圆柱的表面积教案人教版范文(14篇)

格式:DOC 上传日期:2023-11-08 03:06:13
圆柱的表面积教案人教版范文(14篇)
时间:2023-11-08 03:06:13     小编:碧墨

教案是教学中系统化和有序化的表现形式。教案的编写还需要考虑到学生的前后知识和能力,做到因材施教。以下是一些经过实践验证的教案范文,希望可以给大家提供一些借鉴和参考。

圆柱的表面积教案人教版篇一

肖老师的这堂课总的来说准备充分,如教师的教具,学生的学具,以及各种不同类型的练习;教师语言精练,教态自然大方,难点突破,重点突出,练习有坡度。

具体如下:

一、优点。

1、合理的利用教材。

圆柱体的表面积这部分教学内容包括:圆柱的侧面积,表面积的计算,表面积在实际计算中的应用。上老师在进行教学时,将侧面积计算方法的推导作为教学难点来突破,将表面积的计算作为重点来教学。教学设计和安排既源于教材,又不同于教材。整堂课容量较大,但学生学的轻松,教学效果也比较明显。

2、教师的主导与学生主体的统一。

本堂课在教学上采用了引导、放手、引导的方法,通过教师的导,鼓励学生积极主动的探究。新课前的复习,由平面图形到立体图形,由长、正方体的表面积到圆柱体的表面积。通过圆柱体模型的演示,引导学生复习圆柱体的特征,进而理解圆柱体的表面积的'意义。在教学侧面积的计算时,先让学生思考该怎样计算,再让学生动手探究。在实践中,学生很清楚地看到圆柱体的侧面展开是一个长方形(正方形、平行四边形等),求圆柱体的侧面积实际上就是求一个长方形的面积。在学生会求侧面积的基础上,再加上两个圆面积,从而总结出求表面积的计算方法,使学生认识到立体转平面,形变量不变的辨证关系,培养学生的观察分析能力。

二、不足。

圆柱体的物体在生活中很普遍,如学生的透明胶带,矿泉水瓶盖等,让学生动手测量这些物体的有关数据,解决实际问题,学生的兴趣会更高写,也让数学回归到生活。练习中,出现三个不同直径的圆,而出示的图片却是三个圆同样大,直观效果不明显。

圆柱的表面积教案人教版篇二

本节课的教学采用操作和演示,讲解和尝试练习相结合的方法,使新课与练习有机地融为一体,做到讲与练,相结合。

1、把握重点,突破难点,合理利用教材。

对于圆柱体侧面面积计算公式的推导,严格遵循主体性原则,让学生动手操作、观察、发现,促进知识的迁移,使学生轻松地理解掌握圆柱侧面面积的计算方法,较好地突破难点。

2、直观演示和实际操作相结合。

3、讲解与练习相结合。

本节课,改变了传统的先讲后练的教学模式,做到讲、练结合,贯穿教学的始终,使练习随着讲解由易到难,层层深入。在练习表面积的实际应用时,又很自然地进行了“进一法”的教学,使讲、练,真正做到了有机结合,学生学习的知识是有效的、实用的,同时也激发了学生学习数学和运用解决实际问题的兴趣,培养了学生的应用意识。

【2】。

1、直观演示和实际操作相结合。

新课开始,教师通过圆住教具直观演示,引导学生复习圆柱的特征,进而理解圆柱表面积的意义。在教学侧面积的计算时,精心设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?想一想,能否将这个曲面转化为我们学过的平面图形,从中思考和和发现它的侧面积该怎样计算呢?在老师的启发下,学生以小组为单位,用圆住形纸筒进行实际操作,最的`探究出侧面积的计算进行实际操作,最后探究出侧面积的计算方法。

2、培养了学生的合作创新意识。

在教学圆住侧面积计算方法时,教师设有拘泥于教材上把侧面积转化为长方形这一思路,而是放手让学生合作探究;能否将这个曲布置民化为学过的平面图形?鼓励学生大胆猜想和实验,把圆柱形纸筒剪开。结果学生根据纸筒的特点和剪法分别将曲面转化成了长方形、正方形、平行四边形等两面图形。通过观察和思考,最终都探讨出了侧面积的计算方法。在组织学生合作学习中,较好地培养了学生的创意识。

【3】。

1、重学生学习的过程。传统中的教学是教师直接出示圆柱的表面积计算公式让学生进行死记硬背,然后套公式计算。这是只重结果,不重过程的现象。这节课,学生初步了解了圆柱的表面是由两个相同的底面和一个侧面构成的,计算圆柱底面积就是计算圆面积。我在学生初步理解圆柱表面积的含义后,重点安排学生进行圆柱侧面积计算方法的探索。学生通过剪、卷、滚等一系列活动探索出圆柱的侧面是一个长方形,从而推导出圆柱侧面积计算公式。

【4】。

在课后总结质疑时,学生一共提了两个问题:

问题一:计算圆柱的侧面积时,算不算接头处重叠的面积。

问题二:计算无盖塑料盒的面积时,算不算里面的面积。

其它数学问题的思考。

养成良好的习惯。同时我也反思,有序书写是在我的反复追问下,才有一个学生提到的,可见在平时的教学中对知识之外的情感、态度和价值观关注不够。

圆柱的表面积教案人教版篇三

1、使学生理解和掌握圆柱体侧面积和表面积的计算方法,能正确运用公式计算圆柱的侧面积和表面积。

2、培养学生观察、操作、概括的能力和利用所学知识合理灵活地分析、解决实际问题的能力。

3、培养学生的合作意识和主动探求知识的学习品质和实践能力。

教学重难点。

教学难点:圆柱体侧面积计算方法的推导。

教学工具。

ppt课件。

教学过程。

一、检查复习,引入新课(复习圆柱体的特征)。

1、复习圆的周长与面积公式、长方形的面积公式。

2、师:上节课,我们认识了一个新的几何形体——圆柱。知道它是由平面和曲面围成的立体图形。

引入:两个底面和侧面合在一起就是圆柱的表面。这节课,我们就一起来学习圆柱的表面积。

二、引导探究,学习新知。

(一)教学圆柱表面积的意义。

设疑:长方体6个面的总面积,叫做它的表面积。哪些面的总面积是圆柱体的表面积呢?

板书:底面积×2+侧面积=表面积。

要求圆柱的表面积,首先应该计算它的底面积和侧面积。

(二)根据条件,计算圆柱的底面积。

圆柱的底面是圆形,同学们会求它的面积吗?

(多媒体逐一出示圆柱及条件,求它的底面积,并记录结果。)。

条件:(厘米)r=3d=4c=31.4。

底面积(平方厘米)28.2612.5678.5。

(三)教学圆柱体侧面积的计算。

1、引导探究圆柱体侧面积的计算方法。

(2)小组合作探究。(剪圆柱形纸筒)。

(3)汇报交流研究结果,多媒体课件展示。

(4)小结:同学们会动脑,会思考,巧妙地运用了把曲面转化为平面的方法,探讨发现了圆柱体侧面积正好等于它的底面周长与高的乘积。

2、计算圆柱体的侧面积。

多媒体回到前面三个圆柱,逐一给出三个圆柱的高,求它的侧面积。并把结果记录下来。

条件(厘米)h=5h=8h=10。

侧面积(平方厘米)94.2100.4862.8。

1、设疑:学会了计算圆柱的底面积和侧面积,怎样计算它的表面积?

2、学生根据数据进行计算?

3、汇报计算方法及结果,媒体出示结果进行验证。

表面积(平方厘米)150.72125.669.08。

(五)小结:圆柱表面积的意义及计算方法。

三、练习巩固,灵活运用。

1.求下面圆柱的侧面积。

(1)底面周长是1.6m,高是0.7m。

(2)底面半径是3.2dm,高是5dm。

四、总结反思,畅谈收获。

这个课你收获了什么?

板书。

长方形的面积=长×宽。

圆柱的表面积教案人教版篇四

3、会正确计算圆柱的侧面积和表面积、

教学重点。

理解求表面积、侧面积的计算方法,并能正确进行计算、

教学难点。

能灵活运用表面积、侧面积的有关知识解决实际问题、

教学过程。

一、复习准备。

(一)口答下列各题(只列式不计算)、

1、圆的半径是5厘米,周长是多少?面积是多少?

2、圆的直径是3分米,周长是多少?面积是多少?

(二)长方形的面积计算公式是什么?

(三)回忆圆柱体的特征、

二、探究新知。

(一)圆柱的侧面积、

1、学生讨论:圆柱的侧面展开图(是长方形)的长、宽和圆柱底面周长、高的关系、

(二)教学例1、

1、出示例1。

例1、一个圆柱,底面的直径是0.5米,高是1.8米,求它的侧面积、(得数保留两位小数)。

2、学生独立解答。

教师板书:3.14×0.5×1.8。

=1.75×l.8。

≈2.83(平方米)。

答:它的侧面积约是2。83平方米、

3、反馈练习:一个圆柱,底面周长是94。2厘米,高是25厘米,求它的侧面积、

1、教师说明:圆柱的侧面积加上两个底面积就是圆柱的表面积、

2、比较圆柱体的表面积和侧面积的区别、

(四)教学例2、

1、出示例2。

例2、一个圆柱的高是15厘米,底面半径是5厘米,它的表面积是多少?

2、学生独立解答。

侧面积:2×3。14×5×15=471(平方厘米)。

底面积:3。14×25=78。5(平方厘米)。

表面积:471+78。5×2=628(平方厘米)。

答:它的表面积是628平方厘米、

3、反馈练习:一个圆柱,底面直径是2分米,高是45分米,求它的表面积、

(五)教学例3、

1、出示例3。

例3、一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米,做这个水桶要用铁皮多少平方厘米?(得数保留整百平方厘米)。

2、教师提问:解答这道题应注意什么?

3、学生解答,教师板书、

水桶的侧面积:3。14×20×24=1507。2(平方厘米)。

水桶的底面积:3。14×。

=3。14×。

=3。14×100。

=314(平方厘米)。

需要铁皮:1507。2+314=1821。2≈1900(平方厘米)。

答:做这个水桶要用1900平方厘米、

5、“四舍五入”法与“进一法”有什么不同、

(2)“进一法”看要保留位数的后一位,是4或比4小的舍去尾数后都向前一位进一、

三、课堂小结。

四、巩固练习。

(一)求出下面各圆柱的侧面积、

1、底面周长是1。6米,高是0。7米。

2、底面半径是3。2分米,高是5分米。

(二)计算下面各圆柱的表面积、(单位:厘米)。

(三)拿一个茶叶桶,实际量一下底面直径和高,算出它的表面积、(有盖和无盖两种)。

五、课后作业。

(二)一个圆柱的侧面积是188。4平方分米,底面半径是2分米,它的高是多少分米?

六、板书设计。

探究活动。

面包的截面。

活动目的。

培养学生的观察能力和操作能力,发展学生的空间观念、

活动题目。

有一个圆柱形的面包,要切一刀把它分成两块,截面会是什么形状的图形?

活动过程。

1、学生分组讨论、

2、利用橡皮泥捏一个圆柱体,进行实验,验证结论、

3、画出截面图,表示结论,发展空间观念、

参考答案。

1、沿水平方向横切一刀,截面是圆形、(如图1)。

2、沿垂直方向纵切一刀,截面是一个长方形、(如图2)。

3、沿侧面斜切一刀,会形成大小不一的椭圆形、(如图3)。

4、从顶面向侧面斜切一刀,会形成椭圆的一部分、(如图4)。

5、从上底面斜切一刀到下底面,会形成椭圆的一部分、(如图5)。

(图1)(图2)(图3)(图4)(图5)。

圆柱的表面积教案人教版篇五

1、合理的利用教材。

圆柱体的表面积这部分教学内容包括:圆柱的侧面积,表面积的计算,表面积在实际计算中的应用。上老师在进行教学时,将侧面积计算方法的推导作为教学难点来突破,将表面积的计算作为重点来教学。教学设计和安排既源于教材,又不同于教材。整堂课容量较大,但学生学的轻松,教学效果也比较明显。

2、教师的主导与学生主体的统一。

本堂课在教学上采用了引导、放手、引导的方法,通过教师的导,鼓励学生积极主动的探究。

新课前的复习,由平面图形到立体图形,由长、正方体的表面积到圆柱体的表面积。通过圆柱体模型的演示,引导学生复习圆柱体的特征,进而理解圆柱体的表面积的.意义。

在教学侧面积的计算时,先让学生思考该怎样计算,再让学生动手探究。在实践中,学生很清楚地看到圆柱体的侧面展开是一个长方形(正方形、平行四边形等),求圆柱体的侧面积实际上就是求一个长方形的面积。

在学生会求侧面积的基础上,再加上两个圆面积,从而总结出求表面积的计算方法,使学生认识到立体转平面,形变量不变的辨证关系,培养学生的观察分析能力。

二、不足。

圆柱体的物体在生活中很普遍,如学生的透明胶带,矿泉水瓶盖等,让学生动手测量这些物体的有关数据,解决实际问题,学生的兴趣会更高写,也让数学回归到生活。

练习中,出现三个不同直径的圆,而出示的图片却是三个圆同样大,直观效果不明显。

圆柱的表面积教案人教版篇六

理解求表面积、侧面积的计算方法,并能正确进行计算.

能灵活运用表面积、侧面积的有关知识解决实际问题.

一、复习准备。

(一)口答下列各题(只列式不计算).

1.圆的半径是5厘米,周长是多少?面积是多少?

2.圆的直径是3分米,周长是多少?面积是多少?

(二)长方形的面积计算公式是什么?

(三)回忆圆柱体的特征.

二、探究新知。

1.学生讨论:圆柱的侧面展开图(是长方形)的长、宽和圆柱底面周长、高的关系.

2.小结:因为长方形的面积等于长乘宽,而这个长方形的长等于圆柱的底面周长,宽等于圆柱的高,长方形的面积就是圆柱的侧面积,所以圆柱的侧面积等于底面周长乘高.

(二)教学例1.

1.出示例1。

例1.一个圆柱,底面的直径是0.5米,高是1.8米,求它的'侧面积.(得数保留两位小数)。

2.学生独立解答。

教师板书:3.14×0.5×1.8。

=1.75×l.8。

≈2.83(平方米)。

答:它的侧面积约是2.83平方米.

3.反馈练习:一个圆柱,底面周长是94.2厘米,高是25厘米,求它的侧面积.

(三).

1.教师说明:圆柱的侧面积加上两个底面积就是.

是指圆柱表面的面积,是侧面积加上两个底面积,而侧面积是指圆柱侧面的面积;表面积包含着侧面积.

(四)教学例2.

1.出示例2。

例2.一个圆柱的高是15厘米,底面半径是5厘米,它的表面积是多少?

2.学生独立解答。

侧面积:2×3.14×5×15=471(平方厘米)。

底面积:3.14×=78.5(平方厘米)。

表面积:471+78.5×2=628(平方厘米)。

3.反馈练习:一个圆柱,底面直径是2分米,高是45分米,求它的表面积.

(五)教学例3.

1.出示例3。

例3.一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米,做这个水桶要用铁皮多少平方厘米?(得数保留整百平方厘米)。

2.教师提问:解答这道题应注意什么?

这道题是求做这个水桶要用铁皮多少平方厘米.实际上是求这个圆柱形水桶的表面积.题里告诉我们的“一个没有盖的圆柱形铁皮水桶”,计算时就是用侧面积加上一个底面积.

3.学生解答,教师板书.

水桶的侧面积:3.14×20×24=1507.2(平方厘米)。

水桶的底面积:3.14×。

=3.14×。

=3.14×100。

=314(平方厘米)。

需要铁皮:1507.2+314=1821.2≈1900(平方厘米)。

答:做这个水桶要用1900平方厘米.

4.教师说明:这里不能用“四舍五入”法取近似值.在实际中,使用的材料都要比计算得到的结果多一些.因此,要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1.这种取近似值的方法叫做进一法.

5.“四舍五入”法与“进一法”有什么不同.

(1)“四舍五入”法在取近似值时,看要保留位数的后一位,是5或比5大的舍去尾数后向前一位进一,是4或比4小的舍去.

(2)“进一法”看要保留位数的后一位,是4或比4小的舍去尾数后都向前一位进一.

三、课堂小结。

归纳:,在实际应用时,要根据实际需要计算各部分的面积,必须灵活掌握.如油桶的表面积是侧面积加上两个底面积;无盖的水桶的表面积是侧面积加上一个底面积;烟筒的表面积只求侧面积.另外,在生产中备料多少,一般采用进一法,就是为了保证原材料够用.

四、巩固练习。

1.底面周长是1.6米,高是0.7米。

2.底面半径是3.2分米,高是5分米。

(二)计算下面各.(单位:厘米)。

(三)拿一个茶叶桶,实际量一下底面直径和高,算出它的表面积.(有盖和无盖两种)。

五、课后作业。

(二)一个圆柱的侧面积是188.4平方分米,底面半径是2分米,它的高是多少分米?

六、

探究活动。

面包的截面。

活动目的。

培养学生的观察能力和操作能力,发展学生的空间观念.

活动题目。

有一个圆柱形的面包,要切一刀把它分成两块,截面会是什么形状的图形?

活动过程。

1、学生分组讨论.

2、利用橡皮泥捏一个圆柱体,进行实验,验证结论.

3、画出截面图,表示结论,发展空间观念.

参考答案。

1、沿水平方向横切一刀,截面是圆形.(如图1)。

2、沿垂直方向纵切一刀,截面是一个长方形.(如图2)。

3、沿侧面斜切一刀,会形成大小不一的椭圆形.(如图3)。

4、从顶面向侧面斜切一刀,会形成椭圆的一部分.(如图4)。

5、从上底面斜切一刀到下底面,会形成椭圆的一部分.(如图5)。

(图1)(图2)(图3)(图4)(图5)。

圆柱的表面积教案人教版篇七

1、让学生经历操作、观察、比较和推理,理解圆柱侧面积和表面积的含义,探究并掌握圆柱侧面积和表面积的计算方法,能正确运用公式计算圆柱的侧面积和表面积相关的一些简单实际问题。

2、让学生在学习活动中进一步积累空间与图形的学习经验,培养创新意识及合作精神,以及抽象、概括能力,进一步发展学生的空间观念。

3、让学生进一步体会图形与实际生活的联系,感受立体图形学习的价值,提高数学学习的兴趣和学好数学的信心。

圆柱侧面积计算公式的推导过程。

茶叶盒,剪刀,计算器。

一、创设情境,导入新课。

师:在前面的学习中,我们认识了圆柱,并且知道生活中有很多物体的形状是圆柱。大家看,这些圆柱形状的物体。(课件出示)这些圆柱的制作都需要一定的材料。(课件出示一个茶叶盒)请同学们想一想,要求“制作一个茶叶盒需要多少材料”,实际上求的是圆柱的什么?(让学生边演示边说)。

二、动手操作,探究新知。

1、介绍圆柱的侧面积、底面积和表面积。

师:要求“制作一个茶叶盒需要多少材料”,实际上是求圆柱的侧面面积和2个底面面积。(边指边说)我们把圆柱侧面的面积叫做圆柱的侧面积,把圆柱底面的面积叫做圆柱的底面积,圆柱的侧面积加上两个底面的面积叫做圆柱的表面积。(让学生互相说一说“什么是圆柱的表面积”。)。

2、创疑激趣。

3、小组合作探究。

师:请同学们想一想,我们能不能把圆柱的侧面转化成所学过的图形求出它的面积呢?(小组合作探究,出示要求,结合圆柱的特征,用剪一剪、比一比等方法进行研究。)。

4、小组汇报。

5、教师小结,课件演示。

师:刚才同学们把圆柱的侧面沿高剪开,展开后是一个长方形,利用长方形面积公式推导出了圆柱的侧面积的计算方法,下面我们便结合电脑演示,进一步加深理解。

6、学习计算圆柱表面积。

师:我们已经会求圆柱的侧面积,你现在会求圆柱的表面积了吗?(让学生回答,并口头列式,教师板书求表面积的算式,并板书课题“圆柱的表面积”。)。

三、运用知识,解决问题。

师:下面我们便利用学过的知识解决一些问题。

1、只列式不计算。订正时,让学生说想法。

2、完整解答下面各题。

让学生独立审题。问:要求“制作笔筒需要多少材料”,实际是求圆柱的什么?(让学生列综合算式,集体订正。)。

四、知识拓展。

将一个底面直径是8分米,高是10分米的圆柱沿底面直径垂直切开,它的表面积增加()平方分米。

师:增加了几个面?是怎样的两个面?

(课件演示)。

五、全课总结。

师:通过本节课的学习,你有什么收获?

圆柱的表面积教案人教版篇八

学  习

目标

1、知道圆柱侧面积和表面积的含义。

2、通过操作推导并掌握求圆柱的侧面积、表面积的方法,并能运用到实际中解决问题。

重点

圆柱侧面积和表面积的计算方法。

难点

运用所学的知识解决简单的实际问题。

学      习      过      程

师生笔记

知识链接:

1、用公式表示出圆的半径、直径、周长、面积之间的关系。

2、圆柱的上下两个底面都是(       ),它们的面积(        )。

3、长方形的面积=        

长方体的表面积=                

正方体的表面积=         

知识超市 :

操作:(一)试一试,怎样可以得到圆柱形的侧面展开图?

把圆柱的侧面沿高剪开,展开图是(        ),圆柱的底面周长就是它的(     ),圆柱的高就是它的(      )。

计算圆柱的侧面积实际就是计算(               )

圆柱的侧面积=

(1)一个圆柱,底面周长是1.6m,高是0.7m,求它的侧面积。

(2)一个圆柱,底面直径是5cm,高是10cm,求它的侧面积。

操作(二)有两底的圆柱展开后呈什么形状?

圆柱是由(          )和(          )三部分组成的。

圆柱的表面积包括(             )和(            )。

所以圆柱体的表面积=

(3)一个圆柱的高是15厘米,底面半径是5厘米,求它的表面积

我会用:一顶圆柱形厨师帽,高28cm,帽顶直径20cm,做这样一顶帽子需要用多少面料?(得数保留整十平方厘米)

想:求做这样一顶厨师帽需用多少面料,实际上就是求这顶圆柱形厨师帽的(         ),厨师帽由_________和__________组成。

列式计算:

达标检测:

圆柱的表面积教案人教版篇九

(1)请同学们拿出圆柱来看一看,想一想圆柱的表而包括哪几个部分,然后告诉大家。指名学生拿出圆柞,边指边说明它的表面包括哪几个部分。

(2)教师演示。

出示教具,说明把表面全部展开,看一看得到什么图形,和大家说的对不对。揭下圆柱表面的纸,贴在黑板上,再与圆柱对比说明各个部分,明确圆柱表面包括一个侧面和两个相等的圆。

(3)得出公式。

2.教学例2。

出示例2,学生读题。提问:这道题分哪几步来算?你们会做吗?指名一人板演,其余学生做在练习本上。集体订正,让学生说说每一步的具体含义,是怎样算的。

3.组织练习。

做练一练第1题。指名两人板演,其余学生做在练习本上。集体订正,说说这两题计算时有什么不同的地方,为什么?指出:计算圆柱的表面积,要注意题里的条件,正确列出算式计算。

4.教学例3。

出示例3,学生读题。提问:这道题实际是求什么?这里求表面积与例2有什么不同,为什么?(只要用侧面积加一个底面积)指名学生板演,其余学生做在练习本上。集体订正,追问为什么只加一个底面积。强调不用四舍五入法及其理由,说明用进一法,并让学生说明结果的近似值,板书订正。

5.组织练习。

(1)下面的数用进一法保留整数,各是多少?(口答)。

162.329.43.842.6。

(2)做练一练第2题。让学生做在练习本上。指名口答前两步各求什么,怎样算的。(老师板书算式)提问:第三步要怎样算,为什么只加一个底面积。

圆柱的表面积教案人教版篇十

1.理解圆柱表面积的意义,掌握圆柱表面积的计算方法。

3会解决简单的实际问题。

4.初步培养学生抽象的逻辑思维能力。

教学重点。

理解并掌握圆柱表面积的计算方法,并能正确进行圆柱表面积的计算。

教学难点。

能充分运用圆柱表面积的相关知识灵活的解决实际问题。

教学过程。

一复习旧知。

(1)底面周长2.5米,高0.6米。

(2)底面直径4厘米,高10厘米。

(3)底面半径1.5分米,高8分米。

(1)长方体的长为4厘米,宽为7厘米,高为9厘米。

(2)正方体的棱长为6分米。

3讨论说说长方体、正方体的表面积的意义及其表面积的计算方法。

学生甲:长方体、正方体的表面积指的是长方体、正方体的六个面的面积的总和。

学生乙:计算长方体的表面积时只要计算长方体相互对立的3个面的面积,3个面的面积相加再乘以2就是长方体的表面积。正方体的表面积是棱长乘以棱长再乘以6。

二新课导入。

1教师:以前我们学习了长方体、正方体的表面积的意义及其表面积的求法,那么圆柱体的表面积的计算和长方体、正方体的表面积的.计算有什么区别和联系呢?圆柱的表面积又是如何计算的呢?接下来我们一起来讨论和探索这个问题。(板书:圆柱的表面积)。

2学生讨论:你认为圆柱的表面积是指哪一部分?它由几个面组成?

(1)学生分组讨论。

(2)学生汇报讨论结果。

3反馈小节:圆柱的表面积指的是圆柱的侧面积和两个底面积的总和,圆柱的表面积由一个侧面机和两个底面组成。(板书:圆柱的侧面积+圆柱的两个底面积=圆柱的表面积)。

4教师进行圆柱模型表面展开演示。

(1)学生说说展开的侧面是什么图形。

学生:圆柱展开的侧面是一个长方形。

(2)学生说说长方形的长和宽与圆柱的底面周长和高有什么关系?

学生:长方体的长(或宽)等于圆柱的底面积,长方体的宽(或长)等于圆柱的高。

(3)圆柱的侧面积是怎样计算的?抽生回答进行复习整理。(板书:圆柱的侧面积=圆柱的底面周长×圆柱的高)。

(3)圆柱的底面积怎么计算?(复习底面积的计算方法)。

5说说实际生活中有哪些圆柱体?哪些表面是完整的,哪些表面是不完整的?

学生举例:完整的圆柱有两个底面,不完整的圆柱只有一个底面(如水桶)或者根本就没有底面(如烟囱)。

教师:所以我们每个同学在计算圆柱的表面积时要特别认真,要特别注意这个圆柱到底有几个底面。

三新课教学。

1例2一个圆柱的高是4.5分米,底面半径2分米,它的表面积是多少?(课件演示)。

2学生尝试练习,教师巡回检查、指导。

3反馈评价:

(1)侧面积:2×2×3.14=56.52(平方分米)。

(2)底面积:3.14×2×2=12.56(平方分米)。

(3)表面积:56.52+12.56=81.64(平方分米)。

答:它的表面积是81.64平方分米。

4学生质疑。

5教师强调答题过程的清楚完整和计算的正确。

6教学小节:在计算过程中你发现了什么?计算圆柱的表面积一般要分成几步来计算呀?

四反馈练习:试一试。

1学生尝试练习:要做一个没有盖的圆柱形铁皮水桶,高50厘米,底面直径为30厘米,至少需要多少铁皮?(得数保留整数)。

2学生交流练习结果(注意计算结果的要求)。

3教师评议。

教师:在实际运用中四舍五入法和进一法有什么不同?

学生;计算使用材料的用量时为确保使用材料的充足通常都使用进一法,计算结果如果使用四舍五入法也许会出现使用材料不足的现象。

五拓展练习。

1教师发给学生教具,学生分组进行数据测量。

2学生自行计算所需的材料。

3计算结果汇报。

教师:同学们的答案为什么会有不同?哪里出现偏差了?

学生甲:可能是数据的测量不准确。

学生乙:可能是计算出现错误。

教师:在实际运用中如果数据测量不准确或者计算出现错误,或许就会造成很大的经济损失,这种损失也许是不可估量的,但事实上它又是很容易避免的。所以我们每个同学都要养成认真、仔细的好习惯。

六巩固练习。

1计算下面图形的表面积(单位:厘米)(略)。

(1)底面周长是21.52厘米,高2.5分米。

(2)底面半径0.6米,高2米。

(3)底面直径10分米,高80厘米。

3一个圆柱形的罐头盒,底面直径是16厘米,高是10厘米,它的表面积是多少厘米?

4一个圆柱铁桶(没盖),高是5分米,底面半径是2分米,做一个这样的铁桶,至少需要多少铁皮?(得数保留一位小数)。

圆柱的表面积教案人教版篇十一

理解求表面积、侧面积的计算方法,并能正确进行计算。

能灵活运用表面积、侧面积的有关知识解决实际问题。

1.教师、学生每人用硬纸做一个圆柱体模型。

2.投影片。

一、铺垫孕伏。

1.口答下列各题(只列式不计算)。

(1)圆的半径是5厘米,周长是多少?面积是多少?

(2)圆的直径是3分米,周长是多少?面积是多少?

2.长方形的面积计算公式是什么?

3.教师出示圆柱体模型,指同学说出它有什么特征?

二、探究新知。

1.利用圆柱体模型的侧面展开图,引导学生概括出圆柱侧面积的计算方法。

(1)让学生观察议论:圆柱的侧面展开图(是长方形)的长与宽分别和圆柱底面周长与高的关系。

(2)引导学生概括出:因为长方形的面积等于长×宽,而这个长方形的长等于圆柱的底面周长,宽等于圆柱的高,长方形的面积就是圆柱的侧面积,所以圆柱的侧面积等于底面周长乘以高。

2.教学例1。

(1)出示例1,指同学读题,找出已知条件和所求问题。

学生独立解答,并把计算步骤填在课本50页例1下面的空白处,然后订正。

板书:3.14×0.5×1.8=1.75×1.8≈2.83(平方米)。

答:它的侧面积约是2.83平方米。

(2)反馈练习:完成做一做41页第1题。

学生独立解答,然后订正。

3.教学。

(1)教师说明:圆柱的侧面积加上两个底面积就是。

(2)让学生利用圆柱体模型展开图进行比较、区别,从而使学生清楚:是指圆柱表面的'面积,是侧面积加上两个底面积,而侧面积是指圆柱侧面的面积;表面积包含着侧面积。

4.教学例2。

(2)指同学读题,找出已知条件和所求问题。

(3)让学生观察圆柱表面积的展开图,并小组议论:让学生理解圆柱表面积的组成部分,再按顺序说出求表面积的具体过程。具体计算由学生完成。

(4)指学生板演,其他同学在练习本上做,并把计算结果填在书上。

教师巡视指导,注意检查学生的计算结果和计量单位是否正确。

做完后订正,订正时让学生说出有关的计算公式。

(5)反馈练习:完成做一做第2题。

指一名学生在小黑板上做,其他在练习本上做,然后订正,订正时让学生讲解题方法。

5.教学例3。

(1)出示例3,指名读题,找出已知条件和所求问题。

(2)教师提示:解答这道题应注意什么?

启发学生说出:这道题是求做这个水桶要用铁皮多少平方厘米。实际上是求这个圆柱形水桶的表面积。题里告诉我们的“一个没有盖的圆柱形铁皮水桶”,计算时就是用侧面积加上一个底面积。

(3)学生在练习本上做,教师巡视指导,注意检查学生的计算结果。如果发现计算结果是1800平方厘米的让该生上黑板上做。

(4)订正,让板演的学生讲解题的思路和计算结果取近似值的方法。

(5)教师说明:这里不能用“四舍五入”法取近似值。在实际中,制作水桶使用的材料要比计算得到的数多一些,这样才能保证原材料够用。那么保留整百平方厘米时,十位上即使是4或比4小,也要向前一位进1。这种取近似值的方法叫做进一法,所以这题的计算结果应是1900平方厘米。

(6)“四舍五入”法与“进一法”有什么不同。

圆柱的表面积教案人教版篇十二

2.计算下面圆柱的侧面积(口头列式):

(1)底面周长4.2厘米,高2厘米。

(2)底面直径3厘米,高4厘米。

(3)底面半径1厘米,高3.5厘米。

4.引入新课。

我们已经会计算圆柱的侧面积,那么怎样计算圆柱的表面积呢?这节课就学习圆柱的表面积计算,(板书课题)。

圆柱的表面积教案人教版篇十三

1.使学生理解和掌握圆柱体表面积的计算方法,能根据实际情况正确地进行计算,培养学生解决简单的实际问题的能力。让学生认识取近似值的进一法。

2.进一步培养学生观察、分析和推理等思维能力,发展学生的空间观念。

圆柱的表面积教案人教版篇十四

1、前面我们已经认识了圆柱体,谁来说一下你对它有哪些了解?

2、不错,今天我们来继续研究圆柱,出示圆柱,观察大屏幕,从图中你了解到哪些数学信息?(圆柱的底面半径是4厘米,高是10厘米)

3、现在我们如果来做一个这样的盒子,你会想到什么数学问题?

4、这节课我们就一起来研究“圆柱的表面积”这个问题。

二、探究新知

1、初步感知

(1)请同学们观察圆柱,想一想什么是圆柱的表面积。

总结:圆柱所有面面积的总和就是圆柱的表面积。

(2)动手摸一摸,感受表面积。圆柱表面积包含哪几个部分?(两个底面面积+侧面面积)

(3)圆柱的表面积怎么求?(两个底面积+侧面积)

(4)圆柱的底面积很容易求出,但侧面是一个曲面,它的面积怎么求?你有什么想法?想象一下,圆柱的侧面展开后是一个怎么样的图形?你有什么想法。

2、侧面积

(1)小组合作:

请各个小组沿高把它的侧面展开,研究一下这个问题,验证你的猜想。

(2)学生汇报

(3)教师总结演示。

(4)推导圆柱侧面积公式

3、表面积

(1)总结表面积公式

怎么求圆柱的表面积?

圆柱的表面积=上底面积+下底面积+侧面积=两个底面的面积+侧面积。

(2)共同解决课前提出的问题:要制作这个盒子至少需要多少平分米的包装纸?

侧面积:2×3.14×10×30=1884(cm2),底面积:102×3.14=314(cm2),表面积:314×2+1884=2512(cm2)

三、巩固练习

1、现在我们自己尝试来算一算这两个圆柱的表面积。

过渡语:同学们在生活中我们经常会遇到许多有关圆柱表面积的问题,请同学们看屏幕,要解决下列问题,需要求圆柱体哪几部分的面积。

5、如果一段圆柱形的木头,截成两截,它的表面积会有什么变化呢?

四、总结收获

同学们我们来回顾一下这节课你有那些收获?你有什么想提醒大家注意的吗?

请记住同学们善意的提醒,这节课就上到这!

五、板书设计

圆柱的表面积

侧面积=底面周长×高

圆柱表面积=s侧=c×h=2πrhs表=2πrh+2πr2

底面积×2=2πr2

【本文地址:http://www.xuefen.com.cn/zuowen/9118526.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档