教案应该明确教学目标,合理设计教学步骤和方法。教案需要根据学生的学习能力和兴趣特点进行个性化设计,注重因材施教。如果你对教案的编写感到困惑,以下是一些教案范文,希望能够给你一些启发。
七年级数学教案设计篇一
1.小明用天平测量物体的质量(如下图),已知每个小砝码的质量为1克,此时天平处于平衡状态.若设大砝码的质量为x克.
考查说明:本题主要考查等式基本性质1.
答案与解析:根据等式基本性质1:等式两边同时加或减去同一个数或式子,结果仍为等式.
2.方程3y=。
两边都除以3得y=1。
改正:________________________________________________.
考查说明:本题主要考查等式基本性质2并熟练运用.
答案与解析:得y=。
两边同时除以3时,右边也要除以3,不是乘以3。
3.当x=时,60-5x=0.
考查说明:本题主要考查利用等式两条基本性质来解简单方程.
答案与解析:12.由原方程和等式性质1得5x=60,再由等式性质2,两边同除以5,得x=12.
4.方程的解是(36,48中选填一个)。
考查说明:本题考查的知识点是方程的解的概念,使得等号成立即可.
答案与解析:36.方程的解使等式两边相等,把两个数代入验算即可.
5.一年三班55人,一年八班29人,因植树需要从三班中抽出x人到八班,使得两班人数相同,则根据题意可列方程为_____________.
考查说明:本题主要考查根据题意找等量关系,从而列出方程.
答案与解析:55-x=29+x.等量关系为:抽调后,三班人数=八班人数,关键要理解三班少了x人的同时,八班多了x人.
二、选择题。
6.下列方程中,是一元一次方程的是()。
a、
b、
c、
d、
考查说明:本题主要考查一元一次方程的概念.
答案与解析:a.a和b都需要化简后再判断,c明显是二元的,d分母中含未知数,不是整式方程.
7.根据下列条件能列出方程的是()。
a.一个数的'与另一个数的的和。
b.与1的差的4倍是8。
c.和的60%。
d.甲的3倍与乙的差的2倍。
考查说明:本题考查的知识点是方程与代数式的区别.
答案与解析:b.其余几个答案都不能列出等号.
三、解答题。
考查说明:本题考查的知识点是列一元一次方程解应用题,并会利用等式性质解简单的一元一次方程.本题等量关系为:教师票价+学生票价=910.
答案与解析:设:学生有x人,根据题意。
列出方程得70+70x×=910,
解方程得70x×=840,
即35x=840,
所以x=24.
七年级数学教案设计篇二
1,掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;。
2,了解分类的标准与分类结果的相关性,初步了解“集合”的含义;。
3,体验分类是数学上的常用处理问题的方法。
教学难点正确理解分类的标准和按照一定的标准进行分类。
知识重点正确理解有理数的概念。
教学过程(师生活动)设计理念。
探索新知在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出).
问题1:观察黑板上的9个数,并给它们进行分类.
学生思考讨论和交流分类的情况.
学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.
例如,
对于数5,可这样问:5和5.1有相同的类型吗?5可以表示5个人,而5.1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5.1不是整个的数,称为“正分数,,.••…(由于小数可化为分数,以后把小数和分数都称为分数)。
通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数,’.
按照书本的说法,得出“整数”“分数”和“有理数”的概念.
看书了解有理数名称的由来.
“统称”是指“合起来总的名称”的意思.
学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。
有理数的分类表要在黑板或媒体上展示,分类的标准要引导学生去体会。
练一练1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交流.
2,教科书第10页练习.
此练习中出现了集合的概念,可向学生作如下的说明.
数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号.
思考:上面练习中的四个集合合并在一起就是全体有理数的集合吗?
也可以教师说出一些数,让学生进行判断。
集合的概念不必深入展开。
创新探究问题2:有理数可分为正数和负数两大类,对吗?为什么?
教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,逐步得到如下的分类表。
有理数这个分类可视学生的程度确定是否有必要教学。
小结与作业。
课堂小结到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。
本课作业1,必做题:教科书第18页习题1.2第1题。
2,教师自行准备。
本课教育评注(课堂设计理念,实际教学效果及改进设想)。
1,本课在引人了负数后对所学过的数按照一定的标准进行分类,提出了有理数的概。
念.分类是数学中解决问题的常用手段,通过本节课的学习使学生了解分类的思想并进。
行简单的分类是数学能力的体现,教师在教学中应引起足够的重视.关于分类标准与分。
类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不要过多展开。
2,本课具有开放性的特点,给学生提供了较大的思维空间,能促进学生积极主动地参加学习,亲自体验知识的形成过程,可避免直接进行分类所带来的枯燥性;同时还体现合作学习、交流、探究提高的特点,对学生分类能力的养成有很好的作用。
3,两种分类方法,应以第一种方法为主,第二种方法可视学生的情况进行。
七年级数学教案设计篇三
2.内容解析。
有理数的乘法是继有理数的加减法之后的又一种基本运算.有理数乘法既是有理数运算的深入,又是进一步学习有理数的除法、乘方的基础,对后续代数学习是至关重要的.
与有理数加法法则类似,有理数乘法法则也是一种规定,给出这种规定要遵循的原则是“使原有的运算律保持不变”.本节课要在小学已掌握的乘法运算的基础上,通过合情推理的方式,得到“要使正数乘正数(或0)的规律在正数乘负数、负数乘负数时仍然成立,那么运算结果应该是什么”的结论,从而使学生体会乘法法则的合理性.与加法法则一样,正数乘负数、负数乘负数的法则,也要从符号和绝对值来分析.由于绝对值相乘就是非负数相乘,因此,这里关键是要规定好含有负数的两数相乘之积的符号,这是有理数乘法的本质特征,也是乘法法则的核心.
基于以上分析,可以确定本课的教学重点是两个有理数相乘的符号法则.
二、目标及其解析。
1.目标。
(1)理解有理数乘法法则,能利用有理数乘法法则计算两个数的乘法.
(2)能说出有理数乘法的符号法则,能用例子说明法则的合理性.
2.目标解析。
达成目标(1)的标志是学生在进行两个有理数乘法运算时,能按照乘法法则,先考虑两乘数的符号,再考虑两乘数的绝对值,并得出正确的结果.
达成目标(2)的标志是学生能通过具体例子说明有理数乘法的符号法则的归纳过程.
三、教学问题诊断分析。
有理数的乘法与小学学习的乘法的区别在于负数参与了运算.本课要以正数、0之间的运算为基础,构造一组有规律的算式,先让学生从算式左右各数的符号和绝对值两个角度观察这些算式的共同特点并得出规律,再以问题“要使这个规律在引入负数后仍然成立,那么应有……”为引导,让学生思考在这样的规律下,正数乘负数、负数乘正数、两个负数相乘各应有什么运算结果,并从积的符号和绝对值两个角度总结出规律,进而给出有理数乘法法则,在这个过程中体会规定的合理性.上述过程中,学生对于为什么要讨论这些问题、什么叫“观察下面的乘法算式”、从哪些角度概括算式的规律等,都会出现困难.为了解决这些困难,教师应该在“如何观察”上加强指导,并明确提出“从符号和绝对值两个角度看规律”的要求.
本课的教学难点是:如何观察给定的乘法算式;从哪些角度概括算式的规律.
四、教学过程设计。
教师引导学生从有理数分类的角度考虑,区分出有理数乘法的情况有:正数乘正数、正数与0相乘、正数乘负数、负数乘正数、负数乘负数.
设计意图:有理数分为正数、零、负数,由此引出两个有理数相乘的几种情况,既复习有关知识,为下面的教学做好准备,又渗透了分类讨论思想.
问题2下面从我们熟悉的乘法运算开始.观察下面的乘法算式,你能发现什么规律吗?
3×3=9,
3×2=6,
3×1=3,
3×0=0.
追问1:你认为问题要我们“观察”什么?应该从哪几个角度去观察、发现规律?
如果学生仍然有困难,教师给予提示:
(1)四个算式有什么共同点?——左边都有一个乘数3.
(2)其他两个数有什么变化规律?——随着后一个乘数逐次递减1,积逐次递减3.
设计意图:构造这组有规律的算式,为通过合情推理,得到正数乘负数的法则做准备.通过追问、提示,使学生知道“如何观察”“如何发现规律”.
教师:要使这个规律在引入负数后仍然成立,那么,3×(-1)=-3,这是因为后一乘数从0递减1就是-1,因此积应该从0递减3而得-3.
追问2:根据这个规律,下面的两个积应该是什么?
3×(-2)=,
3×(-3)=.
练习:请你模仿上面的过程,自己构造出一组算式,并说出它的变化规律.
设计意图:让学生自主构造算式,加深对运算规律的理解.
先让学生观察、叙述、补充,教师再总结:都是正数乘负数,积都为负数,积的.绝对值等于各乘数绝对值的积.
设计意图:先得到一类情况的结果,降低归纳概括的难度,同时也为后面的学习奠定基础.
问题3观察下列算式,类比上述过程,你又能发现什么规律?
3×3=9,
2×3=6,
1×3=3,
0×3=0.
鼓励学生模仿正数乘负数的过程,自己独立得出规律.
设计意图:为得到负数乘正数的结论做准备;培养学生的模仿、概括的能力.
追问1:要使这个规律在引入负数后仍然成立,你认为下面的空格应各填什么数?
(-1)×3=,
(-2)×3=,
(-3)×3=.
练习:请你模仿上面的过程,自己构造出一组算式,并说出它的变化规律.
先让学生观察、叙述、补充,教师再总结:都是负数乘正数,积都为负数,积的绝对值等于各乘数绝对值的积.
追问3:正数乘负数、负数乘正数两种情况下的结论有什么共性?你能把它概括出来吗?
设计意图:让学生模仿已有的讨论过程,自己得出负数乘正数的结论,并进一步概括出“异号两数相乘,积的符号为负,积的绝对值等于各乘数绝对值的积”.既使学生感受法则的合理性,又培养他们的归纳思想和概括能力.
问题4利用上面归纳的结论计算下面的算式,你能发现其中的规律吗?
(-3)×3=,
(-3)×2=,
(-3)×1=,
(-3)×0=.
追问1:按照上述规律填空,并说说其中有什么规律?
(-3)×(-1)=,
(-3)×(-2)=,
(-3)×(-3)=.
设计意图:由学生自主探究得出负数乘负数的结论.因为有前面积累的丰富经验,学生能独立完成.
问题5总结上面所有的情况,你能试着自己给出有理数乘法法则吗?
学生独立思考后进行课堂交流,师生共同完成,得出结论后再让学生看教科书.
学生独立思考、回答.如果有困难,可先让学生看课本第29页有理数乘法法则后面的一段文字.
设计意图:让学生尝试归纳乘法法则,明确按法则计算的关键步骤.
例1计算:
(1)。
;(2)。
;(3)。
学生独立完成后,全班交流.
教师说明:在(3)中,我们得到了。
=1.与以前学习过的倒数概念一样,我们说。
与-2互为倒数.一般地,在有理数中仍然有:乘积是1的两个数互为倒数.
追问:在(2)中,8和-8互为相反数.由此,你能说说如何得到一个数的相反数吗?
设计意图:本例既作为巩固乘法法则,又引出了倒数的概念(因为这个概念很容易理解),同时说明了求一个数的相反数与乘-1之间的关系(反过来有-8=8×(―1)).
设计意图:利用有理数乘法解决实际问题,体现数学的应用价值.
小结、布置作业。
请同学们带着下列问题回顾本节课的内容:
(2)用有理数乘法法则进行两个有理数的乘法运算的基本步骤是什么?
(3)举例说明如何从正数、0的乘法运算出发,归纳出正数乘负数的法则.
(4)你能举例说明符号法则“负负得正”的合理性吗?
设计意图:引导学生从知识内容和学习过程两个方面进行小结.
作业:教科书第30页,练习1,2,3;第37页,习题1.4第1题.
五、目标检测设计。
1.判断下列运算结果的符号:
(1)5×(-3);。
(2)(-3)×3;。
(3)(-2)×(-7);。
(4)(+0.5)×(+0.7).
2计算:
(1)6×(-9);(2)(-6)×0.25;(3)(-0.5)×(-8);。
(4)。
;(5)0×(-6);(6)8×。
设计意图:检测学生对有理数乘法法则的理解情况.
七年级数学教案设计篇四
(二)能力训练目标:
1、经历探索有理数乘法的运算律的过程,发展观察、归纳的能力。
2、能运用乘法运算律简化计算。
(三)情感与价值观要求:
1、在共同探索、共同发现、共同交流的过程中分享成功的喜悦。
2、在讨论的过程中,使学生感受集体的力量,培养团队意识。
乘法运算律的运用。
乘法运算律的运用。
探究交流相结合。
创设问题情境,引入新课。
[活动1]。
问题2:计算下列各题:
(1)(-7)×8;。
(2)8×(-7);
(5)[3×(-4)]×(-5);
(6)3×[(-4)×(-5)];
[师生]由学生自主探索,教师可参与到学生的讨论中。
像前面那样规定有理数乘法法则后,乘法的交换律和结合律与分配律在有理数乘法中仍然成立。我们可以通过问题2来检验。(略)。
[师]同学们自己采用上面的方法来探究一下分配律在有理数范围内成立吗?
[生]例如:5×[3十(-7)]和5×3十5×(-7);(略)。
[师](-5)×(3-7)和(-5)×3-5×7的结果相等吗?
(注意:(-5)×(3-7)中的3-7应看作3与(-7)的和,才能应用分配律。否则不能直接应用分配律,因为减法没有分配律。)。
讲授新课:
[活动2]用文字语言和字母把乘法交换律、结合律、分配律表达出来。
应得出:
1、一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等。
2、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
3、一般地,一个数同两个数的和相乘,等于这个数分别同这两个数相乘,再把积相加。
[活动3][师生]教师引导学生讨论、交流,从中体会学习的快乐。
3、用简便方法计算:
[活动4]。
练习(教科书第42页)。
这节课我们学习乘法的运算律及它们的运用,使我们体验到了掌握一般的正常运算外,还要灵活运用运算律,能简便的一定要简便,这样做既快又准。
课后作业:课本习题1.4的第7题(3)、(6)。
用简便方法计算:
(1)6.868×(-5)+6.868×(一12)+6.868×(+17)。
(2)[(4×8)×25一8]×125。
七年级数学教案设计篇五
2、培养学生的观察、比较、分析、归纳、概括能力,以及学生的探索精神;
3、渗透分类讨论思想?
重点:有理数乘方的运算?
难点:有理数乘方运算的符号法则?
1、求n个相同因数的积的运算叫做乘方?
2、乘方的结果叫做幂,相同的因数叫做底数,相同因数的个数叫做指数?
一般地,在an中,a取任意有理数,n取正整数?
应当注意,乘方是一种运算,幂是乘方运算的结果?当an看作a的n次方的结果时,也可以读作a的n次幂。
例1计算:
(1)2,2,2,24;(2)-2,2,3,(-2)4;。
(3)0,02,03,04?
教师指出:2就是21,指数1通常不写?让三个学生在黑板上计算?
引导学生观察、比较、分析这三组计算题中,底数、指数和幂之间有什么关系?
(1)模向观察。
正数的任何次幂都是正数;负数的奇次幂是负数,偶次幂是正数;零的任何次幂都是零?
(2)纵向观察。
互为相反数的两个数的奇次幂仍互为相反数,偶次幂相等?
(3)任何一个数的偶次幂都是什么数?
任何一个数的偶次幂都是非负数?
你能把上述的结论用数学符号语言表示吗?
当a0时,an0(n是正整数);
当a。
当a=0时,an=0(n是正整数)?
(以上为有理数乘方运算的符号法则)。
a2n=(-a)2n(n是正整数);
=-(-a)2n-1(n是正整数);
a2n0(a是有理数,n是正整数)?
例2计算:
(1)(-3)2,(-3)3,[-(-3)]5;。
(2)-32,-33,-(-3)5;。
(3),?
让三个学生在黑板上计算?
课堂练习。
计算:
(1),,,-,;
(2)(-1)2001,322,-42(-4)2,-23(-2)3;。
(3)(-1)n-1?
让学生回忆,做出小结:
1、乘方的有关概念?
2、乘方的符号法则?3?括号的作用?
1、计算下列各式:
(-3)2;(-2)3;(-4)4;;-0.12;。
-(-3)3;3(-2)3;-6(-3)3;-(-4)2(-1)5?
2、填表:
3、a=-3,b=-5,c=4时,求下列各代数式的值:
4、当a是负数时,判断下列各式是否成立?
(1)a2=(-a)2;(2)a3=(-a)3;(3)a2=;(4)a3=。
5、平方得9的数有几个?是什么?有没有平方得-9的有理数?为什么?
6、若(a+1)2+|b-2|=0,求a2000b3的值?
七年级数学教案设计篇六
这节课的内容是一元一次方程第一课时。课后,我对本节课从四方面进行了如下反思:
一:对选择引例的反思。
在小学学生已接触过方程,但没有过多的研究。而本节课是一元一次方程的开篇课,它起着承上启下的作用,通过这节课既要让学生认识到方程是更方便、更有力的数学工具,又要让学生体验到从算术方法到代数方法是数学的进步,这些目标的实现谈何容易!课本上的例题虽然能很好的体现方程的优越性,但难度较高。学生很少有利用方程解应用题的经历,能否理解和接受?斟酌再三,还是放到后面再讲。那么哪个题既简单又能明显地承载着从算术到方程的进步呢?几乎翻阅了所有的有关资料,无独有偶,在新课标教案126页的一道数学名题“啊哈,它的全部,它的一半,其和等于19。”让我眼前一亮,我为自己好不容易找到一个例题而兴奋不已,立刻拿去和我们数学组经验丰富的老教师交流一下我的想法,他们觉得这个例子倒挺好的,可是也提出了一个让我深思的问题,这个题不是能够很好地体现出从算术到方程的进步,因为题很简单,方程的优越性体现的不够明显。刚才的新奇和兴奋迅速冷却了下来,陈老师的一句话彻底点醒了我,如果实在找不到合适的例题,不妨就用这个题,通过这个题从语言和方法上突破它,可以先让学生感知方程的优越性,后面学习中再不断地渗透方程的优越性。听完陈老师的一席见解,我顿时豁然开朗,增加了以这个题作为引例的信心。事实证明,这个引例既富有创新又能激发学生的兴趣,既符合学生的已有经验和知识水平,又符合学生的认知规律。
二:对选题的反思。
我在备课中【活动3】最初选用的题是:
修改后的题是:
判断下列各式是方程的有:
(1)(2)(3)(4)(5)。
考虑到学生初对方程概念的研究,不在数字上人为的设置障碍,因为是否是方程与数字的大小根本无关,于是把数字全部统一成了6、2、8三个数,利于学生从未知数和等号的角度进一步理解方程的概念。最初选用的题数字太多,显得题很多且条理性不强,容易分散学生对概念本质的把握。改进后的题目更利于学生观察方程的特征,从而更深刻地掌握概念的本质。需要特别说明的是,如果说前5个小题是为了让学生抓住方程的两个要点,那么后3个小题则是对概念本质的提升,即:是否是方程与未知数所在的位置、未知数的个数、未知数的次数等均无关。
三:对课堂实践的反思。
本节课的设计思路:首先以“名题欣赏”导入,引入概念,通过四组练习让学生深刻理解方程和一元一次方程的概念,最后由学生自己归纳小结。
当环节进行到【活动3】时,我让学生写出一个或几个方程,在给学生判断点评时,我发现学生在黑板上写的全部都是未知数在等号左边的方程,这时我突然意识到学生在模仿我前面呈现的方程,不禁暗自责怪自己考虑不周,怎么没出一个等号两边都含有未知数的方程呢?它给我敲响了一个警钟。正当我想写一个等号两边都含有未知数的方程来弥补设计上的不足时,我忽然发现最后一排的一位男生已经高高地举起了手,他提出问题:“老师:等号两边都含有未知数的式子是不是方程,例如:2y-1=3y”?我为有学生能提出这样的问题而感到庆幸,一是因为它及时弥补了我备课中的不足;二是由学生提出问题要比我提出问题更有价值。这可以反映出该生善于思考,同时也反映出了学生真实的疑惑。为了提高学生的探究能力,我并没有急于解释,而是把问题抛给学生,让学生来解决。我立刻提出:“谁能解决这位同学提出的`问题呢?”这时我看到后面几位学生已经高高地举起了手。我随机点了一名学生,这位同学回答到:“判断一个式子是不是方程只要看是否含有未知数和等号就ok了,与未知数的位置无关!”他精彩的回答引起听课教师一阵喝彩!我也顿时惊喜万分,他说的太好了,不管是语言表达还是准确性上都无可挑剔。我为敢于给学生这样一个机会又一次感到庆幸;通过这个同学精彩的回答,我深深地感受到:“教师给学生一个机会,学生就会还你一个惊喜。”
四:教后整体反思。
成功之处:
1.引例、练习题的选择都很恰当。
2.思路清晰,重点突出,注意到了学生的自主探索,节奏把握较好。
3.数学文化的渗透比较自然。
4.“写一个或几个一元一次方程”此环节的设计体现了从理论到实践的过程,使学生的能力得到提升,学习效果得到落实。
5.语言简练,教态大方,师生互动比较热烈,充分调动了学生的积极性。
6.板书设计较为合理。本节课的主要内容都以提炼的方式呈现出来。
不足之处:
1.在处理三道实际背景题时留给学生的思考时间偏少,显得仓促。
2.在后面两组题环节之间的过渡语言不是很自然。
3.授课语言仍需加强锤炼。
这节课的准备和每个环节的设计我颇费了一些心思,上完课之后总的感觉是达到了我预期的目标。非常感谢评委组的老师们中恳的建议,以及同行们的肯定,这让我受益匪浅。在今后的教学中,我将扬长避短,力争做的更好!
七年级数学教案设计篇七
1、这堂课从简单问题入手,由浅至深,比较符合初一学生的认知性,学生了解了概念后马上让他们开启自己的智慧大门,并让学生自己找到符合概念的条件,加深印象。穿插式的练习,让学生能够趁热打铁,更加熟练的掌握和理解一元一次方程的一些概念。在上课的过程中更重视的是学生的探索学习,以及数学“建模”能力的培养。为后面学习打下基础。
3、在课堂的第二个环节中,通过实际问题的'引入,让学生动起脑来,阶梯型问题的设置使得一些后进生也投入到课堂中来,体现了差异性的教学。在学生慢慢列出方程的同时其实也培养了他们的逻辑思维能力,也体会到了列方程它与算式相比较之下的优点,合作式的学生活动增进了学生的合作交流能力,我并通过一些激励性的话语激发学生参与数学的兴趣,在列完方程的最后让学生归纳出列方程解应用题的基本步骤。使学生加深对知识的掌握也培养了他们的语言组织能力以及学会标准的数学用语。
二、从教学方法反思。
本节课本着“尊重差异”为基础,先“引导发现”,后“讲评点拨”,所以再讲解前面概念的时候,我稍稍放慢速度让后进生听的明白,因为方程是解应用题的基础,抓住基础知识再去发展他们的逻辑思维能力对后进生是十分重要的。
三、从学生反馈反思。
这堂课学生能积极思考,认真学习,课后作业都能及时完成。作业质量较好,但是对于稍难点的实际问题得列式还是有一些问题。在应用题的列式方面是所有学生学习的一个难点,这是我后面课堂要注意的地方:如何去教会学生找到数量关系去列方程。
七年级数学教案设计篇八
3,感受在特定的条件下数与形是可以相互转化的,体验生活中的数学。
数轴的概念和用数轴上的点表示有理数。
教学过程(师生活动)设计理念。
设置情境。
教师通过实例、课件演示得到温度计读数.
(多媒体出示3幅图,三个温度分别为零上、零度和零下)。
问题2:在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境。
(小组讨论,交流合作,动手操作)创设问题情境,激发学生的学习热情,发现生活中的数学。
教师:由上述两问题我们得到什么启发?你能用一条直线上的点表示有理数吗?
从而得出数轴的三要素:原点、正方向、单位长度体验数形结合思想;只描述数轴特征即可,不用特别强调数轴三要求。
寻找规律。
归纳结论。
问题3:
1,你能举出一些在现实生活中用直线表示数的实际例子吗?
3,哪些数在原点的左边,哪些数在原点的右边,由此你会发现什么规律?
4,每个数到原点的距离是多少?由此你会发现了什么规律?
(小组讨论,交流归纳)。
归纳出一般结论,教科书第12的归纳。这些问题是本节课要求学会的技能,教学中要以学生探究学习为主来完成,教师可结合教科书给学生适当指导。
教科书第12页练习。
课堂小结。
请学生总结:
1,数轴的三个要素;
2,数轴的作以及数与点的转化方法。
本课作业。
1,必做题:教科书第18页习题1.2第2题。
2,选做题:教师自行安排。
本课教育评注(课堂设计理念,实际教学效果及改进设想)。
1,数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体出了从感性认识,到理性认识,到抽象概括的认识规律。
2,教学过程突出了情竟到抽象到概括的主线,教学方法体了特殊到一般,数形结合的数学思想方法。
3,注意从学生的知识经验出发,充分发挥学生的主体意识,让学生主动参与学习活,并引导学生在课堂上感悟知识的生成,发展与变化,培养学生自主探索的学习方法。
七年级数学教案设计篇九
一、识记与理解:通过本课的学习,使学生了解并掌握先秦至南北朝时期的艺术成就:战国编钟,秦始皇陵兵马俑,王羲之与《兰亭序》,顾恺之与《女史箴图》、《洛神赋图》。
二、能力和方法:通过指导学生鉴赏战国编钟、秦始皇陵兵马俑、《兰亭序》、《女史箴图》、《洛神赋图》等艺术作品,培养学生的'艺术欣赏能力;通过对历史文物价值的讨论,培养学生历史分析、评价能力。
三、情感、态度与价值观:通过学习杰出的艺术成就,激发学生的民族自豪感和对中国文化的认同感;通过对艺术作品的欣赏,陶冶情趣,养成学生发现美、感受美、追求美、创造美的意识;通过对杰出艺术成就的原因分析,使生认识到人民的创造性是历史文明和历史进步的根本动力。
【教学重、难点】。
重点:战国编钟、秦始皇陵兵马俑。
难点:王羲之、顾恺之的书画成就和秦始皇陵兵马俑的艺术价值。
【课前准备】。
课前收集有关秦始皇陵兵马俑和王羲之的故事。
【教学步骤】。
教师活动学生活动备注。
一、导入新课。
问学生,有哪些同学学过美术、音乐、书法?你们知道中国有哪些重要的美术作品、乐器、书法作品?而引入本课。
二、战国编钟。
指导学生阅读、观察编钟图,谈谈发现。
抽学生讲知音的故事。理解春秋战国时期的音乐成就。
三、秦始皇陵兵马俑。
先阅读教材、观察书上的图,谈谈有什么感想。
教师将知识要点落实在教材上。突出其在雕塑的崇高地位。
四、王羲之的书法。
阅读教材,落实知识点。
仔细观察书上的字帖,让学生畅所欲言。
抽两个学生来讲王羲之的故事。
谈王羲之的品格。
五、顾恺之的绘画。
阅读教材,找出要点。
教师讲解,指导学生观察两幅名画,体会之。
补充讲“三绝”。
七年级数学教案设计篇十
本课(节)课题3.1认识直棱柱第1课时/共课时。
教学目标(含重点、难点)及。
1、了解多面体、直棱柱的有关概念.
2、会认直棱柱的侧棱、侧面、底面.。
3、了解直棱柱的侧棱互相平行且相等,侧面是长方形(含正方形)等特征.。
教学重点与难点。
教学重点:直棱柱的有关概念.
教学难点:本节的例题描述一个物体的形状,把它看成怎样的两个几何体的组合,都需要一定的空间想象能力和表达能力.
内容与环节预设、简明设计意图二度备课(即时反思与纠正)。
析:学生很容易回答出更多的答案。
师:(继续补充)有许多著名的建筑,像古埃及的金字塔、巴黎的艾菲尔铁塔、美国的迪思尼乐园、德国的古堡风光,中国北京的西客站,它们也是由不同的立体图形组成的;那么立体图形在生活中有着怎样的广泛的应用呢?瞧,食物中的冰激凌、樱桃、端午节的粽子等。
1.多面体、棱、顶点概念:
2.合作交流。
师:以学习小组为单位,拿出事先准备好的几何体。
学生活动:(让学生从中闭眼摸出某些几何体,边摸边用语言描。
述其特征。)。
师:同学们再讨论一下,能否把自己的语言转化为数学语言。
学生活动:分小组讨论。
说明:真正体现了“以生为本”。让学生在主动探究中发现知识,充分发挥了学生的主体作用和教师的主导作用,课堂气氛活跃,教师教的轻松,学生学的愉快。
师:请大家找出与长方体,立方体类似的物体或模型。
析:举出实例。(找出区别)。
师:(总结)棱柱分为之直棱柱和斜棱柱。(根据其侧棱与底面是否垂直)根据底面多边形的边数而分为直三棱柱、直四棱柱……直棱柱有以下特征:
有上、下两个底面,底面是平面图形中的多边形,而且彼此全等;
侧面都是长方形含正方形。
长方体和正方体都是直四棱柱。
3.反馈巩固。
完成“做一做”
析:由第(3)小题可以得到:
直棱柱的'相邻两条侧棱互相平行且相等。
4.学以至用。
出示例题。(先请学生单独考虑,再作讲解)。
析:引导学生着重观察首饰盒的侧面是什么图形,上底面是什么图形,然后与直棱柱的特征作比较。(使学生养成发现问题,解决问题的创造性思维习惯)。
最后完成例题中的“想一想”
5.巩固练习(学生练习)。
完成“课内练习”
师:我们这节课的重点是什么?哪些地方比较难学呢?
合作交流后得到:重点直棱柱的有关概念。
直棱柱有以下特征:
有上、下两个底面,底面是平面图形中的多边形,而且彼此全等;
侧面都是长方形含正方形。
例题中的把首饰盒看成是由两个直三棱柱、直四棱柱的组合,或着是两个直四棱柱的组合需要一定的空间想象能力和表达能力。这一点比较难。
板书设计。
作业布置或设计作业本及课时特训。
七年级数学教案设计篇十一
会进行单项式与单项式相乘的运算。
理解单项式与单项式相乘的算理,体会乘法交换律和结合律的作用和转化的数学思想。
在探索单项式与单项式相乘的过程中,利用乘法交换律和结合律将未知的问题转化为已知的问题,培养学生转化的数学思想。
使学生获得成就感,培养学习数学的兴趣。
重点
单项式与单项式相乘的运算法则及其运用
难点
灵活地进行单项式与单项式相乘的运算。
1.请用式子表示幂的三个运算法则,乘法的交换律和结合律。
2.光走一年的路程是:,请计算结果并说说用到了哪些学过的知识。
3.边长为的正方形的面积是多少?长为,宽为的长方形的面积是多少?
学生先尝试独立解决,然后互相交流,之后教师指出式子是单项式乘以单项式,下面我们来研究单项式乘以单项式的运算方法。
探究新知
1.怎样计算?你能说说每步计算的依据吗?
教师根据学生的回答板书:
(乘法交换律、结合律)
(同底数幂的乘法)
2.你能根据上面的运算,用文字叙述一下单项式乘单项式的方法吗?
引导学生用自己的话叙述上面的运算过程,然后师生共同总结:
单项式与单项式相乘,把它们的系数、同底数幂分别相乘.
通过乘法交换律、结合律,把要解决的单项式相乘问题转化成已经解决了的幂的运算问题,体现了转化的数学思想。
例1.计算:
(1);
(2);
(3)(n是正整数).
学生解答各题,教师巡回指导,发现学生解题中存在的共同错误,然后做点评:
(1)单项式的乘法应遵循“符号优先”,要特别重视符号的运算;
(2)有乘方时要先算乘方,再算乘法;
(3)单项式乘单项式,其结果仍是单项式;
(4)不要漏写只在一个单项式里含有的因式。
1.计算:
(1);
(2);
2.下面的计算对不对?如果不对,怎样改正?
3.计算(其中n是正整数):
教师要注意发现学生的错误,组织学生对错误进行分析,对于第2题可以引导学生分析导致错误的原因。第3题是混合运算,要注意运算步骤和符号运算。
师生共同回顾单项式乘法的运算法则,体会转化的数学思想所起的作用,交流解答运算题的经验。教师对课堂上学生掌握不够牢固的知识进行辨析、强调与补充,学生也可以谈一谈个人的学习感受。
p40第4、6题
七年级数学教案设计篇十二
2.使学生掌握求一个已知数的;。
3.培养学生的观察、归纳与概括的能力.
重点:理解的意义,理解的代数定义与几何定义的一致性.
难点:多重符号的化简.
一、从学生原有的认知结构提出问题。
二、师生共同研究的定义。
特点?
引导学生回答:符号不同,一正一负;数字相同.
像这样,只有符号不同的两个数,我们说它们互为,如+5与。
应点有什么特点?
引导学生回答:分别在原点的两侧;到原点的距离相等.
这样我们也可以说,在数轴上的原点两旁,离开原点距离相等的两个点所表示的数互为.这个概念很重要,它帮助我们直观地看出的意义,所以有的书上又称它为的几何意义.
3.0的是0.
这是因为0既不是正数,也不是负数,它到原点的距离就是0.这是等于它本身的的数.
三、运用举例变式练习。
例1(1)分别写出9与-7的;。
例1由学生完成.
在学习有理数时我们就指出字母可以表示一切有理数,那么数a的如何表示?
引导学生观察例1,自己得出结论:
数a的是-a,即在一个数前面加上一个负号即是它的。
1.当a=7时,-a=-7,7的是-7;。
2.当-5时,-a=-(-5),读作“-5的”,-5的是5,因此,-(-5)=5.
3.当a=0时,-a=-0,0的是0,因此,-0=0.
么意思?引导学生回答:-(-8)表示-8的;-(+4)表示+4的`;。
例2简化-(+3),-(-4),+(-6),+(+5)的符号.
能自己总结出简化符号的规律吗?
括号外的符号与括号内的符号同号,则简化符号后的数是正数;括号内、外的符号是异号,则简化符号后的数是负数.
课堂练习。
1.填空:
(1)+1.3的是______;(2)-3的是______;。
(5)-(+4)是______的;(6)-(-7)是______的。
2.简化下列各数的符号:
-(+8),+(-9),-(-6),-(+7),+(+5).
3.下列两对数中,哪些是相等的数?哪对互为?
-(-8)与+(-8);-(+8)与+(-8).
四、小结。
指导学生阅读教材,并总结本节课学习的主要内容:一是理解的定义——代数定义与几何定义;二是求a的;三是简化多重符号的问题.
五、作业。
1.分别写出下列各数的:
2.在数轴上标出2,-4.5,0各数与它们的。
3.填空:
(1)-1.6是______的,______的是-0.2.
4.化简下列各数:
5.填空:
(3)如果-x=-6,那么x=______;(4)如果-x=9,那么x=______.
教学过程是以《教学大纲》中“重视基础知识的教学、基本技能的训练和能力的培养”,“数学教学中,发展思维能力是培养能力的核心”,“坚持启发式,反对注入式”等规定的精神,结合教材特点,以及学生的学习基础和学习特征而设计的由于内容较为简单,经过教师适当引导,便可使学生充分参与认知过程.由于“新”知识与有关的“旧”知识的联系较为直接,在教学中则着力引导观察、归纳和概括的过程.
探究活动。
有理数a、b在数轴上的位置如图:
将a,-a,b,-b,1,-1用“”号排列出来.
分析:由图看出,a1,-1。
解:在数轴上画出表示-a、-b的点:
由图看出:-a-1。
点评:通过数轴,运用数形结合的方法排列三个以上数的大小顺序,经常是解这一类问题的最快捷,准确的方法.
七年级数学教案设计篇十三
比较正数和负数的大小。
1、借助数轴初步学会比较正数、0和负数之间的大小。
2、初步体会数轴上数的顺序,完成对数的结构的初步构建。
负数与负数的比较。
一、复习:
1、读数,指出哪些是正数,哪些是负数?
—85。6+0。9—+0—82。
2、如果+20%表示增加20%,那么—6%表示。
二、新授:
(一)教学例3:
1、怎样在数轴上表示数?(1、2、3、4、5、6、7)。
2、出示例3:
(1)提问你能在一条直线上表示他们运动后的情况吗?
(2)让学生确定好起点(原点)、方向和单位长度。学生画完交流。
(3)教师在黑板上话好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来。
(4)学生回答,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。
(5)总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。
(6)引导学生观察:
a、从0起往右依次是?从0起往左依次是?你发现什么规律?
(7)练习:做一做的第1、2题。
(二)教学例4:
1、出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。
2、学生交流比较的方法。
3、通过小精灵的话,引出利用数轴比较数的大小规定:在数轴上,从左到右的顺序就是数从小到大的顺序。
4、再让学生进行比较,利用学生的具体比较来说明“—8在—6的左边,所以—8〈—6”
5、再通过让另一学生比较“8〉6,但是—8〈—6”,使学生初步体会两负数比较大小时,绝对值大的负数反而小。
6、总结:负数比0小,所有的负数都在0的'左边,也就是负数都比0小,而正数比0大,负数比正数小。
7、练习:做一做第3题。
三、巩固练习。
1、练习一第4、5题。
2、练习一第6题。
3、某日傍晚,黄山的气温由上午的零上2摄氏度下降了7摄氏度,这天傍晚黄山的气温是摄氏度。
四、全课总结。
(1)在数轴上,从左到右的顺序就是数从小到大的顺序。
(2)负数比0小,正数比0大,负数比正数小。
第二课教学反思:
许多教师认为“负数”这个单元的内容很简单,不需要花过多精力学生就能基本能掌握。可如果深入钻研教材,其实会发现还有不少值得挖掘的内容可以向学生补充介绍。
例3——两个不同层面的拓展:
1、在数轴上表示数要求的拓展。
数轴除了可以表示整数,还可以表示小数和分数。教材例3只表示出正、负整数,最后一个自然段要求学生表示出—1。5。建议此处教师补充要求学生表示出“+1。5”的位置,因为这样便于对比发现两个数离原点的距离相等,只不过分别在0的左右两端,渗透+1。5和—1。5绝对值相等。同时,还应补充在数轴上表示分数,如—1/3、—3/2等,提升学生数形结合能力,为例4的教学打下夯实的基础。
2、渗透负数加减法。
教材中所呈现的数轴可以充分加以应用,如可补充提问:在“—2”位置的同学如果接着向西走1米,将会到达数轴什么位置?如果是向东走1米呢?如果他从“—2”的位置要走到“—4”,应该如何运动?如果他想从“—2”的位置到达“+3”,又该如何运动?其实,这些问题就是解决—2—1;2+1;—4—(—2);3—(—2)等于几,这样的设计对于学生初中进一步学习代数知识是极为有利的。
例4——薄书读厚、厚书读薄。
薄书读厚——负数大小比较的三种类型(正数和负数、0和负数、负数和负数)。
例4教材只提出一个大的问题“比较它们的大小”,这些数的大小比较可以分为几类?每类比较又有什么方法,教材则没有明确标明。所以教学中,当学生明确数轴从左到右的顺序就是数从小到大的顺序基础上,我还挖掘了三种不同类型,一一请学生介绍比较方法,将薄书读厚。
将厚书读薄——无论哪种类型,比较方法万变不离其宗。
无论哪种比较方法,最终都可回归到“数轴上左边的数比右边的数小。”即使有学生在比较—8和—6大小时是用“86,所以—8—6”来阐述其原因,其实也与数轴相关。因为当绝对值越大时,表示离原点的距离越远,那么在数轴上表示的点也就在原点左边越远,数也就越小。所以,抓住精髓就能以不变应万变。
在此,我还补充了—3/7和—2/5比较大小的练习,提升学生灵活应用知识解决实际问题的能力。
【本文地址:http://www.xuefen.com.cn/zuowen/9548331.html】