比的意义教案冀教版(优质15篇)

格式:DOC 上传日期:2023-11-08 23:04:24
比的意义教案冀教版(优质15篇)
时间:2023-11-08 23:04:24     小编:HT书生

教案的编制过程可以帮助教师反思教学经验,提高自身专业能力和教学水平。教案的编写需要根据学生的实际情况进行合理的调整和修改。充分利用优秀教案资源,能够提高教师的编写教案能力和教学水平。

比的意义教案冀教版篇一

1、能应用正负数表示生活中具有相反意义的量。

2、能说出有理数的意义,能正确对有理数进行分类。

1、重点:正数、负数有意义,有理数的意义,能正确对有理数进行分类。

2、难点:对负数的理解以及正确地对有理数进行分类。

1课时。

一、快乐自学(8分钟)。

由于实际生活中存在着许多具有相反意义的量,因此产生了正数与负数。正数是大于0的数,负数就是在正数前面加上-号的数,负数小于0。0既不是正数,也不是负数,0可以表示没有,也可以表示一个实际存在的数量,如0℃。

二、合作探究。

1、某地2月18日凌晨1点的温度是0℃,凌晨4点的温度是-2℃,哪个时刻温度低?

2、吐鲁番盆地艾丁湖湖面的海拔高度为-154m,海平面高度为0m,哪个地方低?

3、通常把水结冰时的温度规定为0℃,那么比水结冰时的温度低5℃应记作什么?

4、如果在东西向马路上,把向东走的路程记作正数,那么走-50m是什么意思?

5、粮库把运进的粮食吨数记作正数,在某星期的5天中,进出粮食的记录如下:

星期一二三四五。

说出该粮库在这个星期中粮食进出记录的实际意义。

6、有下列8个数:3.6,,-78,0,-0.37,9,-5.14,-1。其中正数有:

_______________________________,负数有:_______________________________。

三、小结:(3分钟)。

通过本节课的学习,你知道了什么?

四、达标训练。

必做题(2分钟)。

1、正数是____________0的数,负数就是在正数前面加上-号的数,负数__________0。__________________既不是正数,也不是负数,0可以表示没有,也可以表示一个实际存在的数量,如0℃。

2、把下列各数填在相应的横线上:

-14,2.8,45,,-0.25,0,,2.07,-7.1,181,,3。

选做题(8分钟)。

在书上完成p7b组习题1题,2题。

五、学后反思。

1、通过本节课的学习我知道了。

2、我还存在的疑问是:

3、我对老师的建议是:

比的意义教案冀教版篇二

本节课主要教学比的意义,比的读写法及比各部分名称及求比值的方法。它是进一步学习比矛盾基本性质及比的应用的基础。

这部分内容是在学生学过分数与除法的联系,分数乘除法的意义和计算方法,以及分数乘除法应用题的基础上进行教学的,正确理解比的意义是教学重点,也是难点。用实物演示及投影仪进行辅助教学,学生还是不难掌握的。

1、理解比的意义,学会比的读写法,掌握比的各部分名称及求比值的方法。

2、弄清比同除法、分数的关。

1、通过实物及学过的联系式等概括出比的意义,用讲授法讲解说明两个数的比的表示法,引出比号以及比的读法。比中两项的名称和比值的概念。

2、举例说明比值的求法,以以及比和除法的联系。

;常分米,款分米的红旗一面,投影仪一、复习引入。

1、出示红旗。

讲解:它常分米,款分米。要对这面旗的长和宽进行比较,可以用什么方法?

引导学生回答:

要表示红旗的长和宽的联系,可以求长是宽的几倍,或者宽是长的几分之几。

板书;3÷2=3/2……长是宽地3/2。

2÷3=2/3……宽是长到2/3。

二、探究新知。

1、导入新课。

板书:比。

1、)红旗长和宽的联系,也可以这样说:

长和宽的比是2比3,

宽和长的比是2比3。

2、)出示投影片:

“一辆汽车2小时行使了100千米,这辆汽车的速度是每小时多少千米?”

求汽车路程和时间的比是:100比2。

4、)教师小结:两个数相除又叫做两个数的比。

3、教学比的读写法,各部分的名称及求比值的方法。

1、)比的写法:3比2记作3:2。

2比3记作2:3。

100比2记作100:2。

3、)比的各部分的名称:

3:2=3÷2=3/2。

||||。

前项比号后项比值。

4、)比值;。

比的前项除以后项所得的商,叫做比值。

说明:比值通常用分数表示,也可以用小时表示,有时也可以是整数。

比的后项不能0。

4、做教科书第62页上半部分的“做一做”的题目。

5、教学比与除法、分数的联系。

6、做教科书第61页下半部分的“做一做”的题目。

三、巩固练习:

1、做练习十七的第1题。

2、做练习十七的第2、3题。

四、课堂小结:

同学们,这节课我们学到了什么知识?如何求比值?

板书设计:

3、比。

比的各部分名称:3:2=3÷2=3/2。

||||。

前项比号后项比值。

比值:比的前项除以后项所得的商,叫做比值。

比的意义教案冀教版篇三

1 .使学生进一步理解并掌握分数的意义。

2 .知道一个物体、一个计量单位、一个整体都可以用单位“1 ”表示。

3 .引导学生学会抽象概括,培养初步的逻辑思维能力。

1 .理解和掌握分数的意义。

2 .理解单位“1 ”。

3 .突破一个整体的教学。

正方形纸片

一、创设情境。

1 .测量。

师生合作测量黑板的长是多少米?观察用米尺量了几次后还剩下一段,不够一米,还能否用整数表示?(不能)

2.计算。

教师让学生把一个苹果平均分给两个同学,每人分得饼的个数怎样来表示? 它结果不能用整数来表示,这样就产生了分数。

3 .讲述。

在人们实际生产和生活中,人类在进行测量、分物和计算时,往往不能得到整数的结果,这就需要用一种新的'数――分数来表示,这样就产生了新的数―分数。今天,我们就来学习“分数的意义”。

二、教学实施

1、出示课件

说说每个图下面的分数是:

(1)把什么看做一个整体?

(2)平均分成了几份?

(3)表示这样的几份?

2、小组共同合作交流

1.出示4个苹果,6只熊猫能否平均分成若干份,要平均分,把什么看作一个整体?

2.结合小组汇报出示课件,展示结果

3、概括总结。

老师:刚才同学们在表示 的过程中,有什么发现吗?

学生甲:都是把物体平均分成几 份,表示这样的一份。

学生乙:我发现有的是把1 个图形平均分,有的是把4 个苹果、6 只熊猫平均分,还有的是把1 米平均分。

老师:一个图形比较好理解,我们把它称为一个物体,那么4根香蕉8个面包是由许多单个物体组成的,我们称作一些物体。一个物体,一些物体都可以看作一个整体,一个整体可以用自然数1 来表示,通常把它叫做单位“1”。

(3)举例。

老师:对于这个整体,你还能想出其他的例子吗?

学生:这个整体还可以是一个苹果、一盒粉笔、一个班级的学生人数、全校学生数、全中国人口、全世界人口等。

3、(1) 概括意义。

学生试说,教师板书。

板书:把单位“ 1 ”平均分成若干份,表示这样一份或几份的数,叫分数。 强调必须是平均分。

揭示课题:分数的意义。

4、巩固练习

课本62页做一做,填在书上,学生汇报

5.学习分数单位。

(1)提出问题:“我们学过的整数和小数,它们都有计数单位,分数有没有计数单位呢?”让学生自学课本,找出分数单位的定义,并能举出例子。

(2)说一说课本62页做一做各分数的分数单位,它们分别有几个这样的分数单位。

(3)分数单位与哪个数有关?

让学生观察分数单位,从中发现“分母是几,分数单位就是几分之一”。

三、巩固练习

出示课件

四、、总结

1、想一想,这堂课上你学到了什么?

板书设计

分数的意义

一个物体

一个整体单位“1” 平均分 若干份(一份)

一些物体分数单位

比的意义教案冀教版篇四

1、知识与能力。

2、生进一步理解整除的意义。

2、使学生知道约数、倍数的含义,以及它们之间的相互依存关系。

3、使学生知道研究约数和倍数时所说的数,一般指自然数。

教学重点:理解整数、约数和倍数的概念。

教学难点:整数、约数和倍数的联系。

教学过程:

1、师:谁能说说整数的含义?

出示:23÷7=3...26÷5=1.2。

15÷3=524÷2=12。

教师:这4个算式中,哪个算式中第一个数能被第二个数整除?

为什么前两个算式中的第一个数不能被第二个数整除?

让学生观察算式,说说式中被除数、除数和商各有什么特点?

教师:如果用a、b表示两个整数,谁能说说在什么情况下才可以说“a能被b整除”?

让学生p49页的结语。

教师:a的约数还可以叫做什么?

让学生用两种说法说说:15÷3=5和24÷2=12。

教师:我们在说一个数能被另一个数整除时,必须具备哪几个条件?

(1)被除数和除数必须是整数,而且除数不等于0。

(2)商必须是整数。

(3)商的后面没有余数。

师:以上三个条件,缺一不可。

2、区别“除尽”与“整除”

师:像6÷5=1.2这样的除法,一般说6能被5除尽。

被除数和除数。

整除。

都是整数,除数不等于0。

商是整数,而且没有余数。

除尽。

不一定是整数,除数不等于0。

商是有限小数,没有余数。

1、教学约数和倍数的意义。

在一个数能被另一个数整除时,这两个数还有另一种关系(板书:约数和倍数)。

让学生看50页关于约数和倍数。

教师:两个数在什么情况下才能说有约数和倍数关系?(整除)。

能单独说一个数是约数或一个数是倍数吗?

“倍数和约数是相互依存的”是什么意思?

:在说倍数(或约数0时,必须说某数是某数的倍数(或约数),不能单独说某数是倍数(或约数)。

2、教学例1。

(1)教师说明:根据倍数和约数的意义,说出15和3中,哪个是哪个数的倍数,哪个是哪个数的约数。

教师:15能被3整除吗?

教师指出:这里所说的数一般是指自然数,不包括0。

(2)“倍数”与“倍”的区别。

1、基本练习p51做一做。

1、独立完成练习十一的1、2、3题。

2、第四题。

教师:要判断哪些数是60的约数,只要看那哪些数能整除60。

要判断哪些数是6的倍数,就要看哪些数能被6整除。

比的意义教案冀教版篇五

1、理解比的意义,掌握比的读、写及各部分的名称。

2、理解分数、除法和比三者之间的联系和区别。掌握求比值和比的未知项的方法。

理解比和分数、除法之间的关系。

1、播放“神舟”五号顺利升空课件。

播报:20xx年10月15日,我国第一艘载人飞船“神舟”五号顺利升空。在太空中,执行此次任务的航天员杨利伟在飞船里向人们展示了联合国旗和中华人民共和国国旗。(出示两面国旗:两面国旗都是长15cm,宽10cm。)。

2、提问:我们可以怎样表示它们长和宽的关系呢?

(1)用比多比少的方法来表示:长比宽多5cm,宽比长少5cm。

(2)用倍数关系来表示:长是宽的3/2,宽是长的2/3。

3、导入新课:在描述两个量之间的关系时,我们除了可以用“多多少、少多少、几倍、几分之几”来描述外,还可以用“比”来描述两个量之间的关系,今天我们就来学习比的知识。(板书课题:比的意义)。

学习方式:独立自学、汇报交流。

1、同类量的比。

(2)自学课本第48页的内容。

(3)长和宽的比是15比10,宽和长的比10比15。

(4)指出:不论是长和宽的比,还是宽和长的比,都是两个长度的比,相比的两个量是同类的量,这样的两个比我们称为同类的比。

2、不同类量的比。

(1)出示数据,列式求飞船的速度:42252÷90。

(2)用比来表示路程和时间的关系。

提问:路程和时间的关系能不能用比来表示呢?应该怎样表示呢?(路程和时间的比是42252比90)。

(3)提问:路程和时间是不是同类的量?

(4)指出:两个同类量的比表示这两个量之间的倍数关系,两个不同类量的比可以表示一个新的量。如“路程比时间”又表示速度。

3、概括比的意义:通过两数相除来表示两个数量之间的关系,它们都可以用比来表示,所以“两个数相除又叫做两个数的比”。

学习方式:独立自学、汇报交流。

学习任务。

1、自学课本第49页,思考:几比几怎样写、怎样读?比的各部分名称是什么?

2、汇报交流:15:10=15÷10=3/2。

前项比号后项比值。

3、比值。

(1)什么是比值?怎么求比值?

(2)比值可以怎样表示?(分数、小数、整数)。

(3)讨论:比值和比有什么联系和区别?

学习方式:小组讨论、汇报交流。

学习任务。

1、提问:比的前项、后项和比值分别相当于除法算式和分数中的什么?

区别:除法是一种运算,分数是一种数,比表示两个数的关系。

2、提问:比的后项可以是0吗?为什么?(比的后项不能为0,0没有意义。)。

1、完成课本第49页的“做一做”,集体订正。

2、完成第52页练习十一的第1题。

这节课我们一起研究了比,回顾一下你有什么收获。

比的意义教案冀教版篇六

2.使学生理解和掌握乘法交换律,并能运用它进行验算.。

教学重点:

使学生理解并运用乘法的意义及其运算定律――交换律.。

教学难点:

乘法交换律的应用.。

教具学具准备。

口算卡片、投影仪.。

教学步骤。

一、铺垫孕伏。

1.口算:14×350×302×5015×415+15+15+15。

4+4+4+430×1260×404×259+9+9+9+9。

2.导入:刚才的口算题同学们算得很对,那么同学们想不想即算得对又算得快呢?好!为了实现你们的愿望,这节课我们继续学习乘法的有关知识.乘法的意义和乘法的交换律.(板书课题)。

二、探求新知。

比的意义教案冀教版篇七

比例的意义和基本性质(省义务教材第十二册)。

1、理解和掌握比例的意义和基本性质,认识比例的各部分的名称,体会数学的规律美。

2、利用比例知识解决实际问题。

3、培养学生自主参与的意识、主动探究的精神,激发学生的审美愉悦。培养学生进行初步的观察、分析、比较、判断、概括的能力,发展学生思维。

一、谈话导入,创设情境:

我们的祖国方圆960万平方公里,幅员辽阔却能在一张小小的地图上清晰可见各地位置。建筑设计师可将滨江四区的设计构想展示在一张纸上。这些,都要用到比例的知识,我们今天就来学习有关比例的一些知识。

二、自主探究,学习新知。

1、8厘米。

出示。

6厘米。

4厘米。

3厘米。

(1)根据表中给出的数量写出有意义的比。

(2)哪些比是相关联的?

(3)根据以往经验,可将相等的两个比怎样?(用等号连接)。

教师并指出这些式子就是比例。

2、让学生任意写出比例,并让学生用自己的语言描述比例的意义。

3、教师板书:表示两个比相等的式子叫做比例。比例也可用分数形式表示。

4、写出比值是1/3的两个比,并组成比例。

(二)教学比例的基本性质。

1、比例和比有什么区别?

2、认识比例的各部分。

(1)让学生自己取。

(2)组成比例的四个数叫做比例的项,两端的两项叫做比例的。

外项,中间的两项叫做比例的内项。

板书:8:6=4:3。

内项。

外项。

(3)让学生找出自己举的比例的内外项。

()。

12。

2

()。

=

(4)找出分数形式比例的内外项位置又是怎样的?

3、出示【启迪学生思维,展开审美想象】。

(1)这个比例已知的是哪两项,要求的.又是哪两项?学生试填。

(2)学生反馈,教师板书。

(3)你发现了什么?

(4)指导学生概括出比例的基本性质,并板书:在比例里,两个外项之积等于两个内项之积。

4、用比例性质验证你所写比例是否正确。

5、练习8:12=x:45。

0.5。

x

20。

32。

=

求比例中的未知项,叫做解比例。

如何证明你的解是正确的?

(三)小结:今天这堂课你有什么收获?

三、巩固练习。

1、下面哪几组中的两个比可以组成比例。

4

1

12:24和18:36。

0.4:和0.4:0.15。

14:8和7:4。

5

2

2、根据18x2=9x4写出比例。【体会到数学的逻辑美,规律美】。

3、从1、8、0.6、3、7五个数中。

(1)选出四个数,组成比例。

(2)任意选出3个数,再配上另一个数,组成比例。

(3)用所学知识进行检验。

四、实际应用。

不久前,汪骏强家的菜地边高高矗立起一个新铁塔,这天午后,阳光明媚,邻居家刚读一年级的小明又拉着汪骏强来到铁塔下,玩着玩着,小明问道:“强强哥哥,这铁塔干嘛用?”“铁塔嘛,架设高压线用的,以后等电线架好了,可不能再来玩了,更不能攀登,高压线可危险了!”“那这个铁塔有多高压呀?”

同学们,如果你是汪骏强,你准备怎么办?

执教者方艳。

比的意义教案冀教版篇八

(1)在日常的工作的生活中,常常把两个数量进行比较。(2)“:”是比号,读作“比”。比号前面的数叫做比的前项。比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。(3)同除法相比,比的前项相当于被除数,后项相当于除数,比值相当于商。(4)比值通常用分数表示,也可以用小数表示,有时也可能是整数。(5)根据分数与除法的.关系,可以知道:比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。比――比的意义作文200字。

小学生作文(中国大学网)。

比的意义教案冀教版篇九

教学内容:

比的意义

教学目标:

1、使学生在具体情境中理解比的意义,掌握比的读写方法,知道比的各部分名称,会求比值。

2、使学生经历探索比与分数、除法关系的过程,初步理解比与分数、除法的关系,会把比改写成分数的形式。

3、使学生在活动中培养分析、综合、抽象、概括能力,在解决实际问题的过程中,体会数学与

生活

的联系,体验数学

学习

的乐趣。

教学重点:

理解比的意义。

教学难点:

理解比与分数、除法的关系。

教学准备:

多媒体课件。

教学过程:

1、谈话:今天这节课,老师要和

同学

们一起学习比的知识。(板书:比)

关于

比,你想了解一些

什么

?(学生可能回答:什么是比?学了比有什么用?数学上的比与生活中的比一样吗?)

(一)、呈现例1

1、 利用旧知进行比较

(1)图中提供了2个数量:2杯果汁和3杯牛奶。根据这两个数量,我们

怎样

来对果汁和牛奶的杯数进行比较?(根据学生回答,教师整理板书:)

相差关系{牛奶比果汁多1杯 倍数关系{果汁的杯数相当于牛奶的2/3

果汁比牛奶少1杯 牛奶的杯数相当于果汁的3/2

(2)小结:同学们,我们已经知道两个数量相比较,既可以用减法比较两个数量之间相差多少,也可以用除法或分数来表示两者之间的倍数关系。今天我们认识的比就是专门对这后一种关系进行的`研究。

2、比的教学

(1)(指板书:)果汁的杯数相当于牛奶的2/3。我们还可以说成果汁与牛奶杯数的比是2比3(出示)。想一想,牛奶的杯数相当于果汁的3/2。还可以怎样说?(出示:牛奶与果汁杯数的比是3比2。)

3、比的读写

(1)师介绍:2比3怎么写呢?我们一起来看:2比3记作2∶3(板书:2∶3,先写2,再在中间写上两个小圆点,读作比,注意与语文中的冒号不同,最后写3。一起来写一写,读一读。)

比的意义教案冀教版篇十

教科书第25页的例1和第25、26页的乘法交换律,完成“做一做”中的题目和练习五的第1——5题。

使学生加深对乘法的意义和乘法各部分名称的认识,理解并掌握乘法交换律,能够用乘法交换律验算乘法,培养学生分析推理的能力。

乘法的意义和乘法交换律。

新授课练习课。

讨论法、讲授法。

一课时。

多媒体。

教师出示复习题。

1、同学们乘8辆汽车去参观,平均每辆汽车坐45人。去参观的一共有多少人?

3、小荣家养鸭45只,养的鸡比鸭多90只。小荣家养鸡多少只?

上面这些题哪些可以用乘法计算?为什么?

用加法计算:5+5+5+5+5+5=30(个)。

用乘法计算:5×6=30(个)。

解答这道题用乘法计算简便还是用加法计算简便?

求几个相同加数的和的简便运算,叫做乘法。

在乘法里,乘号前面的数叫做被乘数,乘号后面的数叫做乘数,乘得的数叫做积。被乘数和乘数又叫做积的因数。

注意:一个数和1相乘,仍得原数。例如:1×3=33×1=31×1=1。

一个数和0相乘,仍得0。例如:0×3=03×0=00×0=0。

2、教学乘法交换律。

让学生再看例1的插图,然后教师提问:要求一共有多少个鸡蛋,同乘法计算还可以这样列式?学生回答后,教师板书:6×5=30(个)。

比较一下这两个乘法算式,有哪些相同?有哪些不同?

学生发言后,教师边说边板书:两个数相乘,交换因数的位置,它们的积不变,这叫做乘法的交换律。

用字母表示:a×b=b×a。

1、做第26页“做一做”的题目。先让学生独立做,然后再集体核对。

2、做练习五的第3、4题。学生独立做完后,再集体核对。

小结:今天我们学了什么?什么叫乘法的交换律?

附板书:乘法的意义和乘法交换律。

用加法计算:5+5+5+5+5+5=30(个)。

用乘法计算:5×6=30(个)。

求几个相同加数的和的简便运算,叫做乘法。

在乘法里,乘号前面的数叫做被乘数,乘号后面的数叫做乘数,乘得的数叫做积。被乘数和乘数又叫做积的因数。

注意:一个数和1相乘,仍得原数。例如:1×3=33×1=31×1=1。

一个数和0相乘,仍得0。例如:0×3=03×0=00×0=0。

两个数相乘,交换因数的位置,它们的积不变,这叫做乘法的交换律。

用字母表示:a×b=b×a。

比的意义教案冀教版篇十一

1、使学生初步认识方程的意义,知道等式和方程之间的关系,并能进行辨析。

2、使学生会用方程表示简单情境中的等量关系,培养学生的动手操作能力、观察能力、分析能力和解决实际问题的能力。

正确区分等式和方程这组概念。

简易天平、法码、水笔、橡皮泥、纸条、白纸、磁铁。

同学们,你们平时喜欢干什么?你们喜欢玩吗?喜欢的请举手?

这么多人喜欢玩,老师想问这么多同学中有人玩过玩过跷跷板吗?玩过的请举手,谁来说说玩跷跷板时是怎样的情景?(学生自由回答)。

当两边的距离相等,重的一边会把轻的一边跷起来,两边的重量相等,跷跷板就平衡。

谁想上来玩?

你能用一个数学式子来表示这时候的现象吗?(用水笔板书:20+20<50)。

再在左边放一个10克的法码,这时天平怎么样?(平衡了)。

看来我们还可以用式子来表示天平的平衡情况,你们想不想亲自来玩一玩?

给你们5分钟的时间,比一比哪个小组又快又好。

哪个小组把自己所写的式子拿上来展示出来。

(有不一样的都可以拿上来)。

你们对这些式子满意吗?

谁来说说你们是按照什么标准分的?

1、如果学生中有“是否含有未知数”(板书:含有未知数)“是否是等式”(板书:等式)这两类的指名上黑板分,其余的口头交流。

2、把学生写的式子分成两堆,让学生分]。

师:你能把这一种再分成两类吗?怎么分?指名板演。

你们发现了这一类式子有什么特点?(揭示:含有未知数的等式)。

象这样,含有未知数的等式我们把它叫做方程。这也是我们今天这堂课要学习的内容。出示课题。

练习:你能举一个方程的例子吗?学生在本子上写一个。

回忆一下,我们以前见过方程吗,在哪见过?(学生展示交流)。

老师这儿也有几个式子,它们是方程吗?(用手势表示,随机让学生说说为什么)。

通过这几道题的练习,你对方程有了哪些新的认识?

(1)未知数不一定用x表示。

(2)未知数不一定只有一个。

一个方程,必须具备哪些条件?

师:含有未知数的等式叫方程,那么方程和等式有什么关系呢?

如果老师说,方程一定是等式。对吗?(结合板书交流)。

等式也一定是方程。(结合板书交流)。

也就是说:方程一定是(等式),但等式[不一定是(方程)]。

你能用自己的方式来表示方等式和方程之间的关系吗?

例如画图或者别的方式,小组合作,试一试。(用水笔画在白纸上,字要写得大些)。

师:同学们的图非常形象地表示出了方程和等式之间的关系,

1、这些图你能用方程来表示吗?

师:这里还有一些有关我们学校的信息,谁来读一读。

3、新的谢桥中心小学,是苏州市内占地面积最大的小学之一。建筑面积约25000平方米,3幢教学楼的建筑面积一共约为19500平方米,平均每幢为c平方米,其它建筑面积为m平方米。你能选择其中一些信息列出方程来吗?(同桌交流)。

学了这堂课你有什么想说的吗?你有什么想对老师说的吗?

比的意义教案冀教版篇十二

一、教材及学生情况分析:

“比的意义”是小学六年级第十一册教材中教学重点之一。它在教材中起着承上启下的重要作用。通过对这部分内容的教学,不仅可以使学生对已有的两个数相比的知识得以升华,同时也能够对学生进一步学习比的性质、比的应用和比例的相关知识打下坚实的基础。“比的意义”这部分知识内容繁杂,学生缺乏原有感知、经验、不易理解和掌握。针对知识内容特点和学生的认知规律,在教学过程中,我采用组织学生围绕“比”的问题,自主、探究、合作交流、分析、概括、比较、总结的教学方法,突出了传统的教学模式,实现学生自主学习。在教学过程中,培养了学生的创新精神。

2、教学目标:

“从知识与技巧”、“过程与方法”、“情感态度与价值观”三个维度确定以下目标。

(1)理解并掌握比的意义,会正确读与写。记住比各部分的名称,并会正确求比值。

(2)通过主动发现的讨论式学习,激发合作意识,理解并正确掌握比与除法、分数之间的联系,明确比的后项不能为零的道理。同时懂得事物之间是互相联系的。

(3)培养学生比较、分析、抽象、概括和自主学习的能力。培养他们在生活中发现数学问题,提出问题的意识。

3、教学重点难点:

理解掌握比的意义,比与分数、除法之间的联系。

二、教学方法的设计。

1、用创设情境法,激发学生对比的知识的研究兴趣。

2、从日常生活中,培养学生能够发现数学问题。

3、改变学生的学习方式,让学生在自主探究、合作交流中提高解决问题能力。

4、当堂巩固,当堂反馈练习,练习形式多样,使学生从多种学习方式的活动中理解比的意义。

5、采用激励、评价等多种有效的方法,鼓励学生多比较、多思考,善于探究与协作交流,培养学生养成良好的学习数学的习惯。

三、教学过程的活动与安排。

(一)创设情境,导入新课。

利用一则消息引起学生对比的知识的研究兴趣,学生对这则消息进行讨论、交流时,不但可以受到思想教育获得情感体验,同时能发现比在生活中的应用,从中培养学生在生活中发现数学问题、提出问题的意识。

(二)自主探究,合作交流。

第一步给出班级男生人数与女生人数两个条件,请学生提出问题并列式,根据学生列的除法算式,明确是男生和女生两个量在比,启发学生思维,除了用以前学的除法知识对两个量进行比较外,还可以用一种新的方法进行比较。然后展开“比的意义”教学活动,说成男生人数与女生人数的比是多少比多少。第二步看算式,运用新知识说说。(说明:从学生身边的数量中提取数学问题,从而引出新知识。运用旧知识进行传递,轻松快乐。)第三步,出示表格(填表)使学生初步知道两个不同类的数量之间的关系也可以用比来表示。在上面两个例子的基础上,让学生概括出比的意义。

2、比的读法与写法、各部分的名称、求比值的方法的教学。

教师引导学生掌握比的读法和写法,在小组合作学习中,自主探究比的各部分名称和求比值的方法。然后组织同学们汇报学习成果,引导学生介绍求比值的方法。知道后,并引导学生运用方法,能够写出几个比的实例,计算出比值,从而达到巩固知识的目的。在汇报过程中,寻找比值的规律,即可以是分数、整数,也可以是小数。

3、比与除法、分数之间的关系,比的后项为什么不能为零?

通过引导学生看板书,合作交流能够比较出“比”、“除法”、“分数”之间有什么联系,填写出表格,再通过“相当于”这一词的理解,明确他们的区别。

(三)、总结、归纳引导学生谈学习感受。

通过本节课学习,同学们学到了那些知识,请把你的收获告诉大家好吗?在学生汇报中,使本节课的知识点得以巩固。

(四)、多层次练习,巩固新知识。

练习形式多样,既巩固本节课的知识,又增加了乐趣,特别是培养学生养成了独立思考的习惯。

比的意义教案冀教版篇十三

2.过程与方法:通过加强操作、直观沟通概念间的联系和区别,增加练习来突破难点。

3、情感与态度:培养学生有条理,有根据的思考能力,发展抽象思维。

理解整数、约数和倍数的概念。

整数、约数和倍数的联系。

一、复习

1、师:谁能说说整数的含义?

出示:23÷7=3...26÷5=1.15÷3=524÷2=12

让学生观察算式,说说式中被除数、除数和商各有什么特点?

教师:如果用a、b表示两个整数,谁能说说在什么情况下才可以说“a能被b整除”?

教师:a的约数还可以叫做什么?

让学生用两种说法说说:15÷3=5和24÷2=12

教师:我们在说一个数能被另一个数整除时,必须具备哪几个条件?

(1)被除数和除数必须是整数,而且除数不等于0。

(2)商必须是整数。

(3)商的后面没有余数。

师:以上三个条件,缺一不可。

2、区别“除尽”与“整除”

师:像6÷5=1.2这样的除法,一般说6能被5除尽。

被除数和除数

整除

都是整数,除数不等于0

商是整数,而且没有余数

除尽

不一定是整数,除数不等于0

商是有限小数,没有余数

二、新课

1、教学约数和倍数的意义。

在一个数能被另一个数整除时,这两个数还有另一种关系(板书:约数和倍数)

让学生看50页关于约数和倍数。

教师:两个数在什么情况下才能说有约数和倍数关系?(整除)

能单独说一个数是约数或一个数是倍数吗?

“倍数和约数是相互依存的.”是什么意思?

:在说倍数(或约数0时,必须说某数是某数的倍数(或约数),不能单独说某数是倍数(或约数)。

2、教学例1

(1)教师说明:根据倍数和约数的意义,说出15和3中,哪个是哪个数的倍数,哪个是哪个数的约数。

教师:15能被3整除吗?

15是3的什么数?

3是15的什么数?

教师指出:这里所说的数一般是指自然数,不包括0。

(2)“倍数”与“倍”的区别

1、基本练习p51做一做

三、巩固练习

1、独立完成练习十一的1、2、3题。

2、第四题

教师:要判断哪些数是60的约数,只要看那哪些数能整除60。

要判断哪些数是6的倍数,就要看哪些数能被6整除。

比的意义教案冀教版篇十四

教学重点。

教学难点。

沟通比和除法的关系。

教学准备。

一、复习导入:

2、一辆汽车3小时行驶180千米,每小时行多少千米?

导入:两个数进行比较,除了用除法算以外,在生产实践与生活中还有一种新的比较方法,这就是“比”,那么比的意义是什么?比的读法和写法怎样?比的'各部分名称叫什么?这就是本节课我们要学习研究的内容。(揭题)。

二、展开:

比的意义教案冀教版篇十五

教学目标:

〈一〉知识与技能

1.知道通过大量重复试验时的频率可以作为事件发生概率的估计值

2.在具体情境中了解概率的意义

〈二〉教学思考

让学生经历猜想试验--收集数据--分析结果的探索过程,丰富对随机现象的体验,体会概率是描述不确定现象规律的数学模型.初步理解频率与概率的关系.

〈三〉解决问题

在分组合作学习过程中积累数学活动经验,发展学生合作交流的意识与能力.锻炼质疑、独立思考的习惯与精神,帮助学生逐步建立正确的随机观念.

〈四〉情感态度与价值观

在合作探究学习过程中,激发学生学习的好奇心与求知欲.体验数学的价值与学习的.乐趣.通过概率意义教学,渗透辩证思想教育.

【教学重点】在具体情境中了解概率意义.

【教学难点】对频率与概率关系的初步理解

【教具准备】壹元硬币数枚、图钉数枚、多媒体课件

【教学过程】

一、创设情境,引出问题

教师提出问题:周末市体育场有一场精彩的篮球比赛,老师手中只有一张球票,小强与小明都是班里的篮球迷,两人都想去.我很为难,真不知该把球给谁.请大家帮我想个办法来决定把球票给谁.

学生:抓阄、抽签、猜拳、投硬币,

教师对同学的较好想法予以肯定.(学生肯定有许多较好的想法,在众多方法中推举出大家较认可的方法.如抓阄、投硬币)

追问,为什么要用抓阄、投硬币的方法呢?

由学生讨论:这样做公平.能保证小强与小明得到球票的可能性一样大

在学生讨论发言后,教师评价归纳.

【本文地址:http://www.xuefen.com.cn/zuowen/9508753.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档