进,才能在接下来新一轮的国际竞争中摆脱受制于人的弱势境地,才能把握发展的方向,冲破与西方国家的差距。对于一个国家如此,对于一个企业亦是如此。在如此快速的到来的大数据时代,我们还有很多知识需要学习,许多思维需要转变,许多技术需要研究。公司的规划中,也需充分考虑到大数据对于公司的未来发展所带来的机遇和挑战。对于掌握大量数据的公司,需要考虑有多少数字化的数据,又有哪些可以通过大数据的分析处理而带来有价值的用途?比如国内目前的社交网站,购物网站等都掌握了用户的大量的数据信息。在大数据时代制胜的良药也许是创新的点子,也许可以利用外部的数据,通过多维化、多层面的分析给其他企业或个人带来价值。

数据时代心得体会和方法篇十

数据分析是当今信息时代的一项重要技能,无论在商业、科研还是社会调查等领域,数据分析都扮演着至关重要的角色。在这一领域内,合理的数据分析方法是确保结果准确性和可靠性的关键。经过长期的学习和实践,我不仅掌握了一系列数据分析方法,也积累了一些宝贵的心得体会。本文将从如何选择合适的数据分析方法、数据清洗的重要性、统计方法的运用、可视化分析的优势以及数据分析的局限性等五个方面进行探讨。

首先,在数据分析的过程中,选择合适的数据分析方法至关重要。在实际应用中,根据问题的性质选择合适的数据分析方法是提高分析效果的关键。比如,在观察型数据分析中,可以使用描述性统计分析的方法,以获得数据的整体特征和分布情况;而在实证型数据分析中,可以采用回归、相关、因子分析等方法,以探究变量之间的关系和预测未来趋势。因此,熟练掌握不同的数据分析方法,并根据实际情况进行灵活运用,可以极大地提高分析的效果和准确性。

其次,数据清洗是数据分析过程中一个至关重要的环节。数据的质量决定了最终分析结果的可靠性,而数据清洗是确保数据质量的关键步骤。在进行数据清洗时,一方面要及时剔除异常值和缺失值,另一方面要对数据进行去重和统一化处理。只有经过一番完善的数据清洗,才能保证后续的数据分析结果的准确性和可靠性。因此,数据清洗是数据分析过程中不可忽视的一环,需要投入充分的时间和精力。

再次,统计方法在数据分析中起到了至关重要的作用。统计方法可以帮助分析者从数据中提取出有用的信息,并对其进行推断和判断。常见的统计方法包括假设检验、方差分析、回归分析等。通过运用这些统计方法,我们可以在分析中得出有科学依据的结论,并为决策提供参考依据。但同时,我们也要注意统计方法的局限性,不能将统计结果作为唯一的依据,还需要结合背景知识和实际情况进行综合考量。

此外,可视化分析在数据分析中也具有无可替代的优势。通过数据可视化工具,我们可以将庞大的数据量转化为直观、易懂的图形,提高数据表达的效果和可解释性。比如,将数据绘制成散点图可以直观地表示变量之间的相关关系,绘制柱状图可以直观地展示不同类别的数据特征等。通过这种形式的数据呈现,我们可以更好地理解数据背后的规律和趋势,为分析提供更多的启示和帮助。

最后,数据分析方法也有一定的局限性。首先,在数据分析中,我们只能根据现有的数据进行分析和推断,而无法获取到未知的变量和数据;其次,数据分析只是一种辅助决策的手段,而并非万能的解决方案,决策者还需结合实际情况进行综合考量。因此,在数据分析中,我们既要充分利用数据分析方法的优势,又要注意其局限性,避免盲目依赖数据分析结果。

综上所述,选择合适的数据分析方法、进行数据清洗、运用统计方法、利用可视化分析以及注意数据分析方法的局限性,是保证数据分析效果的关键要素。在今后的学习和实践中,我将进一步深化对这些方面的理解和应用,不断提升自身在数据分析领域的能力和水平。

数据时代心得体会和方法篇十一

随着科技的发展,我们正处于一个数据时代。数据不仅是信息的载体,更是经济活动的重要资源。数据时代所带来的变革尚在加速进行中,我们应该如何思考和应对这些变化呢?在本文中,我将从五个方面分享我的数据时代经济学心得体会。

第一段:数据时代浪潮汹涌而来,我们唯有保持开放求变。

数据时代所带来的变化是前所未有的,它给各行业都带来了巨大的冲击和机遇。在过去,我们所面对的是缺乏反馈的信息,而现在,我们所掌握的尽皆不同。然而,数据也带来了一个问题,那就是它几乎没有极限,我们永远也不会掌握过多的数据。因此,唯有保持开放求变,并在其中寻求新的发现和机遇,方可应对未来的挑战。

第二段:大数据和算法的发展成为生产力增长的关键。

大数据和算法的发展是当前经济学研究的重要议题。从传统的经济模型来看,企业生产的要素包括资本、劳动等,而随着大数据和算法的发展,数据成为了生产要素的新成员。具有分析能力的人工智能可以从大量数据中分析出规律,帮助企业找到生产过程中的瓶颈和优化方案,从而提高生产效率,成为未来经济发展的重点领域。

第三段:隐私保障和数据安全成为数据时代中必不可少的挑战。

在数据时代中,数据隐私成为了最重要的挑战之一。个人数据的泄露和被盗用将成为最大的威胁,而隐私保护的技术和制度则成为了我们必须思考的前沿话题。与此同时,数据安全也成为了一个国家安全的大问题。我们必须要加强科技投入和法律框架的建设,来保护国家的信息安全。

第四段:数字营销和数字化商业将成为未来的经济增长点。

数字化商业已经成为未来经济的新方向。随着社交媒体和电商销售的兴起,数字营销和销售模式也随之出现。这些商业模式利用了数据分析和人工智能技术,对客户进行细分和分析,从而实现了对客户的个性化服务。今后,数字化商业将更加普及,它将为许多公司带来新的增长点。

第五段:数据时代给我们带来的不仅仅是丰富的知识,更是需要反思的问题。

在数据时代,我们从大数据中获取了丰富的知识,但我们也需要反思它所带来的问题。第一,我们需要保证数据的公平和透明,使其更有价值;其次,我们需要合理使用数据,保护个体隐私和信息安全;最后,我们也需要反思数据时代的发展,考虑其对社会和人类进步的影响。

总之,数据时代为我们带来了无限的机遇,国家、企业和个人都应该以开放的心态,积极探索新的数据时代经济学,并寻求新的发展方向。与此同时,我们也需要保持谨慎和思考的心态,反思数据时代发展的影响和问题。只有通过合理使用数据与保护个体权益的平衡,才能引领我们走向未来的更加光明的经济前景。

数据时代心得体会和方法篇十二

随着信息时代的不断发展,大数据变得越来越重要。作为普通人,我们可能不了解大数据的广泛应用,但它已经深入到我们生活的方方面面。从社交媒体、搜索引擎,到在线购物、医疗保健,这些服务都依赖于大数据的快速处理和分析。在大数据信息化时代,我们需要深入理解并把握其内在核心,以便真正发挥它的优势。

大数据的优势之一是能够快速的处理和分析海量数据。这意味着我们能够更准确地预测和判断某些数据趋势,在经营决策中更能快速高效地行动。与此同时,大数据也能够加速生产过程,使得我们在更短的时间内生产出更多更高质量的产品。通过真正深入理解大数据的优势,我们将能更加全面地运用它,使自己更具竞争力。

大数据存在很多挑战,其中最大的挑战之一是保护与保密性。大数据包含许多个人隐私信息,如果无法妥善处理,将会给用户带来极大的风险。与此同时,可靠和高效的数据存储、传输、处理和分析技术也是另一个重大挑战。理解这些挑战,将有助于我们更好的提高数据分析的质量和可靠性,同时避免数据泄漏和安全问题。

大数据信息化的应用是多种多样的。市场预测、广告投放、生产管理、医学研究等等领域都有众多大数据的应用案例。在市场领域,大数据已成为企业市场战略的基础,因为大数据能够分析市场需求,预测产品领域未来的趋势和消费者行为。在医学领域,利用大数据技术可以快速诊断疾病,预测和预防可能的医疗危机。不管在哪个领域,大数据信息化的应用都是前所未有的,其应用前景也是十分广阔。

第五段:结论。

总之,大数据信息化时代是我们不可避免的未来。这需要我们深入理解它的内在核心,同时也需要认真且客观的看待它所带来的优势和挑战。通过更好地利用大数据技术,我们将能够突破自己的思维和能力,迈向更广阔而更辉煌的未来。

数据时代心得体会和方法篇十三

读了《大数据时代》后,感觉到一个大变革的时代将要来临。虽然还不怎么明了到底要彻底改变哪些思维和操作方式,但显然作者想要“终结”或颠覆一些传统上作为我们思维和生存基本理论、方法和方式。在这样的想法面前,我的思想被强烈震撼,不禁战栗起来。

本书从思维、商业、管理三个方面阐述了在大数据时代在下的变革,这些变革涉及到我们生活的方方面面,几乎其影响程度可以与两次工业革命相媲美。作者在第一部分提出了三个比较令人震惊的观点,也就是大数据的精髓在于我们分析信息时的三个转变,这三个转变将改变我们的理解和组建社会的方法。并且作者将生活,工作思维的大变革和这几个方面紧紧联系在一起。

第三个改变是不是因果关系而是相关关系,在大数据时代,我们更需要了解一个东西是什么,而不是为什么,要找到关联无,通过一个良好的关联物的相关关系可以帮助我们捕捉预测未来。

这三个方面是大数据时代所给我们带来的思维上的改变,所谓思路决定出路,思路有了创新,有了拓展,相应的社会也就会有很大的变化。紧接着第二部分作者从万事万物数据化和数据交叉复用的巨大价值两个方面,讲述驱动大数据战车在材质和智力方面向前滚动的最根本动力。第三部分则是阐述了大数据时代下的弊端以及在管理上的措施。个人认为本书的精髓部分是第一部分,第一部分的三个观点涉及的面很广,包括统计学、逻辑学、哲学等。后两个部分都是以第一部分这三个观点为基础展开阐述的。

这本书给我感触最深的.就是这三个转变,或者说是三个观点,可以说是哲学上说的世界观,因为世界观决定方法论,所以这三个观点对传统看法的颠覆,就会导致各种变革的发生。

首先是第一个,作者认为在抽样研究时期,由于研究条件的欠缺,只能以少量的数据获取最大的信息,而在大数据时代,我们可以获得海量的数据,抽样自然就失去它的意义了。放弃了随机分析法这种捷径,采用所有的数据。作者用大数据与乔布斯的癌症治疗例子说明了使用全部数据而非样本的意义,列举了日本“相扑”等来证明使用全体数据的重要性。

这个观点足以引起统计学乃至社会文明的变革,因为统计抽样和几何学定理、万有引力一样被看做文明得以建立牢固的基石。我对这个观点还是比较认同的,如果真能收集到整体的数据而且分析数据的工具也足够先进,自然是全体数据研究得出的结果更令人信服。但是这个观点也过于绝对,就算是在大数据时代要想收集到全体数据还是不太可能实现的,因为收集全体数据要付出的代价有时会很大。比如说,你要检测食品中致癌物质是否超标,你不可能每一件食品你都检测一遍吧。

第二,要效率不要绝对的精确。作者说,执迷于精确性是信息缺乏时代和模拟时代的产物,只有5%的数据是结构化且能适用于传统数据库的。如果不接受混乱,剩下95%的非结构化数据都无法被利用。作者是基于数据不可能百分之百正确的考虑而做出这样的判断的,如果采用小数据一个数据的错误就会导致结果的误差很大,但是如果数据足够多、数据足够杂那得出的结果就越靠近正确答案。大数据时代要求我们重新审视精确性的优劣,甚至还说到大数据不仅让我们不再期待精确性,也让我们无法实现精确性。谷歌翻译的成功很好地证明了这一点,谷歌的翻译系统不像candide那样精确地翻译每一句话,它谷歌翻译之所以优于ibm的candide系统并不是因为它拥有更好的算法机制,和微软的班科和布里尔一样,谷歌翻译增加了各种各样的数据,并且接受了有错误的数据。

而在阅读这本书时,发现这本书中争议最大的一个观点,不仅是读者,就算是本书的译者也在序言中明确地说到他不认同“相关关系比因果关系更重要”的观点。作者觉得相关关系对于预测一些事情已经足够了,不用花大力气去研究他们的因果关系。作者用林登的亚马逊推荐系统的成功,证实了大数据在分析相关性方面的优势以及在销售中获得的成功。沃尔玛也是充分利用并挖掘各类数据信息的代表,从啤酒和尿布的案例,以及作者举的有关蛋挞和飓风天气的案例,都说明了掌握了相关关系对于他们策略的帮助。

一句话,知道是什么就够了,不用知道为什么。很明显作者所举的例子都是属于商业领域的,但是对于其他领域来说这个观点就值得商榷了。比如说,在科学研究领域,你需要知其然也需要知道其所以然,找到事件发生的原理。用文中的一个例子说明,乔布斯测出整个基因图谱来治疗癌症,但是你治疗癌症你必须知道癌症发病的原理,知道哪一段基因导致了这种疾病,不可能只是说收集各种数据,然后利用其相关性来判断哪里出现了问题。

过度依赖所带来的后果。也用《少数派的报告》这部电影来说明如果痴迷于数据会导致我们将生活在一个没有独立选择和自由意志的社会,如果一切变为现实,我们将被禁锢在大数据的可能性之中。所以书中提出了几种解决方法,一种是使用数据时征询数据所有个人的知晓和授权。第二个技术途径就是匿名化。毫无疑问,大数据将会给社会管理带来巨大的变革。

在这个信息爆炸的时代,大数据给人类社会的方方面面带来了巨大的变革,这是社会发展的潮流,不可逆转,我们只有顺应这种潮流,把握住大数据时代变革的思想,才能在时代潮流中成为佼佼者,在思维上思路上略高一筹,才能在行动中占得先机!

【本文地址:http://www.xuefen.com.cn/zuowen/9680978.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档