七年级数学数轴教案(模板16篇)

格式:DOC 上传日期:2023-11-08 15:55:03
七年级数学数轴教案(模板16篇)
时间:2023-11-08 15:55:03     小编:翰墨

编写教案需要教师具备扎实的教学理论知识和丰富的教学实践经验。教案应注重培养学生的创新思维和问题解决能力。这是一份针对某一学科的精品教案,大家可以学习其中的教学设计思路。

七年级数学数轴教案篇一

d点表示6.。

从上面的例子不难看出,在数轴上表示的两个数,右边的数总比左边的数大,又从正数和负数在数轴上的位置,可以知道:

正数都大于0,负数都小于0,正数大于一切负数.。

因为正数都大于0,反过来,大于0的数都是正数,所以,我们可以用,表示是正数;反之,知道是正数也可以表示为。

同理,,表示是负数;反之是负数也可以表示为。

3.正数轴常见几种错误。

1)没有方向。

2)没有原点。

3)单位长度不统一。

教学设计示例。

数轴(一)。

教学目标。

1.使学生正确理解数轴的意义,掌握数轴的三要素;

2.使学生学会由数轴上的已知点说出它所表示的数,能将有理数用数轴上的点表示出来;

3.使学生初步理解数形结合的思想方法.。

教学重点和难点。

重点:初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数.。

难点:正确理解有理数与数轴上点的对应关系.。

七年级数学数轴教案篇二

为了让学生通过实例了解数轴的概念和数轴的画法,知道如何在数轴上表示有理数。为大家分享了七年级数学数轴的课件教学,欢迎借鉴!

教学目标。

1,掌握数轴的概念,理解数轴上的点和有理数的对应关系;

3,感受在特定的条件下数与形是可以相互转化的,体验生活中的数学。

教学难点。

数轴的概念和用数轴上的点表示有理数。

知识重点。

教学过程(师生活动)设计理念。

设置情境引入课题。

教师通过实例、课件演示得到温度计读数.。

(多媒体出示3幅图,三个温度分别为零上、零度和零下)。

(小组讨论,交流合作,动手操作)创设问题情境,激发学生的学习热情,发现生活中的数学点表示数的感性认识。

合作交流。

探究新知教师:由上述两问题我们得到什么启发?你能用一条直线上的点表示有理数吗?

从而得出数轴的三要素:原点、正方向、单位长度体验数形结合思想;只描述数轴特征即可,不用特别强调数轴三要求。

寻找规律。

归纳结论问题3:

1,你能举出一些在现实生活中用直线表示数的实际例子吗?

3,哪些数在原点的左边,哪些数在原点的右边,由此你会发现什么规律?

4,每个数到原点的距离是多少?由此你会发现了什么规律?

(小组讨论,交流归纳)。

归纳出一般结论,教科书第12的归纳。这些问题是本节课要求学会的技能,教学中要以学生探究学习为主来完成,教师可结合教科书给学生适当指导。

巩固练习。

教科书第12页练习。

小结与作业。

课堂小结请学生。

总结。

1,数轴的三个要素;

2,数轴的作以及数与点的转化方法。

本课作业。

1,必做题:教科书第18页习题1.2第2题。

2,选做题:教师自行安排。

教学反思:

1,数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体出了从感性认识,到理性认识,到抽象概括的认识规律。

2,教学过程突出了情竟到抽象到概括的主线,教学方法体了特殊到一般,数形结合的数学思想方法。

七年级数学数轴教案篇三

2.初步培养学生观察、分析及概括的能力;。

3.通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。

教学建议。

一、教学重点、难点。

重点:通过具体例子了解公式、应用公式.

难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。

二、重点、难点分析。

人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。

三、知识结构。

本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。

四、教法建议。

1.对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。

2.在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。

3.在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。

教学设计示例。

公式。

五、教具学具准备。

投影仪,自制胶片。

六、师生互动活动设计。

教者投影显示推导梯形面积计算公式的图形,学生思考,师生共同完成例1解答;教者启发学生求图形的面积,师生总结求图形面积的公式.

七年级数学数轴教案篇四

师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数).

问题2:在生活中,仅有整数和分数够用了吗?

请同学们看书(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流。

(也可以出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等)。

学生交流后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有-的新数。

七年级数学数轴教案篇五

2.数轴的画法。

(1)画直线(一般画成水平的)、定原点,标出原点“o”.。

(2)取原点向右方向为正方向,并标出箭头.。

(3)选适当的长度作为单位长度,并标出…,-3,-2,-1,1,2,3…各点。具体如下图。

(4)标注数字时,负数的次序不能写错,如下图。

3.用数轴比较有理数的大小。

(1)在数轴上表示的两数,右边的数总比左边的数大。

(2)由正、负数在数轴上的位置可知:正数都有大于0,负数都小于0,正数大于一切负数。

(3)比较大小时,用不等号顺次连接三个数要防止出现“”的写法,正确应写成“”。

七年级数学数轴教案篇六

1、教学方法:引导发现法、探究法、讲练法、

(一)重点

准确掌握积的乘方的运算性质、

(二)难点

用数学语言概括运算性质、

(三)解决办法

增强对三种运算性质的理解,并运用对比的方法强化训练以达到准确地区分、

一课时、

投影仪或电脑、自制胶片、

3、通过举例来说明积的乘方性质应如何正确使用,师生共练以达到熟练掌握、

4、多种题型的设计,让学生能从不同的角度全面准确地理解和运用该性质、

(一)明确目标

本节课重点学习积的乘方的运算性质及其较灵活地运用、

(二)整体感知

(三)教学过程

1、创设情境,复习导入

前面我们学习了同底数幂的乘法、幂的乘方这两个寨的运算性质,请同学们通过完成一组练习,来回顾一下这两个性质:

填空:

七年级数学数轴教案篇七

本节教学的重点是掌握解一元一次不等式的步骤.难点是必须切实注意遇到要在不等式两边都乘以(或除以)同一负数时,必须改变不等号的方向.掌握一元一次不等式的解法是进一步学习一元一次方程组的解法以及一元二次不等式的解法的重要基础.

1、一元一次不等式和一元一次方程概念的异同点

相同点:二者都是只含有一个未知数,未知数的次数都是1,左、右两边都是整式.

不同点:一元一次不等式表示不等关系,一元一次方程表示相等关系.

(3)同方程类似,我们把或叫做一元一次不等式的标准形式.

2、一元一次不等式和一元一次方程解法的异同点

相同点:步骤相同,二者都是经过变形,把左边变成,右边变为一个常数.

注意:(1)解方程的移项法则对解不等式同样适用.

三、教法建议

七年级数学数轴教案篇八

知识提要:在数学中,用一条直线上的点表示数,这条直线叫做数轴.数轴的三要素为:原点、正方向、单位长度.

1.关于数轴,下列说法最准确的是(d)。

a.一条直线。

b.有原点、正方向的一条直线。

c.有单位长度的一条直线。

d.规定了原点、正方向、单位长度的直线。

七年级数学数轴教案篇九

(一)知识与技能。

(二)过程与方法。

经历数轴形成的过程,感受类比、数形结合思想在数学学习中的作用.。

(三)情感态度与价值观。

在直观表示有理数的活动中获取成功的体验,激发学生学习数学的热情,建立自信心.。

二、教学重难点。

(一)重点。

会用数轴上的点表示有理数.。

(二)难点。

数轴的引入.。

教学环节和教学程序如下:

(一)创设情境问题导入1.创设情境。

源于初一学生对小动物的喜爱,提高学生参与数学活动的积极性.。

2.实物抽象。

多媒体出示问题:

(图略)。

(1)试一试:你能帮助这些小动物找到自己的位置吗?

(2)想一想:小鸡与小猫如何区别自己的位置呢?

(3)做一做:怎样用数简明地表示这些小动物与汽车站的相对位置关系(方向,距离)?(注重说出表示方法及其意义)。

(4)观察图形,试着用一句话反映图形所示的内容.同桌交流得出结论.(把正数、0和负数用一条直线上的点表示出来)。

(5)联想:生活中有类似的例子吗?

结合情境,把学生置于问题之中,让学生在探究、发现中获得知识和经验.。

以动画的形式,通过旋转、抽象、类比、概括等环节展示数轴的形成.(播放动画二)。

让学生首先从直观上有一定的感受,为后面的建模过程积累必要的经验.3.抽象建模。

(2)让学生根据描述性定义,各画一条数轴,然后学生互评,教师总结:

取原点,规定正方向,选取单位长度.。

(三)合作交流构建新知1.例1:如图,指出数轴上、、、四点各表示什么数.(此问让学生独立完成)。

(图略)2.例2:请在上图中找出表示-2,-3,-的点.(教师以其中一个为例,引导学生分析其在数轴上的位置,让学生模仿老师的思路,找出另外2个有理数的位置)。

4.观察图5和自画图中表示各数的点与原点的相对位置关系,你发现了什么?(先自己思考,再小组交流,得出规律,最后完成填空)。

5.回到情境1中,深层理解数学与实际生活的联系.。

(四)小结与作业1.小结。

与同桌交流,本节课里你有什么收获?你还有哪些不清楚的地方?

全班内进行交流,会画数轴,会用数轴上的点表示有理数.。

(1)必做题:教科书第18页习题1.2第2题.。

(2)选做题:请找出几例生活中的数轴.。

分层要求,满足不同的学生在数学上有不同的发展.。

四、教案设计说明。

(一)问题情境。

从具体到抽象,吸引学生参与.。

(二)建立模型。

(三)应用与拓展。

让学生在理解数轴的基础上,把数轴运用到新的环境中.。

(四)小结与作业。

面向全体学生,分层要求,让不同的学生在数学上有不同的发展.。

(五)评价。

注重对学生数学学习过程的评价,发挥评价具有的促进学生发展的功能.。

七年级数学数轴教案篇十

学习目标:

1、掌握数轴概念,理解数轴上的点和有理数的对应关系。

2、会正确地画出数轴,会用数轴上的点表示给定的有理数,会根据数。

轴上的点读出所表示的有理数。

3、使学生初步理解数形结合的思想。

教学重点:数轴的概念。

教学难点:从直观认识到理性认识,从而建立数轴的概念,并初步体会数形结合的思想方法。

教学过程:

一、创设情境:

问题1:在一条东西走向的马路上,有一个汽车站,汽车站东3米和。

师提出问题:(1)先画什么呢?

(2)先找什么?再找什么?

(3)怎样正确摆放这几者的位置呢?

问题2:怎样用数轴简明地表示这些树,电线杆与汽车站的相对位置。

关系(方向、距离)。

师生合作完成二、合作交流,探索新知。

引导学生思考上面的问题,引导学生建立数轴的概念。

问题3:怎样正确地画一条数轴,数轴需哪几个条件?

怎样才能将不同数的点清楚表示出来?

尝试画满足条件的数轴。

可以先让学生试着画出自己想象的数轴,并把学生不同画法展示出来。先让学生交流哪种画法规范,然后师生共同分析归纳得出数轴的特征:

(1)数轴是一条直线。

(2)数轴三要素:原点。

正方向。

单位长度。

(题目及图形在导学案上)。

三、动手操作,亲身体验。

问题。

(1)画出数轴并表示下列有理数。

91.5-22-2.52(2)写出数轴上a、b、c、d、e表示的数。

(图形在导学案上)。

观察发现:(1)哪些数在原点的左边?哪些数在原点的右边?由此你会。

发现什么规律?

(2)每个数到原点的距离是多少?由此你会发现什么规律?

小组讨论,交流归纳完成上述问题。

四、巩固提高。

1、画出数轴并表示下列有理数。

(1)-3-2-10123。

(2)-30-20-100102030。

(3)155122-2-。

2五、课堂小节:、数轴的概念。、数轴的三要素。、数轴的作法及数与点转化过程。

六、作业:

必做题:教科书第14面习题1、2第二题123。

七年级数学数轴教案篇十一

2.使学生掌握求一个已知数的;。

3.培养学生的观察、归纳与概括的能力.

重点:理解的意义,理解的代数定义与几何定义的一致性.

难点:多重符号的化简.

一、从学生原有的认知结构提出问题。

二、师生共同研究的定义。

特点?

引导学生回答:符号不同,一正一负;数字相同.

像这样,只有符号不同的两个数,我们说它们互为,如+5与。

应点有什么特点?

引导学生回答:分别在原点的两侧;到原点的距离相等.

这样我们也可以说,在数轴上的原点两旁,离开原点距离相等的两个点所表示的数互为.这个概念很重要,它帮助我们直观地看出的意义,所以有的书上又称它为的几何意义.

3.0的是0.

这是因为0既不是正数,也不是负数,它到原点的距离就是0.这是等于它本身的的数.

三、运用举例变式练习。

例1(1)分别写出9与-7的;。

例1由学生完成.

在学习有理数时我们就指出字母可以表示一切有理数,那么数a的如何表示?

引导学生观察例1,自己得出结论:

数a的是-a,即在一个数前面加上一个负号即是它的。

1.当a=7时,-a=-7,7的是-7;。

2.当-5时,-a=-(-5),读作“-5的”,-5的是5,因此,-(-5)=5.

3.当a=0时,-a=-0,0的是0,因此,-0=0.

么意思?引导学生回答:-(-8)表示-8的;-(+4)表示+4的`;。

例2简化-(+3),-(-4),+(-6),+(+5)的符号.

能自己总结出简化符号的规律吗?

括号外的符号与括号内的符号同号,则简化符号后的数是正数;括号内、外的符号是异号,则简化符号后的数是负数.

课堂练习。

1.填空:

(1)+1.3的是______;(2)-3的是______;。

(5)-(+4)是______的;(6)-(-7)是______的。

2.简化下列各数的符号:

-(+8),+(-9),-(-6),-(+7),+(+5).

3.下列两对数中,哪些是相等的数?哪对互为?

-(-8)与+(-8);-(+8)与+(-8).

四、小结。

指导学生阅读教材,并总结本节课学习的主要内容:一是理解的定义——代数定义与几何定义;二是求a的;三是简化多重符号的问题.

五、作业。

1.分别写出下列各数的:

2.在数轴上标出2,-4.5,0各数与它们的。

3.填空:

(1)-1.6是______的,______的是-0.2.

4.化简下列各数:

5.填空:

(3)如果-x=-6,那么x=______;(4)如果-x=9,那么x=______.

教学过程是以《教学大纲》中“重视基础知识的教学、基本技能的训练和能力的培养”,“数学教学中,发展思维能力是培养能力的核心”,“坚持启发式,反对注入式”等规定的精神,结合教材特点,以及学生的学习基础和学习特征而设计的由于内容较为简单,经过教师适当引导,便可使学生充分参与认知过程.由于“新”知识与有关的“旧”知识的联系较为直接,在教学中则着力引导观察、归纳和概括的过程.

探究活动。

有理数a、b在数轴上的位置如图:

将a,-a,b,-b,1,-1用“”号排列出来.

分析:由图看出,a1,-1。

解:在数轴上画出表示-a、-b的点:

由图看出:-a-1。

点评:通过数轴,运用数形结合的方法排列三个以上数的大小顺序,经常是解这一类问题的最快捷,准确的方法.

七年级数学数轴教案篇十二

第1教案。

教学目标。

1.能结合实例,了解一元一次不等式组的相关概念。

2.让学生在探索活动中体会化陌生为熟悉,化复杂为简单的“转化”思想方法。

3.提高分析问题的能力,增强数学应用意识,体会数学应用价值。

教学重、难点。

1..不等式组的解集的概念。

2.根据实际问题列不等式组。

教学方法。

探索方法,合作交流。

教学过程。

一、引入课题:

1.估计自己的体重不低于多少千克?不超过多少千克?若没体重为x千克,列出两个不等式。

2.由许多问题受到多种条件的限制引入本章。

二、探索新知:

自主探索、解决第2页“动脑筋”中的问题,完成书中填空。

分别解出两个不等式。

把两个不等式解集在同一数轴上表示出来。

找出本题的答案。

三、抽象:

教师举例说出什么是一元一次不等式组。什么是一元一次不等式组的解集。(渗透交集思想)。

七年级数学数轴教案篇十三

数轴是学习绝对值和平面直角坐标系的基础,同时也是一个非常重要的数学工具,它使数和数轴上的点建立其对应关系,可以用它揭示数与型之间的关系,它是数形结合的基础。此外数轴还能反映数的性质,从数轴上可以一目了然地看出某个数是正数、负数还是零;数轴还能解释某些概念,如相反数、绝对值,还可以使比较大小变得更直观。为了使学生能更好的理解和准确的画出数轴,对本节课的教学进行了适当的创意,并采取了学生动手主动探究,小组合作的学习方式,达到了预期的学习目的。

成功之处:

1、根据本节课的特点,创设问题情境,布置学生预习。认真观察已准备好的温度计,是否有刻度?刻度是否均匀?所标出的温度是否有方向性?零上的温度是在温度计的上方还是下方?零下的温度呢?然后让学生拿出已准备好的工具,自制温度计,对比看自己在制作过程中出现了什么不足,能否制作出更长的温度计?激发学生的求知欲,点燃了激情。从而导入新课,自然得出数轴的概念和三要素。

2、根据一些学生的操作,进行了以下几点的强调:

数轴的三要素缺一不可,(2)要画直线。(3)原点可以是数轴上任意一点。(3)正方向用箭头表示,一般是从左到右。(4)单位长度选取应适当,但刻度要均匀。

3、学生辨析,及时纠错。设置了一些典型的错误画法,让学生辨别及时纠错。同时让学生动笔画图,尽量让他们出现错误,互相纠正,加深理解。

4、在教会学生在数轴上表示有理数的同时,利用数轴得到了互为相反数的概念及几何性质,进一步强调“只有”两字的意义及零的相反数的规定。在本节的教学中始终注重数形结合的数学思想。

5、培养了学生的动手能力。学生动手画,解决实际的问题。如利用数轴表示据我校东300米的食杂店,西500米的车站。体验数学知识的使用价值及数学知识来源于实际并应用实际的现实。

不足之处:

1、个别学生不会利用数轴比较大小,有时把方向标错。

2、个别学生的应用能力还有欠缺。

3、在数轴应用方面还要进一步加强。

4、若有时间再给学生一定拓展思维的空间,进一步挖掘学生的探究能力。

七年级数学数轴教案篇十四

本节课主要是在学生学习了有理数概念的基础上,从标有刻度的温度计表示温度高低这一事例出发,引出数轴的画法和用数轴上的点表示数的方法,初步向学生渗透数形结合的数学思想,以使学生借助直观的图形来理解有理数的有关问题。数轴不仅是学生学习相反数、绝对值等有理数知识的重要工具,还是以后学好不等式的解法、函数图象及其性质等内容的必要基础知识。通过本节课的学习,使学生初步了解数轴的结构,会利用数轴表示一个有理数,还会借助数轴比较几个有理数的大小等问题,为今后充分有效利用数轴这个工具打下牢固的基础。七年级学生的理解能力和思维特征是,他们的抽象能力和想象能力都不强,往往需要依赖直观形象的图形解决问题,而此时七年级学生刚刚学习有理数中的正负数,对正负数的概念理解还不很深刻,造成许多学生知识的遗忘和混淆,对有理数的分类特别混乱。

为使课堂高效、生动、针对性强,我一贯坚持走课改之路,积极探索,大胆实践,力争走出适合我校的课改成功之路。课堂教学中我经常把学生自学、小组讨论、展示交流贯穿于整个教学始终,采用多种有效地教学模式,注意师生之间的情感交流,并教给学生“多观察、多动脑、大胆猜、勤钻研”的研讨式学习方法。在教学中,充分发挥学生的主体作用,给学生创造更多的表现机会和活动空间,使学生在动脑、动手、动口的过程中获得充足的体验和发展,从而培养学生形成数形结合的思想。

一、教学流程:

(一)、温故知新,激发兴趣:

首先提出问题:有理数包括那些数?一生回答后让大家讨论:你能找出用刻度表示这些数的实例吗?学生会举出很多例子,但是由于温度计与数轴最为接近,它又是学生熟悉的带刻度的度量工具,所以在教学中我将用它来抽象概括为数轴这一数学模型,于是让学生观察一组温度计,并读出数据(正确的表达方法):

(1)零上5°c用5表示。(2)零下15°c用-15表示。(3)0°c用0表示。

然后让大家思考:能否与温度计类似,在一条直线上画上刻度,标出读数,用直线上的点表示正数、负数和0呢?(答案是肯定的,从而引出课题:数轴。)。

(这样设计,对刚刚学习了有理数中的正负数,对正负数的概念理解还不够深刻,容易造成知识遗忘的七年级学生来说是比较合理的。结合实例使学生以轻松愉快的心情进入了本节课的学习,也使学生体会到数学来源于生活,同时对新知识的学习有了期待,为顺利完成本节课的教学任务作了充分的思想准备。)。

(二)、得出定义,揭示内涵:

教师设问:到底什么是数轴?如何画数轴呢?(然后学生开始看书自学,教师巡回指导,掌握学生的自学情况)。

(1)画直线,取原点(2)标正方向(3)选取单位长度,画完数轴后小组开始进行讨论,并且完成讨论题:“怎样用数学语言来描述数轴?”(教师参与学生的讨论,并给与指导)通过讨论最终得出数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴。(至此,我们将一个具体的事物“温度计”经过抽象而概括为一个数学概念“数轴”,使学生初步体验到一个从实践到理论的认识过程,完成了第一个教学目标:使学生理解数轴的三要素,会画数轴。)。

(三)、手脑并用,深入理解:

1、让学生讨论:给出图形哪些是数轴,哪些不是,为什么?

(通过练习总结问题中容易出现的几种常见的错误:负数次序不对、没有方向、没有原点、单位长度不统一)。

给学生足够的观察、思考的时间然后展开充分的讨论,教师参与到学生的讨论之中去接触学生,认识学生,关注学生,了解学生。

2、为进一步强化概念,在对数轴有了正确认识的基础上,请大家在练习本上画一个数轴(请三个小组同学到黑板上去画,加以巩固所学知识),学生在画数轴时教师巡视并给予个别指导,关注学生的个体发展,画完后教师给出评价,如“很好”、“很规范”、“老师相信你,你一定行”等语言来激励学生,以促进学生的发展;并强调:原点、正方向和单位长度是数轴的三要素,画数轴时这三要素缺一不可,从而达到强化数轴概念的作用。(对数轴概念和数轴的三要素,学生不易理解,容易造成画图中丢三落四的现象,所以教学中教师针对容易出现的问题给予强调。而我设计以上两个练习的目的正是:

一、通过动手操作加深对概念的理解;

二、动脑想,通过观察、分析、判断正误来加深对正确概念的理解。)。

(四)、启发诱导,初步运用:

利用黑板上的例题图形让学生来动手操作,教师提出要求,结合学生所画的情况,再加以点拨强调:

1、要把点标在线上。

2、要把数标在点的下方。

这时,此题再拓展成说出几个有理数让学生去标点,好让更多的学生去展示自己,并进一步让学生从中感受已知有理数能用数轴上的点表示,从而加深对数形结合思想的理解。(通过学生实际操作,可以加深对数轴的理解,进一步掌握用数轴上的点表示数的方法,同时激发学生的学习兴趣,调动学生的积极性,从而使学生真正成为教学的主体。)。

从上面的例子不难看出,在数轴上表示的两个数,右边的数总比左边的数大,又从正数和负数在数轴上的位置,可以很自然地得出两个有理数的大小关系:

(1)在数轴上表示的两数,右边的数总比左边的数大。(2)正数都有大于0,负数都小于0,正数大于一切负数。(3)比较大小时,要注意不等号的使用要与题的要求一致。

(因此也完成了第二个教学目标:学生会用数轴上的点表示有理数;会利用数轴比较有理数的大小;并在这个学习过程中,初步了解数形结合的思想方法,培养了学生用联系的观点看待问题。)。

(五)巩固所学,拓展提高:

(为巩固本节的教学重点,让学生独立完成下面的问题:)。

1、课本9页练习1、2,2、课本14页2题的(让几个小组分别板书并讲解)。

3、数轴上的点p与表示有理数3的点a距离是2,(1)试确定点p表示的有理数;

(2)将a向右移动2个单位到b点,点b表示的有理数是多少?(3)再由b点向左移动9个单位到c点,则c点表示的有理数是多少?(先让小组进行讨论,然后根据得出的结果,使学生在掌握知识的基础上达到灵活运用,并形成一定的能力。)。

(六)、总结归纳,形成思想:根据学生的特点,师生共同小结:

2、深化提高:数轴上,会不会有两个点表示同一个有理数?会不会有一个点表示两个不同的有理数?(让学生牢固掌握一个有理数只对应数轴上的一个点,并能说出数轴上已知点所表示的有理数,它们之间不存在“一一对应”的关系,为以后学习实数打下伏笔。)。

二、检查课堂教学效果。

小学里学生曾学过利用直线上的点来表示数,本节课学生在知识技能、情感态度和价值观上得到了新的发展:

教学上需要,一般水平放置的数轴,规定从原点向右为正方向。要注意原点位置选择的任意性。

2、关于有理数与数轴上的点的对应关系,应该明确的是有理数可以用数轴上的点表示,但数轴上的点并不都表示有理数这一事实,也就是数轴上的点和有理数并不存在“一一对应”的关系。根据几个有理数在数轴上所对应的点的相互位置关系,能够判断它们之间的大小关系。通过点与有理数的对应关系及其应用,逐步渗透数形结合的思想,让学生知道数学来源于生活实践,培养学生用相互联系的方法解决问题的能力。

三、课堂教学评析。

有了数轴,数和形得到了初步结合,这有利于学生对数学问题的研究,数形结合是学生理解数学、学好数学的重要思想方法。

为了突出正确理解数轴的概念和有理数在数轴上的表示方法这个教学重点,突破建立有理数与数轴上的点的对应关系(数与形的结合)这个教学难点,在本节课的教学过程中,我始终注意发挥学生的主体作用,让学生通过自主学习、合作探究、展示交流来主动发现数学知识和数学结论,实现师生互动,通过这样的课堂教学模式取得了良好的教学效果,学生在课堂上获得了所学的知识,并且思维能力也得到了新的发展。

从中,我认识到教师不仅要教给学生知识,还要交给学生学习数学的方法,更要培养学生良好的数学兴趣和数学素养,让学生学会学习,爱上学习,才是课堂教学的归宿。

七年级数学数轴教案篇十五

本节教学的重点是掌握单项式与多项式相乘的法则.难点是正确、迅速地进行单项式与多项式相乘的计算.本节知识是进一步学习多项式乘法,以及乘法公式等后续知识的基础。

1.单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加,即。

其中,可以表示一个数、一个字母,也可以是一个代数式.。

2.利用法则进行单项式和多项式运算时要注意:

3根据去括号法则和多项式中每一项包含它前面的符号,来确定乘积每一项的`符号;

设m=-4x2,a=2x2,b=3x,c=-1,

∴(-4x2)·(2x2+3x-1)。

=m(a+b+c)。

=ma+mb+mc。

=(-4x2)·2x2+(-4x2)·3x+(-4x2)·(-1)。

=-8x4-12x3+4x2.。

这样过渡较自然,同时也渗透了一些代换的思想.。

教学设计示例。

一、教学目标。

1.理解和掌握单项式与多项式乘法法则及推导.。

2.熟练运用法则进行单项式与多项式的乘法计算.。

3.培养灵活运用知识的能力,通过用文字概括法则,提高学生数学表达能力.。

4.通过反馈练习,培养学生计算能力和综合运用知识的能力.。

5.渗透公式恒等变形的数学美.。

二、学法引导。

1.教学方法:讲授法、练习法.。

类项,故在学习中应充分利用这种方法去解题.。

三、重点·难点·疑点及解决办法。

(一)重点。

单项式与多项式乘法法则及其应用.。

(二)难点。

单项式与多项式相乘时结果的符号的确定.。

(三)解决办法。

复习单项式与单项式的乘法法则,并注意在解题过程中将单项式乘多项式转化为单项。

式乘单项式后符号确定的问题.。

四、课时安排。

一课时.。

五、教具学具准备。

投影仪、胶片.。

六、师生互动活动设计。

(一)明确目标。

本节课重点学习单项式与多项式的乘法法则及其应用.。

(二)整体感知。

(三)教学过程。

1.复习导入。

复习:

(1)叙述单项式乘法法则.。

(单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.)。

(2)什么叫多项式?说出多项式的项和各项系数.

2.探索新知,讲授新课。

简便计算:

由该等式,你能说出单项式与多项式相乘的法则吗?单项式与多项式乘法法则:单项式。

与多项式相乘,就是用单项式乘多项式的每一项,再把所得的积相加.。

例1计算:

例2化简:

练习:错例辨析。

(2)错在单项式与多项式的每一项相乘之后没有添上加号,故正确答案为。

(四)总结、扩展。

(99,河北)下列运算中,不正确的为()。

a.b.。

c.d.。

八、布置作业。

参考答案:

七年级数学数轴教案篇十六

1、熟练掌握一元一次不等式组的解法,会用一元一次不等式组解决有关的实际问题;。

3、体验数学学习的乐趣,感受一元一次不等式组在解决实际问题中的价值。

正确分析实际问题中的不等关系,列出不等式组。

建立不等式组解实际问题的数学模型。

出示教科书第145页例2(略)。

问:(1)你是怎样理解“不能完成任务”的数量含义的?

(2)你是怎样理解“提前完成任务”的数量含义的?

(3)解决这个问题,你打算怎样设未知数?列出怎样的不等式?

师生一起讨论解决例2.

1、教科书146页“归纳”(略).

2、你觉得列一元一次不等式组解应用题与列二元一次方程组解应用题的步骤一样吗?

在讨论或议论的基础上老师揭示:

步法一致(设、列、解、答);本质有区别.(见下表)一元一次不等式组应用题与二元一次方程组应用题解题步骤异同表。

【本文地址:http://www.xuefen.com.cn/zuowen/9372768.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档