每个经历都值得总结,每个故事都值得被书写,因为总结能够点亮人生的轨迹。审视过去的得失,将它们融入到写一篇完美总结的思考和表达中。总结是在一段时间内对学习和工作生活等表现加以总结和概括的一种书面材料,它可以促使我们思考,我想我们需要写一份总结了吧。如何应对信息爆炸时代的信息过载和信息安全问题是我们需要思考的问题。以下是宗教领袖对于信仰和和平的呼吁,希望人们能够和谐共处。
平行四边形面积的教学设计数学篇一
教学内容:人教版义务教育课程标准实验教科书《数学》五年级上册第80—81页。
教学目标:
3、在操作、观察、比较中,渗透转化的思想方法。
4、在探究活动中,体验到成功的快乐。
教学重点:推导平行四边形面积公式,并能够运用平行四边形面积公式解决简单的实际问题。
教学准备:课件平行四边形硬纸片剪刀透明方格纸。
教学过程:
一、情境激趣:
66。
生:平行四边形的面积。师:这节课我们就来研究平行四边形的面积。(板书课题)。
二、实验探究:
1、猜想。
那么大家猜一猜平行四边形的面积可能与什么有关?(可能与边有关)只与它边的长度有关?大家看老师手中这个平行四边形,(演示)还可能与什么有关?(高)那么平行四边形的面积究竟与它的底和高有怎样的关系?下面就让我们一起来研究。
2、实验。
1)独立自主探究:
生:我用数格子的方法。
师:数格子时,不足一格的按一格算,把得到的数据填在表格里。
师:还有什么方法?
生:我用剪一剪、拼一拼的方法。
师:用剪拼方法上的同学请读一下操作提示。(一生读)下面你们就用自己喜欢的方法试一试。
2)小组内交流:
师:通过数格子或者剪拼的方法,哪位同学有收获了?把你的想法在小组内交流,小组长组织好。一会要向全班同学汇报你们小组的方法。
3)学生汇报:
第一个小组:(1)数格子(把表格带到前面说)。
(2)剪拼。
师:你们成功的把平行四边形转化成了长方形,这一长方形与原来的平行四边形有什么关系?(生:长方形的长等于平行四边形的底、宽等于平行四边形的高)你们小组转化的清楚,介绍的明白真了不起)。
是这样吗?师课件演示解说强调平移。
(多么巧妙的剪拼,我发现你们的思维很灵活啊。)(我只能说两个字了:“佩服!”)。
师:还有其他的方法吗?其他几个小组同学,通过动手操作你们得到了什么结论。一起说(师板书:平行四边形的面积=底*高)。
四、运用公式解决。
师:现在我们来算一下铺这块平行四边形草坪要用多少钱?
(生口算)。
五、拓展练习。
1、求下列图形的面积是多少?
底15厘米,高11厘米。
(不仅准确计算出了结果,速度还很快,真不错。)。
2、开放题:这是一张全国地图,有一个省的地形很接近平行四边形,山西省。山西南北大约590千米,东西大约310千米,你能估计一下它的土地面积吗?(东西能否再平些)。
(能在实际问题的解决中恰当运用公式,了不起)。
3、学校要建一个面积是12平方米的平行四边形花坛,请你帮学校设计一下,(要求底、高均为整米数)1)可以有几种方案?2)哪种方案更合理?(你们能从不同角度考虑,为学校选择更合理的方案,老师非常感谢大家)。
六、全课小结:
师:这节课,你是怎么学习的?你有哪些收获?
(我是用数方格的方法、我用平移这种方法把平行四边形转化成长方形再与平行四边形进行比较得出平行四边形的面积的师演示)你们很了不起,能想办法把平行四边形转化成我们以前学过的长方形来研究它的面积。我们这节课使用的这种方法,以后在学习其它图形面积时还会用到。今天的家庭作业是以《平行四边形的面积》为题写一篇数学日记,写清平行四边形的面积的推导过程,可以画、也可以剪贴。
课后反思。
课堂教学是一个动态生成的过程。因此,在教学时,我把关注的焦点放在学生身上,关注学生的情感体验,关注学生的自主建构,更关注学生真实的学习过程。从而适时地激发学生的情感,点燃学生的智慧,发挥学生的创造性。主要体现在以下几个方面:
1、适时渗透、领悟思想方法。
数学教学的价值目标取向不仅仅局限于让学生获得基本的数学知识和技能,更重要的是在数学教学活动中,经历问题解决的过程,了解数学学习的价值,增强数学的应用意识,获得数学的基本思想方法。我觉得,这节课学习的转化的数学思想方法将永远铭刻在学生头脑中,将在学生今后的学习中发挥更大的作用。
2、适时引导、主动建构知识。
学生学习数学知识的过程是主动建构的过程。因此,在教学中,我让学生象科学家一样经历大胆猜想、动手验证、得出结论的过程。先让学生根据已有的知识经验进行猜想:平行四边形的面积可能与什么有关?然后,给学生足够的探究时间和空间,“数”、“剪拼”都是学生的智慧,“数的过程”、“剪拼的过程”都是学生的思维过程。最后,让学生同伴互助去探究、去发现、去总结,给每个学生参与数学活动的机会,真正的实现了自主学习。
3、适时点拨、有效进行指导。
探究学习是把学生的“学”作为实施教学的基本点,而教师的“导”是实现学生“学”的根本保证。因此,在教学中我适时地对学生进行点拨、指导,做到“放得开、收得住”。如在自主探究过程中我发现,有的学生把平行四边形剪开后无法拼成长方形。于是,我进行了个别指导。引导学生思考:为什么只有沿高剪开才能拼成长方形?通过指导,使学生明白沿平行四边形的高剪开,是将平行四边形转化成长方形的关键。
课例点评。
这节课教师在教学时以图形内在联系为线索,以转化这条数学思想方法为主线,在操作、观察、比较活动中,通过孕伏、理解、强化的过程,让学生在获得知识的同时,领悟转化的数学思想方法。具体表现在以下几点:
1、在情境中蕴含知识,孕伏思想方法。
这节课情境的创设一方面紧紧地围绕所要探索的数学知识,另一方面又充分体现了知识之间的内在联系。创设了江滨公园铺草坪的情境图,分别呈现了一个长方形和一个平行四边形的草坪,并提供每平方米草坪的价格,引导学生根据信息提出问题。这一情境中既有长方形面积的计算,又有平行四边形面积的计算,把这些知识都融入一个具体的生活情境中,既唤起了学生已有的知识经验,又暗含了平行四边形的面积与长方形的面积有关。
2、在探究中体验知识,理解思想方法。
这节课沿着“提出猜想——思考验证方法——实践验证”这个过程进行。一是独立探究。让每个学生根据自己的体验,用自己的思维方式进行探究,并且提出了活动要求。一方面启发学生设法把所研究的图形转化为已经会计算面积的图形,渗透“转化”的思想方法;另一方面引导学生去探究所研究的图形与转化后的图形各部分之间有什么联系,从而找到平行四边形面积的计算方法。二是合作探究。在学生独立探究的基础上,让学生在小组内进行交流。通过交流,学生知道,任何形状的平行四边形都可以转化成长方形,这样,他们对图形变换的认识不再是个案的体会,而是对图形本质联系的体验。
3、在反思中提炼知识,强化思想方法。
教师在教学中注重引导学生对转化过程进行反思。第一次是在学生汇报交流之后,教师用课件呈现图形转化的过程引导学生进行反思,重点是理解转化的思想方法;第二次是课即将结束时,教师引导学生总结这节课学习内容时再次回放图形转化的过程,重点是强化转化的思想方法。并引导学生:“在今后学习其它平面图形的面积时,还要用到这种方法。”这样为学生以后学习三角形、梯形面积的计算进行了思想方法的延伸。
总之,这节课教学时有两条主线,一条是数学基础知识,另一条是数学思想方法,并且把领悟数学思想方法作为数学教学的要务,把掌握数学思想方法作为学生数学学习的最高境界。
平行四边形面积的教学设计数学篇二
《平行四边形的面积》的教学是在学生已经掌握并能灵活运用长方形面积计算公式,理解平行四边形特征的基础上进行教学的,这部分知识的学习运用会为学生学习后面的三角形、梯形、圆等平面图形的面积乃至立体图形的表面积奠定良好的基础。由此可见,本课内容具有承上启下的作用。
二、学情分析。
学生已经掌握了平行四边形的特征和长方形面积的计算方法。这些都为本节课的学习奠定了坚实的基础。但是小学生的空间想象力不够丰富,推导平行四边形的面积计算公式有一定的困难。因此本节课的学习就是让学生充分利用好已有知识,调动他们多种感官全面参与新知的发生、发展和形成过程。
三、教学目标。
根据新课标的要求及教材的特点以学生的全面发展作为标准,我设定如下教学目标:
能力目标:通过操作、观察、比较等活动,初步渗透“转化”的数学思想,培养学生的观察、推导能力,发展空间观念。
情感目标:通过数学活动使学生获得成功的体验,增强自信心,培养学生的探索精神和实践能力。
教学重点与难点。
四、教学准备。
多媒体课件、三角板、剪刀、平行四边形。
五、教法与学法。
新课程标准指出:有效的数学活动不是单纯的依赖模仿与记忆,动手操作,自主探索与合作交流是学习数学的重要方式。本节课我采用情境教学法,引导探究法、直观演示法组织学生开展丰富多彩的数学活动。在重视选择灵活教法的同时,注重对学生学法的指导。我指导学生学习的方法为:自主探究法、动手操作法、合作交流法,猜想验证法。使教法和学法和谐统一。
六、教学程序。
为了能更好地凸显“自主探究”的教学理念,高效完成教学目标,我设计了如下课堂教学环节:
(一)情景导入,引入新课。
1、情景引入。(出示课件)。
2、揭示课题。
[设计意图:以问题情境为出发点,既丰富了学生的感官认识,又激发了学生的学习热情,从而激发学生的主动思考。
(二)动手操作,探究新知。
本环节是学生获取知识,提高能力的一个重要过程。也是本课的重难点所在,我从以下四个方面引导学生主动参与实践活动,经历知识的形成过程。
1、猜一猜。
没有大胆的猜想就没有伟大的发现!我放手让学生猜测平行四边形的面积计算公式。有的学生可能会猜测平行四边形面积=边×邻边、也可能有学生猜测平行四边形面积=底×高。对学生的两种答案先不予以评价。
2、数一数。
师:两种猜想产生了两个结果,到底哪一个是正确的?
用最基本的直接测量法来验证。(数学书80页)。
是不是所有的平行四边形都可以剪拼成一个长方形呢?
3、剪一剪、拼一拼。
猜想——验证是学生探究数学的有效途径。
我先介绍学具筐,让学生动手剪一剪、拼一拼。
此环节给学生留下充分的思考、操作、发现的时间。在这期间教师参与学生的活动帮助有困难的学生。
接下来先在小组内交流,在足够的小组交流之后,开始全班汇报展示,达到智慧共享的目的。
预设:
课件演示(学生的认知是由浅入深的,通过动手实践他们已经验证了面积计算方法,就此结束,势必会使部分学生的转化要领模糊,为此,我充分尊重学生的主体地位,在学生动手、动脑、发现、比较、归纳之后利用多媒体课件直观演示剪、拼过程达到巩固推导过程的目的。)。
4、议一议。
读书可以培养学生的自学能力,当学生探究出面积计算方法后,让学生读书并提出疑问,学生经历这个过程思维更加完善。而且自学了字母公式,了解了例1的解题方法。
重温例1,在解决这个问题时,你想提醒同学注意什么?
[设计意图:让学生深刻理解本课的重难点,培养了学生的逻辑思维,让学生不仅学会了知识,更重要的是学会了学习。所谓“授之以鱼不如授之以渔”,学生经历了知识的形成过程,情绪是高昂的、思维是深刻的、心理是快乐的]。
(三)分层训练巩固内化。
课堂练习是数学教学的主要环节之一,是学生形成技能,发展智力的有效方法。我本着“重基础、验能力、拓思维”的原则,设计如下几个层次的练习。
1、基础练习:算出下面每个四边形的面积。
(使学生加深对所学知识的认识,正确分清平行四边形的底和高。)。
2、提升练习:
(在第一题的基础上,增加了学生动手测量的要求。体现了“重实践”这一理念同时也使学生理解平行四边形的面积必须是底和对应的高相乘突出对应)。
3、扩展练习:
平行四边形面积的教学设计数学篇三
通过实践――理论――实践来突破掌握平行四边形面积计算的重点。利用知识迁移及剪、移、拼的实际操作来分解教学难点平行四边形面积公式的推导。关键是平行四边形与长方形的等积转化问题的理解,通过“剪、移、拼”找出平行四边形底和高与长方形长和宽的关系,及面积始终不变的特点,归纳出长方形等积转化成平行四边形。
平行四边形面积的教学设计数学篇四
1.掌握平行四边形的面积计算公式,并运用平行四边形的面积计算公式解决实际问题。
2.通过数、剪、拼等动手操作活动,探索平行四边形面积计算公式的推导过程,渗透转化的数学思想,发展学生的空间观念。
3.在解决实际问题的过程中,感受数学与生活的联系,培养学生的数学应用意识。
课前布置预习第87,88页内容,完成预习单(如下图)。
一、创设情境,导入新课。
1.课前交流与小故事。
师:同学们,今天我们班上来了非常多的老师听课,你们的心情怎么样呢?
生紧张,激动……。
师:同学们,你们知道曹冲称象的故事吗?谁来说一说?
生:古时候有一个叫曹冲的人看到一群人围着一头大象,没有办法把它称重。曹冲想了一个办法,先把大象赶到船上,然后做好标记,再把石头装入船上到了刚刚大象称的刻度,那石头的重量就是转化成了大象的重量。
师:说的非常好,讲的非常详细,小小老师。对,曹冲称象其实就是把大象的重量转化成了石头的重量。转化是数学中非常重要的数学思想,转化就是把我们没有学过的转化成学过的,把复杂的转化成简单的,今天我们也来学习关于转化的数学问题。
师:同学们,看老师手上拿着的是什么图形呢?
生:长方形。
生:表面的大小,面积计算公式是长乘宽。
师:对。说的很好,长方形的面积等于长乘宽。那现在老师手上拿着的又是什么图形呢?
生:平行四边形。
师:平行四边形的面积怎么计算呢?今天我们就一起来学习探究平行四边形的面积。(板书:平行四边形的面积)。
平行四边形面积的教学设计数学篇五
知识目标:通过操作活动,经历推导四边形面积计算公式的过程;能运用公式计算相关图形的面积,并解决一些实际问题。
能力目标:通过实际操作发展学生的观察、操作、推理、交流能力;培养运用转化的方法解决实际问题的能力。
情感目标:培养学生勇于探索、克服困难的精神;感受数学的美。
教学重、难点:
理解平行四边形面积公式的推导过程,掌握平行四边形面积的计算公式。
培养学生运用公式解决实际问题的能力。
(一)创设情境,设疑引入。
谈话:出示两个美丽的花坛(课件呈现)。
提问:请大家观察一下,这两个花坛哪一个大呢。
然后给出长方形的长和宽让学生计算长方形的面积。
(二)操作探索,获取新知。
1、数方格感知平行四边形和长方形之间的关系。
(1)数方格,用数方格的方法来求平行四边形和长方形的面积,(电脑出示)。
(2)汇报交流自己的发现。
小结:用数方格的方法不能满足我们的实际需要,如果我们能像长方形那样有一个计算平行四边形面积的公式就容易解决了。
2、应用“转化”思想,引入割补、平移法。
(1)小组合作探究:想办法充分利用手中的学具把平行四边形转化成会学算面积的图形。(这时教师巡视,了解情况)。
(2)精彩展示:要求边讲边操作。
提问:为什么都要转化成长方形?
为什么一定要沿着高剪开呢?
接着电脑演示其它方法,渗透割补、平移法。
3、建立联系,推导公式。
(1)小组合作探索:
a、原来的平行四边形转化成长方形后,什么变了?什么没变?
b、拼成长方形的长与原来平行四边形的底有什么关系?
c、拼成长方形的宽与原来平行四边形的高有什么关系?
d、能否根据长方形的面积公式推导出平行四边形的面积计算公式?(平行四边形的面积=)。
(2)交流平行四边形和长方形之间的联系:平行四边形的面积=长方形的面积;长=底;宽=高;平行四边形的面积(公式)=底×高(板书)。
提问:用字母怎么表示呢?自学课本。
学生回答s=ah(板书)。
提问:s、a、h分别表示什么呢?
提问:要计算平行四边形的面积必须知道什么?(演示不是对应的底和高),这样能求出它的面积吗?那底和高必须是什么样的关系?(对应)。
(三)巩固应用,内化新知。
前面的花坛题:
拓展题:先分别口算出下面图中两个平行四边形的面积,然后看你发现了什么?
(四)课堂总结,深化新知师:同学们,通过今天的学习,你有什么收获呢?
夫参署者,集众思,广忠益也。以上就是给大家分享的10篇小学数学平行四边形的面积教学设计,希望能够让您对于平行四边形的面积公式的写作更加的得心应手。
平行四边形面积的教学设计数学篇六
每个学生准备一个平行四边形。
一、导入新课。
1.请同学翻书到86页,仔细观察,找一找图中有哪些学过的图形?
2.好,下面谁来说一说你找到了哪些学过的图形?
3.请观察这两个花坛,哪一个大呢?假如这块长方形花坛的长是3米,宽是2米,怎样计算它的面积呢?根据长方形的面积=长宽(板书),得出长方形花坛的面积是6平方米,平行四边形面积我们还没有学过,所以不能计算出平行四边形花坛的面积,这节课我们就学平行四边形面积计算。
二、民主导学。
(一)数方格法。
用展示台出示方格图。
1.这是什么图形?(长方形)如果每个小方格代表1平方厘米,这个长方形的面积是多少?(18平方厘米)。
请同学认真观察一下,平行四边形在方格纸上出现了不满一格的,怎么数呢?可以都按半格计算。然后指名说出数得的结果,并说一说是怎样数的。
3.请同学看方格图填87页最下方的表,填完后请学生回答发现了什么?
小结:如果长方形的长和宽分别等于平行四边形的底和高,则它们的面积相等。
(二)引入割补法。
以后我们遇到平行四边形的地、平行四边形的零件等等平行四边形的东西,都像这样数方格的方法来计算平行四边形的面积方不方便?那么我们就要找到一种方便、又有规律的计算平行四边形面积的方法。
(三)割补法。
平行四边形面积的教学设计数学篇七
平行四边形面积计算是在学生掌握了平行四边形的特征以及长方形、正方形面积计算的基础上学习的,它是进一步学习三角形、梯形、圆和立体图形表面积的基础。在本节课的教学中,引导学生动手操作,合作探究,运用转化的方法推导出平行四边形面积的计算方法,并运用所学的知识解决生活中的实际问题。
1、通过探索,理解并掌握平行四边形的面积计算公式,能正确计算平行四边形的面积。
2、通过操作、观察、比较,培养学生运用转化的方法解决实际问题,发展学生的空间观念。
3、学生在自主探究中体验成功的喜悦,获得积极的情感体验,激发学习的兴趣。
理解平行四边形面积计算公式的推导过程。
课件,平行四边形学具纸片,剪刀,尺子等。
1、课件出示情境图。
生看图回答。
2、师:在过6天,我们学校就要举行庆典活动了,为了把我们的学校打扮得更漂亮,学校准备在操场的西边空地上新建两个花坛。(课件出示规划图)。
3、师:说一说,这两个花坛分别是什么形状的?。
生:一个长方形,一个正方形。(课件相机抽出平面图形)。
师:你认为哪个花坛大呢?
生1:长方形的大。
生2:平行四边形的大。
师:怎样来比较两个花坛的大小呢?
生:算出它们的面积,再比较。
师:你会计算它们的面积吗?
生:我会计算长方形的面积,将长方形的长乘宽就能算出它的面积。
4、平行四边形的面积怎样计算呢?今天我们一起来研究平行四边形面积计算。
1、猜一猜。
平行四边形面积的教学设计数学篇八
1、通过剪一剪,拼一拼的方法,探索并掌握平行四边形的面积计算公式。能正确计算平行四边形的面积。
2、通过操作、探究、对比、交流,经历平行四边形的推导过程,初步认识转化的思想方法,发展学生的空间观念。
3、培养学生的合作意识,初步渗透平移和转化的思想。
一个长方形、一个平行四边形,ppt课件一套。
平行四边形、剪刀、三角板。
一、以旧引新,激起质疑。
1、同学们,我们以前认识了很多平面图形,你能说出它们的名字吗?
2、老师这里有两张纸,猜一猜那张纸大一些??我们说谁大,其实是说它们的什么大?长方形的面积我们已经会计算了,这节课我们就来研究如何计算平行四边形的面积。(板书课题)。
二、动手操作,探究方法。
(一)利用方格,初步探究。
1、下面我们就用数方格的方法,数出长方形和平行四边形的面积。图中的每一小格表示1平方厘米,不满一格的都按半格来计算,你能不能数出这两个图形的面积?(能)那大家就数一数吧!
3、谁来说说你数的结果?学生汇报。
你们发现这个关系了吗?看来长方形和平行四边形之间存在着非常密切的联系。
(二)动手操作,推导公式。
1、动手操作。
b、静静地想,想好了吗?
c、动手操作,把这个平行四边形变成以前学过的图形。
d、谁来说说,你把平行四边形变成了什么图形,怎么变的?
2、合作探究。
b、小组讨论。
c、汇报。
(三)指导点拨,总结方法。
我们把平行四边形变成长方形的这种方法,是一种很重要的数学思想方法——转化。通过转化,我们可以找到新旧知识之间的联系,从而解决新问题。在今后的学习中我们会不断运用这种方法来解决一些问题。
孩子们,看,我们多厉害!通过剪拼,把平行四边形转化成了长方形,还总结出了平行四边形的面积计算公式!下面让我们带着我们的收获来解决问题!相信你们一定没问题!
例1、读题后独立解答一生板演。
三、解决问题,拓展延伸。
1、练习十五1题。
2、练习十五3题。
4、你能算出芸芸家这块菜地的面积吗?
四、全课小结,完善新知。
这节课你有什么收获?
这节课,你们也运用自己的智慧,利用转化的方法,探究出了平行四边形的面积计算公式,并能应用公式解决一些实际问题,真了不起!
读书破万卷,下笔如有神。以上就是给大家分享的10篇五年级数学平行四边形的面积教学设计,希望能够让您对于平行四边形的面积教学设计的写作更加的得心应手。
平行四边形面积的教学设计数学篇九
结合本节课所学知识特点和学生的思维特点现拟定如下目标:
1.知识目标:通过长方形面积计算知识迁移,理解平行四边形面积的计算公式,并能正确计算平行四边形面积。
2.能力目标:在比一比、动一动中发展空间观念;在看一看、想一想中初步感知等积转化的思想方法,提高解决问题的能力。
3.过程与方法目标:通过实践――感性认识――理性认识――实践应用的辩证唯物主义思想方法教学,培养互相合作、交流、评价的意识。
4.情感目标:通过活动,激发学习兴趣,培养探索的精神,感受数学与生活的密切联系。
平行四边形面积的教学设计数学篇十
让学生经历探索平行四边形面积计算公式的过程,掌握平行四边形的面积计算方法,能解决相应的'实际问题。
(二)过程与方法
通过操作、观察和比较,发展学生的空间观念,渗透转化思想,培养学生分析、综合、抽象概括和动手解决实际问题的能力。
(三)情感态度和价值观
通过活动,培养学生的探索精神,感受数学与生活的密切联系。
教学重点:探索并掌握平行四边形面积计算公式。
教学难点:理解平行四边形面积计算公式的推导过程,体会转化的思想。
平行四边形卡纸一张,剪刀一把,三角尺一个,多媒体课件。
(一)创设情境,激趣导入
1。创设情境。
(1)呈现教材第86页单元主题图。(ppt课件演示)
1。怎么制作ppt课件算平行四边形面积
2。五年级上册数学组合图形面积教案
3。ppt模板怎样制作平行四边形面积推导动画
4。pppt怎么制作动画课件计算平行四边形面积
5。五年级上册数学图形与几何教案
平行四边形面积的教学设计数学篇十一
3、在操作、观察、比较中,渗透转化的思想方法。
4、在探究活动中,体验到成功的快乐。
推导平行四边形面积公式,并能够运用平行四边形面积公式解决简单的实际问题。
课件平行四边形硬纸片剪刀透明方格纸。
一、情境激趣:
生:平行四边形的面积。师:这节课我们就来研究平行四边形的面积。(板书课题)。
二、实验探究:
1、猜想。
那么大家猜一猜平行四边形的面积可能与什么有关?(可能与边有关)只与它边的长度有关?大家看老师手中这个平行四边形,(演示)还可能与什么有关?(高)那么平行四边形的面积究竟与它的底和高有怎样的关系?下面就让我们一起来研究。
2、实验。
1)独立自主探究:
生:我用数格子的方法。
师:数格子时,不足一格的按一格算,把得到的数据填在表格里。
师:还有什么方法?
生:我用剪一剪、拼一拼的方法。
师:用剪拼方法上的同学请读一下操作提示。(一生读)下面你们就用自己喜欢的方法试一试。
2)小组内交流:
师:通过数格子或者剪拼的方法,哪位同学有收获了?把你的想法在小组内交流,小组长组织好。一会要向全班同学汇报你们小组的方法。
3)学生汇报:
第一个小组:(1)数格子(把表格带到前面说)。
(2)剪拼。
师:你们成功的把平行四边形转化成了长方形,这一长方形与原来的平行四边形有什么关系?(生:长方形的长等于平行四边形的底、宽等于平行四边形的高)你们小组转化的清楚,介绍的明白真了不起)。
是这样吗?师课件演示解说强调平移。
(多么巧妙的剪拼,我发现你们的思维很灵活啊。)(我只能说两个字了:“佩服!”)。
师:还有其他的方法吗?其他几个小组同学,通过动手操作你们得到了什么结论。一起说(师板书:平行四边形的面积=底*高)。
四、运用公式解决。
师:现在我们来算一下铺这块平行四边形草坪要用多少钱?
(生口算)。
五、拓展练习。
底15厘米,高11厘米。
(不仅准确计算出了结果,速度还很快,真不错。)。
2、开放题:这是一张全国地图,有一个省的地形很像平行四边形,山西省。山西南北大约590千米,东西大约310千米,你能估计一下它的土地面积吗?(东西能否再平些)。
(能在实际问题的解决中恰当运用公式,了不起)。
3、学校要建一个面积是12平方米的平行四边形花坛,请你帮学校设计一下,(要求底、高均为整米数)1)可以有几种方案?2)哪种方案更合理?(你们能从不同角度考虑,为学校选择更合理的方案,老师非常感谢大家)。
六、全课小结:
师:这节课,你是怎么学习的?你有哪些收获?
(我是用数方格的方法、我用平移这种方法把平行四边形转化成长方形再与平行四边形进行比较得出平行四边形的面积的师演示)你们很了不起,能想办法把平行四边形转化成我们以前学过的长方形来研究它的面积。我们这节课使用的这种方法,以后在学习其它图形面积时还会用到。今天的家庭作业是以《平行四边形的面积》为题写一篇数学日记,写清平行四边形的面积的推导过程,可以画、也可以剪贴。
课后反思。
课堂教学是一个动态生成的过程。因此,在教学时,我把关注的焦点放在学生身上,关注学生的情感体验,关注学生的自主建构,更关注学生真实的学习过程。从而适时地激发学生的情感,点燃学生的智慧,发挥学生的创造性。主要体现在以下几个方面:
1、适时渗透、领悟思想方法。
数学教学的价值目标取向不仅仅局限于让学生获得基本的数学知识和技能,更重要的是在数学教学活动中,经历问题解决的过程,了解数学学习的价值,增强数学的应用意识,获得数学的基本思想方法。我觉得,这节课学习的转化的数学思想方法将永远铭刻在学生头脑中,将在学生今后的学习中发挥更大的作用。
2、适时引导、主动建构知识。
学生学习数学知识的过程是主动建构的过程。因此,在教学中,我让学生象科学家一样经历大胆猜想、动手验证、得出结论的过程。先让学生根据已有的知识经验进行猜想:平行四边形的面积可能与什么有关?然后,给学生足够的探究时间和空间,“数”、“剪拼”都是学生的智慧,“数的过程”、“剪拼的过程”都是学生的思维过程。最后,让学生同伴互助去探究、去发现、去总结,给每个学生参与数学活动的机会,真正的实现了自主学习。
3、适时点拨、有效进行指导。
探究学习是把学生的“学”作为实施教学的基本点,而教师的“导”是实现学生“学”的根本保证。因此,在教学中我适时地对学生进行点拨、指导,做到“放得开、收得住”。如在自主探究过程中我发现,有的学生把平行四边形剪开后无法拼成长方形。于是,我进行了个别指导。引导学生思考:为什么只有沿高剪开才能拼成长方形?通过指导,使学生明白沿平行四边形的高剪开,是将平行四边形转化成长方形的关键。
课例点评。
这节课教师在教学时以图形内在联系为线索,以转化这条数学思想方法为主线,在操作、观察、比较活动中,通过孕伏、理解、强化的过程,让学生在获得知识的同时,领悟转化的数学思想方法。具体表现在以下几点:
1、在情境中蕴含知识,孕伏思想方法。
这节课情境的创设一方面紧紧地围绕所要探索的数学知识,另一方面又充分体现了知识之间的内在联系。创设了江滨公园铺草坪的情境图,分别呈现了一个长方形和一个平行四边形的草坪,并提供每平方米草坪的价格,引导学生根据信息提出问题。这一情境中既有长方形面积的计算,又有平行四边形面积的计算,把这些知识都融入一个具体的生活情境中,既唤起了学生已有的知识经验,又暗含了平行四边形的面积与长方形的面积有关。
2、在探究中体验知识,理解思想方法。
这节课沿着“提出猜想思考验证方法实践验证”这个过程进行。一是独立探究。让每个学生根据自己的体验,用自己的思维方式进行探究,并且提出了活动要求。一方面启发学生设法把所研究的图形转化为已经会计算面积的图形,渗透“转化”的思想方法;另一方面引导学生去探究所研究的图形与转化后的图形各部分之间有什么联系,从而找到平行四边形面积的计算方法。二是合作探究。在学生独立探究的基础上,让学生在小组内进行交流。通过交流,学生知道,任何形状的平行四边形都可以转化成长方形,这样,他们对图形变换的认识不再是个案的体会,而是对图形本质联系的体验。
3、在反思中提炼知识,强化思想方法。
教师在教学中注重引导学生对转化过程进行反思。第一次是在学生汇报交流之后,教师用课件呈现图形转化的过程引导学生进行反思,重点是理解转化的思想方法;第二次是课即将结束时,教师引导学生总结这节课学习内容时再次回放图形转化的过程,重点是强化转化的思想方法。并引导学生:“在今后学习其它平面图形的面积时,还要用到这种方法。”这样为学生以后学习三角形、梯形面积的计算进行了思想方法的延伸。
总之,这节课教学时有两条主线,一条是数学基础知识,另一条是数学思想方法,并且把领悟数学思想方法作为数学教学的要务,把掌握数学思想方法作为学生数学学习的最高境界。
平行四边形面积的教学设计数学篇十二
教学内容:
五年级上册第79―81页。
教学目标:
1、在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积;
2、通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。
教学重点:
教学难点:
把平行四边转化成长方形,找到长方形与平行四边形的关系,从而顺利推倒出平行四边形面积计算公式。
教学方法:
动手操作、小组讨论、演示等。
教学准备:
每个学生一把剪刀,一个平行四边形。
教学过程:
一、导入:
2、“同学们真会用数学的眼光观察,老师还有一上问题,门口的这两个花坛哪一个比较大呢?”
二、探索新知。
1、用数方格的方法验证:
2、猜测:
不数方格,你有什么好方法验证?能把平行四边形转变成我们学过的图形来计算它的面积吗?可以转变成什么图形呢?怎么样才能用最简单的方法把平行四边形转变成长方形?(小组讨论)请同学们借助手中的平行四边形、剪刀等学具剪一剪,拼一拼(学生操作,四人小组比一比谁剪得快、好)。
学生边操作边叙述自己实验过程。“你把平行四边形转化成了什么图形?你是怎样转化的?”教师演示。“这两种方法都沿着什么来剪?为什么?”
小组讨论:平行四边形转化成长方形后,什么变了?什么没变?
转化后,长方形的长与平行四边形的底有什么关系?宽与平行四边形的高有什么关系?
平行四边形的面积怎样计算吗?(板书:平行四边形的面积=底x高)(字母式)。
小结:沿着平行四边形的任意一条高剪开,都可以通过平移把平行四边形转化成一个长方形。这个长方形的面积与原来平行四边形的面积相等。这个长方形的长与平行四边形的底相等;宽与平行四边形的高相等。因为长方形的面积等于长乘宽,所以平行四边形的面积是底乘高。
刚才大家不仅验证了前面提出的猜想,还继续应用了“转化”的思想,转化是一种很重要的数学方法,大家在以后还会经常用到。
4、应用:出示例1,谁来说一说你是怎么做的?
要求平行四边形的面积,我们必须知道哪些条件?
三、巩固练习。
四、提高练习。
五、总结。
反思:在本节课中,本来操作应能提高学生学习的积极性,但在引导学生把平行四边形转化成长方形时,交待不清,学生不明白老师要求做什么,怎么做。欠缺形式,气氛不够热烈。教师在备课时应预设学生的反应,不应只关注自己的设计和练习。语言不够精练,激励语言较少,生生互动少。
平行四边形面积的教学设计数学篇十三
每个学生准备一个平行四边形。
1.请同学翻书到86页,仔细观察,找一找图中有哪些学过的图形?
2.好,下面谁来说一说你找到了哪些学过的图形?
3.请观察这两个花坛,哪一个大呢?假如这块长方形花坛的长是3米,宽是2米,怎样计算它的面积呢?根据长方形的面积=长宽(板书),得出长方形花坛的面积是6平方米,平行四边形面积我们还没有学过,所以不能计算出平行四边形花坛的面积,这节课我们就学习的平行四边形面积计算。
(一)、数方格法。
用展示台出示方格图。
1.这是什么图形?(长方形)如果每个小方格代表1平方厘米,这个长方形的面积是多少?(18平方厘米)。
请同学认真观察一下,平行四边形在方格纸上出现了不满一格的,怎么数呢?可以都按半格计算。然后指名说出数得的结果,并说一说是怎样数的。
3.请同学看方格图填87页最下方的表,填完后请学生回答发现了什么?
小结:如果长方形的长和宽分别等于平行四边形的底和高,则它们的面积相等。
(二)引入割补法。
以后我们遇到平行四边形的地、平行四边形的零件等等平行四边形的东西,都像这样数方格的方法来计算平行四边形的面积方不方便?那么我们就要找到一种方便、又有规律的计算平行四边形面积的方法。
(三)割补法。
平行四边形面积的教学设计数学篇十四
2.通过数、剪、拼等动手操作活动,探索平行四边形面积计算公式的推导过程,渗透转化的数学思想,发展学生的空间观念。
3.在解决实际问题的过程中,感受数学与生活的联系,培养学生的数学应用意识。(现在目标应该写四基四能。)。
两张格子纸,一张白纸,可变形的平行四边形。
一、揭示课题:平行四边形(展示课件课本情景图)。
师:那么我们发现生活中处处有图形,,那么学校里面想对这两块花坛进行规划,在规划之前想比较他们的大小,比较他们的大小其实就是比较他们的什么?(展示单独两个花坛图片)。
生:面积(学生回答面积后,马上追问,什么是面积?)。
师:什么是面积?
生:面积就是一个图形所占平面的大小。
生:长方形和正方形。
师:它们的面积怎么求?
师:长方形的面积为什么等于长×宽?咱们是怎样求出来的?
(设计意图:引导学生回忆,数方格计算面积的方法,也就是数小方格的简便运算)。
师:长方形的面积我们已经学过,那么平行四边形的面积就是我们这节课要探究的。(板书课题)。
二、新授。
师:两个花坛不能直接看出他们面积的大小,但是如果老师把两个花坛的图形搬到方格纸中,能不能看出两个花坛哪个花坛的面积可以算出来?(展示方格纸)。
生:能。
师:怎么看出来?
生1:长方形的面积可以直接数格子数出来24个格子,是24平方米。
生2:长方形的长是6米,宽是4米,利用长方形面积公式:长方形的面积=长×宽=6×4=24。
师:长方形的面积可以直接数出来,那么平行四边形的面积能不能用数方格的方法,直接数出它的面积呢!
生操作。(拿出1号方格纸,不满一格的都按照半格计算)。
师:看看同学们都是怎么数的?
生:20个满格,8个半格,一共24个格,面积是24平方米。
(引导学生发现计算是最好的方法。设计意图:引导学生发现探索面积公式的必要性。)。
生:平行四边形的面积=底×高(猜测一下,平行四边的面积可能与什么有关?学生回答后,马上画出平行四边形的底和高,并测量。)。
生1:底是6米。
生2:高是4米。
(拿出2号方格纸)在方格纸上画一个平行四边形,并计算出平行四边形的面积。
生操作。
出示学生的作品,介绍一下是怎么想的。
生1:用拼的方法,拼成一个长方形,再数出面积。
生2:也是拼,剪掉上面的拼下面,剪下面拼上面。
师:刚才他们都用到了一个动词,是什么?(生:拼)。
师板书:拼。
生4:整块简拼,移到右边。
师:拼的过程其实也是我们数学当中的平移的过程。
师:不管是数格子,还是拼剪的方法,都算出了平行四边形的面积。
3、出示3号白纸,学生自己画一个平行四边形。
学生操作,小组讨论。
(此环节是本节课的重点和难点,应该放手让学生小组合作,讨论,并且汇报)。
展示学生作品。
小组讨论,学生操作剪一剪,拼一拼。
生1:不沿高剪得。
生2:先沿平行四边形的高剪开,把剪下来的三角形向右平移,拼在图形的右下方,把图形变成一个长方形,转化成长方形就能计算面积了。
师:看来平行四边形的面积和长方形的面积有关系,到底有什么关系呢?
师提醒:观察原来的平行四边形和转化后的长方形,发现它们之间有哪些等量关系?
学生讨论。
生1:平行四边形拼成后底成了长方形的长,高成了长方形的宽,长方形的面积是长×宽,所以平行四边形的面积=底×高。
(汇报时引导学生用完善的语言表达,把平行四边形沿着一条高剪开,把剪下的部分平移到平行四边形的另一侧,拼成一个长方形,拼成的长方形与原来的平行四边形面积相等,长方形的长是原来平行四边形的底,长方形的宽是原来平行四边形的高,因为长方形面积等于长乘宽,所以平行四边形面积等于底乘高。学生边汇报,教师边板书)。
3、如果用字母s表示面积,a表示底,h表示高。
生:s=a×h。
利用公式来计算。
出示例题1(练习题的设计应先出带图的,再出文字的,体现直观到抽象。)89页第二题可以打在幻灯片上,为了节约时间可以只列式不计算,目的是练熟公式。
拓展练习:
a20米b20平方米c18米d18平方米。
(2)出示图形(强调高和底是相对的)。
(3)画出一个底是3cm,高的5cm的平行四边形。
师总结:等底等高的平行四边形面积相等,但是形状不一样。
三、拓展探究。
1、展示可以拉伸的平行四边形,演示由平行四边形拉成长方形的过程。
师:那么这个平行四边形在拉成长方形时面积发生改变了吗?
学生讨论。
学生1:没有改变。
学生2:改变。
学生辩论。
师:周长一样长的平行四边形和长方形,面积不一定也一样。
四、总结。
这节课我们学习了什么,回顾整堂课的过程。
用今天的方法还能解决以后的问题,比如说三角形、梯形的面积。
预知后事,自己分晓。
板书设计。
拼数。
s=a×h。
平行四边形面积的教学设计数学篇十五
1.在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积。
2.通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法。
3、培养学生的分析、综合、抽象、概括和解决实际问题的能力。
一、情境激趣。
1.创设喜羊羊与灰太狼比较草皮的大小而争吵的故事。
2.引导学生观察它们的草皮各是什么形状?
3、提问:长方形的面积怎么算?
二、自主探究。
1.数方格比较两个图形面积的大小。
(1)提出要求:每个方格表示1平方厘米,不满一格的都按半格计算。
(2)学生用数方格的方法计算两个图形的面积并填写书上87页表格。
(3)反馈汇报数的结果,得出:用数方格的方法知道了两个图形的面积。
一样大。
(4)提出问题:如果平行四边形很大,用数方格的方法麻烦,能不能找。
(5)观察表格,你发现了什么?
(6)引导学生交流发现并全班反馈得出:平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积相等;平行四边形的面积等于底乘高。
2.操作验证。
(1)提出要求:请小朋友利用三角尺、剪刀,动手剪一剪拼一拼,把平行四边形想办法转变成我们已学过面积计算的图形,完成后和小组的同学互相交流自己的方法。
(2)学生分组操作,教师巡视指导。
(3)学生展示不同的方法把平行四边形变成长方形。
(4)利用课件演示把平行四边形变成长方形过程。
(5)观察并思考以下两个问题:
a.拼成的长方形和原来的平行四边形比较,什么变了?什么没变?
b.拼成的长方形的长与宽分别与原来平行四边形的底和高有什么关系?
(6)交流反馈,引导学生得出:
a.形状变了,面积没变。
b.拼成的长方形,长与原来平行四边形的底相等,宽与原来平行四边形的高相等。
(7)根据长方形的面积公式得出平行四边形面积公式并用字母表示。
(8)活动小结:我们把平行四边形转变成了同它面积相等的长方形,利用长方形面积计算公式得出了平行四边的'面积等于底乘高,验证了前面的猜想。
3.教学例1。
(1)(出示例1)平行四边形的花坛的底是6m,高是4m。它的面积是多少?
(2)学生独立完成并反馈答案。
三、巩固运用。
1.明辨是非。
4.练习十五第3题。
四、课堂总结。
通过这节课的学习,你有哪些收获?(学生自由回答。)。
平行四边形面积的教学设计数学篇十六
《义务教育教科书》人教版数学课本五年级上册87——88页。
平行四边形面积计算,是在学生掌握了长方形、正方形面积计算方法的基础上安排的教学内容。是学习的平面图形面积计算的进一步拓展。应用转化的数学思想方法推导平面图形面积计算公式是学生的初次接触,让学生为了解决问题主动地实现转化就成为本节课教学的关键。只要突破这一关键,其余的问题就会迎刃而解。
学生对平行四边形的特征有了一定的了解,但对平行四边形如何转化为长方形还没有经验,转化的意识也十分薄弱。因此,要让学生把转化变为一种需要,教师必须通过问题引领,为学生提供解决问题的直观材料和工具帮助学生探究,从而实现探究目标。
1、经历平行四边形面积公式的探究推导过程,掌握平行四边形面积计算方法。能应用公式解决实际问题。
2、在探究的过程中感悟“转化”的数学思想和方法。
3、通过猜测、验证、观察、发现、推导等活动,培养学生良好的数学品质。
4、引领学生回顾反思,获得基本的数学活动经验。
讲述阿凡提智斗巴依老爷的故事,激发学生的好奇心。
1、联系旧知,做出猜想。
看到这个题目,你想到了我们学过哪些有关面积的知识?
2、初步验证,感悟方法。
根据自己的猜想,测量并计算面积,然后选择合适的工具进行验证。
引导学生:可以用数方格的方法试一试。(出示方格纸中的平行四边形)。
学生数方格并来验证自己的猜想。
3、剪拼转化,发现规律。
除了数方格,我们还能用什么方法来验证呢?(学生思考)。
(1)请大家先以小组进行讨论,然后动手实践,比一比哪个小组完成的更快。
(2)展示交流。(演示)。
4、观察比较,推导公式。
s=a×h。
5、展开想象,再次验证。
是不是所有的平行四边形都可以转化成长方形?面积都可以用底乘高来计算呢?
学生先闭眼想象,再借助手中的工具加以验证。
6、回顾反思,总结经验。
回顾我们推导平行四边形面积计算公式的探究过程,我们是怎样推导出面积计算公式的,从中可以获得哪些经验。
然后找到转化前、后图形之间的联系。(寻找—联系)。
根据长方形面积公式推导出平行四边形面积公式。(推导—公式)。
1、解决实际问题。
2、出示如下图。
算一算停车场里两个不同的平行四边形停车位的面积各是多少。(学生动手算一算,再让学生汇报。)。
3、下面是块近似平行四边形的菜地(引导学生理解计算平行四边形面积的时候,底和高必须是相对应的。)。
王大爷:43×23李大爷43×20,请你判断一下,谁对?谁错?
4、现在你明白阿凡提是怎么打败巴依的了吗?
引导学生明白:阿凡提利用了平行四边形易变形的特性调整了篱笆。
思考:阿凡提调整篱笆后的菜地面积变为100平方米,底20米,你知道高是多少吗?
转化思想是一种重要的解决数学问题的方法,它是连接新旧知识的桥梁,合理利用,不仅可以掌握新知,还可以巩固旧知。希望同学们能把它作为我们的好朋友,帮助我们探索更多数学奥秘。
通过本节课的学习,同学们一定收获很多,下课以后,把自己的收获用日记记录下来,主动地到生活中去发现和解决一些关于平行四边形面积计算的问题。
【设计意图:试图把学生带入更加广阔的学习空间。】。
s=a×h。
【本文地址:http://www.xuefen.com.cn/zuowen/9362539.html】