北师大版小数的意义教学设计(实用15篇)

格式:DOC 上传日期:2023-11-07 23:36:05
北师大版小数的意义教学设计(实用15篇)
时间:2023-11-07 23:36:05     小编:LZ文人

总结是成长的阶段性记录,每一个阶段都值得被留存。在总结中,可以采用排比句和比较句等修辞手法,增加表达的效果。在这里,小编为大家整理了一些优秀的总结写作范文,希望对大家有所启发。

北师大版小数的意义教学设计篇一

教学目标:

1.掌握连除、乘除混合运算的顺序。

2.会正确分析问题中的数量关系,会灵活运用不同的方法来解决生活中的问题,逐步提高解决问题的能力。

3.让学生充分感受数学与生活的密切联系,激发学生学习数学知识的热情。

4.通过观察分析、合作探究等活动,培养学生的探索意识和求异思维,增强学生对数学的应用意识和创新精神。

重点:掌握连除、乘除混合运算的顺序,能正确计算除数是一位数的乘除、连除的两步计算题。

难点:正确分析问题中的数量关系,理解每一步算式的意义。

教学流程:

一、情境创设,激发兴趣。

师:同学们,今天方老师带大家去一个你们很乐意去的地方---学校阅览室。在那里可藏着很多的数学问题。走!咱们一起看看去。

[设计意图:由学生身边熟悉的事物引入新课,容易激发学生的好奇心和求知欲,同时又容易使学生产生亲切感,从而带着良好的学习状态进入新课的学习]。

二、交流合作,解决问题。

摆书。

1.学生细听老师口述的信息,领会题意。

(1)谁能来说一说听到的数学信息?(随着学生说的老师板书条件)。

(2)根据这些信息你能提出哪些数学问题呢?

2.合作探究。

看同学们提了这么多的问题,猜猜看老师今天最想请大家解决哪个问题?

学生的回答展示,今天重点要解决的问题:平均每个书架每层放多少本书?

3.学生自己独立思考并列式计算,再在小组内交流你是怎么想的,总结一下有几种方法。

4、汇报,展示交流4种不同的解题方法。(根据学生的汇报板书在黑板上)。

汇报的时候说一说你列的算式的意思,并说一说你是怎么算的。

(1)200÷2=100(本)(2)2×4=8(层)。

100÷4=25(本)200÷8=25(本)。

(3)200÷2÷4(4)200÷(2×4)。

=100÷4=200÷8。

=25(本)=25(本)。

5、汇报时提问:

(1)200÷2求的是什么?结果再除以4是什么意思?

(2)2×4算出的是什么?200÷8表示什么意思?

(4)4×2是什么意思?200÷(4×2)求的是什么?去掉括号可不可以?

总结:第一个是按书架分先求一个书架有多少本书,第二个不按书架分,先求的总层数。然后按总层数分,虽然思路不一样但是都是平均分,我们都能解决同一个问题。

6、比较这几种算法有什么相同点和不同点。

(1)你最喜欢用哪种方法?和同桌说说看。

(2)你喜欢用哪种方法就说那种方法。

小结:(1)、(2)列的是分步算式,(3)和(4)列的是综合算式。像这样有乘有除的算式叫乘除混合运算。

7、观察算式,发现运算顺序。

8、小结:像连除法和乘除混合运算这样的同级运算都是从左到右一步一步计算的,如果有括号的先算小括号里的,再算括号外的(板书)。同时,我们知道从不同的角度去思考问题,列出来的算式也不同,但最终都能把问题解决,希望同学们在以后解决问题的过程中也能像今天这样多动些脑筋。

三、巩固知识。

1、基础练习。

960÷6÷4960÷6×4960÷(6×4)。

(1)先说说运算顺序,再计算,把除号改成乘号,怎么计算呢?

(2)汇报,展示。

2、深化与拓展--游泳。

小军去游泳,他在泳道内游了4个来回,共游了200米,这个游泳池的泳道有多长?

(1)引导理解”来回”什么意思?谁来走一走,在走道上走一个来回?

(2)我们知道了来回就是去了再回来,4个来回就是去了再回来(4)次。

(3)自己独立解决这道题。

(4)汇报,展示。

四、评价体验,深化提高。

今天这节课我们解决了什么问题?你有什么收获或感受?请你评一评自己或同学的表现。

作业(机动):练一练第1题。

北师大版小数的意义教学设计篇二

回想第一节课,成功与失误都缘于我尊重了学生的个性发展,能够放手并能适时引导,而本课的精彩也由此而产生的。只要教师在课堂上关注学生,关注学生的学,定能让课堂焕发师生生命的活力,带来课堂上难以预约的精彩!

北师大版小数的意义教学设计篇三

教学目标:

2、知道每个数位上的计数单位和相邻两个计数单位间的进率是十,初步认识一个小数的小数部分各数位上有几个这样的单位。

3、通过了解小数的产生和发展过程,提高数学学习的兴趣,增强热爱数学的情感。

教学重点:

理解小数的意义。

教学难点:

会用小数表示计量单位换算的结果。

教学准备:

多媒体课件、米尺。

教学过程:

一、导入新授。

师:生活中你在哪些地方见到过小数?你能说说吗?(出示课件)学生回答。

师:生活中这么多的地方用到小数,说明小数的应用十分广泛,无处不在。请同学们把各自测量周围物体的长、宽(或高)的数据说一说。(教师将各个数据分别按“整米数”和“非整米数”两类板书)。

师:这些不够整米数的部分,如果仍然要用“米”作单位写出来,除了用分数表示外,还可以用怎样的数表示出来呢?请同学们阅读教材第32页的内容。

师生共同归纳:在进行测量和计算时,往往不能正好得到整数的结果,这时常用小数来表示。但是,小数的意义又是什么呢?这节课,我们继续深入学习小数的知识。

板书:小数的意义。

二、探索发现。

1、认识一位小数。

(1)课件出示教材第32页例1米尺图。

把1m平均分成10份,每份长多少分米?1分米是1米的几分之几?

教师介绍出示:“十分之一”米还可以写成0.1米。

那2分米、3分米呢?学生试着完成填空。

学生在小组内交流后再全班交流,交流时说说每个分数表示的意义。

教师根据学生的回答板书。

(2)观察上面的等式你能发现分数和小数之间的联系吗?

学生观察并在小组内讨论。

师生交流后小结:分母是10的分数,可以写成一位小数。一位小数表示十分之几。

2、认识两位、三位小数。

我们知道了一位小数表示的是十分之几的数,那么两位、三位小数应该表示什么呢?下面请同学们以这些两位小数为材料,继续研究。

(1)教师继续出示米尺的放大图。

学生思考、小组交流后进行反馈。

把1米平均分成100份,这样的一份或者是几份表示百分之几米,可以用像0.04、0.01这种两位小数来表示。

1米有1000毫米,就是把1米平均分成1000份,1毫米就是新人教版数学四年下第四单元小数的意义和性质教案(一)米,用小数表示就是0.001米。

(2)小结。

分母是100的分数,可以写成两位小数。两位小数表示百分之几。

分母是1000的分数,可以写成三位小数。三位小数表示千分之几。

学生交流说说对小数的理解。

师生共同归纳得出结论:一位小数表示十分之几,十分之几的计数单位是十分之一,那么一位小数的计数单位就是0.1。同理两位小数、三位小数的计数单位就是0.01、0.001。每相邻两个计数单位间的进率是10。

4、阅读“你知道吗?”。

师:同学们已经知道小数是怎么产生的及小数的意义,那你们知道小数的历史吗?

学生自学教材第33页“你知道吗?”。

师生交流时,让学生说说小数的发展史。

三、巩固发散。

1、指导学生完成教材第33页“做一做”。

让学生独立填写,集体订正时,让学生说说是如何用分数和小数来表示的。

2、在括号内填上合适的小数。

()元()千克()厘米。

四、评价反馈。

通过今天这节课的学习,你有哪些收获?

师生交流后总结:认识了小数,知道了小数就是用来表示十分之几、百分之几、千分之几……的数。还认识了小数的计数单位,知道了相邻的计数单位之间的进率是10。

板书设计:

小数的意义。

分母是10、100、1000……的分数可以用小数表示。

每相邻两个计数单位间的进率是10。

北师大版小数的意义教学设计篇四

1.使学生了解小数的产生,理解小数的意义。

2、培养学生收集信息、动手操作能力和抽象概括能力。

3、渗透事物之间普遍联系的观点、实践第一的观点。

4、加强对学生学习方法的指导。

相对应的课程目标:

1、进一步认识小数,探索小数、分数之间的关系,并会进行转化。

2、进一步体会数在日常生活中的作用,能运用数表示事物,并能进行交流。

理解和抽象小数的意义。

1、以学生的自主学习为活动前提,营造自我探索、自我发现的学习环境。让学生用个性化的理解方式表达对小数的理解。

2、尊重每一位学生的学习成果,建立平等、民主、愉悦的学习氛围。

小数的认识是在三年级下册“元、角、分与小数”及“分数的初步认识”的基础上进行的。“小数的意义”是通过实际操作,借助几何模型使学生体会到小数与分数之间的关系。小数是十进分数的另一种书写形式,要使学生理解小数的意义,必须通过实际操作。把一个正方形看作“1”,把“1”平均分成10份,1份是它的十分之一,就是0.1;把“1”平均分成100份,1份就是它的一百分之一,也就是0.01。从而使学生体会到分母是10、100、1000等的分数可以用小数表示。在练习中通过在直线图上表示十进分数和小数的问题,进一步沟通小数和分数之间的关系。

教师的教就是为了不教,作为学生学习活动的参与者、合作者、引导者,只有让学生拥有好的学习方法才会有真正意义上的有效学习。这也是学生一直迫切需要掌握的。那么这节课在学习新知识的同时另外一个重点就是对学生进行学习方法的指导。

课件

一、导入。

在我们以前的学习当中,重点研究了整数。但是由于在日常生活中我们进行测量、计算等活动的时候往往经常得不到整数的结果,所以我们又进一步学习了分数。其实在用分数表示的基础上我们还可以用小数表示。这个学期我们将重点学习小数。

二、介绍方法:

怎样学好小数呢?要想学好它,就要讲究一定的学习方法,制定一个计划,按一定的步骤学习,就能收到事半功倍的效果了。今天老师就向大家介绍一种学习方法。(出示学习步骤)

学习步骤:关于小数:

1、我已经知道了什么?

2、我还想知道什么?

3、通过学习我又知道了什么?

4、动动手,检测一下。接下来我们就按照这样的步骤开展学习。

三、思考、讨论:

1、我已经知道了什么?

小数点、小数在生活中的广泛运用……

师:看来大家对小数的了解很有限,那么更有必要认真的学习小数了。

2、还想知道什么?

小数的起源、发展、计算、数位顺序、读写法、意义……

师:要想了解小数的这些知识,首先最基本的就是要了解小数的意义。那么这节课我们就来了解小数的意义吧。

四、引导学生自主学习小数的意义。

1.小数的意义,自学小数的意义(看书第3页)

(1)出示课件,把这个正方形平均分为10份取其中1份,用分数表示是十分之一,用小数表示是0.1;取其中3份就是十分之三,用小数表示是0.3。

把这个正方形平均分为100份取其中1份,用分数表示是百分之一,用小数表示是0.01。

(2)以1米为例结合具体的数量理解小数

把一米长的线段平均分为10份取其中1份,用分数表示是十分之一米,用小数表示是0.1米;把这条线段平均分为100份取其中1份,用分数表示是百分之一米,用小数表示是0.01米。

2、同桌之间互相交流,用数学语言说一说自己的涂色部分用分数和小数表示,分别是怎样的。

4、师:像0.1、0.5、0.7这样的小数是一位小数。像0.01、0.19、0.08这样的小数是二位小数。

6、看书p3,找一找你认为最重要的那句话,读一读。分母是10、100、1000……的分数可以用小数表示。

7、看学习步骤3:通过学习我又知道了什么?集体交流

8、质疑(学生提问)

五、学习步骤4:检测。

1、在直线上标出相应的小数、分数。见p5、1

2、分数小数的转化p5 2、3

3、同伴相互出题。

这节课既是一节数学知识学习课,同时又是一节学习方法的指导课。通过对教学的设计,教学,对学生的检测,我有以下体会:

1、教师要善于倾听。学习活动要以学生为本,在学生思考、讨论的过程中,经常会有精彩的见解,教师要善于捕捉。尤其是当学生有独特的见解出现时,教师要及时给予反应,以此保护学生对数学的积极性。当然这需要教师在平时的教学实践中注意有意识地积累。

2、注重方法指导。 本节课的特色和重点之一即学习方法的指导。但是学习方法的指导应该是贯穿整个学习过程的,所以教师在进行方法指导的时候要让学生清楚本节课介绍的方法还适合那些内容的学习,其他的学习内容应该用什么样的学习方法更好。

3、注重基础知识的掌握。本节课既让学生学习了好的学习方法,又让学生扎实地学习了小数的意义,关注了学生多方面能力的发展。

存在的问题:数学课程要让学生了解数学在我们生活中无处不在,但本课与生活的联系不够,在学生的发言中教师的把握不及时。另外,要注重多样化的课程资源的整合,学习方式还可以更丰富一些,如认识一位小数、两位小数的方法可以有变化,以拓展学生的思维。

案例点评:《小数的意义》这一节课整体框架好,是一节学习方法指导课。本节课能够很好地确定研究的课题、目标,即学习方法的指导,有研究的方向。并且能够引导学生参与目标的制定;学习过程中能用多种方法引导学生学习,学生基础知识、基本技能掌握较好;师生关系融洽,学习氛围好。

北师大版小数的意义教学设计篇五

教学目标:

3、在合作与交流中的过程中,感受数学学习的乐趣。

教学教法:

教学方法是教学过程中师生双方为完成目标而采取的活动方式的组合。根据本课教学内容的特点和学生的思维特点,我选择了尝试法、引导发现法、等方法的优化组合。引导他们去发现问题、分析问题、解决问题、获取知识,从而达到训练思维、培养能力的目的。小数的含义是属概念教学,较为抽象、凝炼,根据学生对概念的认知,一般遵循:感知——表象——抽象概括——形成概念的这一规律。

1、从生活中了解小数,明确要用小数表示的必要性。

2、从已有的生活经验中,理解、抽象小数的意义。

3、通过观察、测量,让学生充分感受、体验小数产生于生活,从而使学生感受生活中处处都存在小数。

4、了解小数在生活中的普遍存在及广泛运用,体验数学在身边,感受数学学习的价值和乐趣。

教学学法:

1、学会通过观察、测量、归纳,可以发现生活中处处都存在小数。

2、引导学生自主探究,培养他们用已有知识解决新问题的能力。

3、通过指导独立看书,汇报交流活动,培养学生的自学能力和合作交流的好习惯。

教学过程:

一、创设情景导入新课。

创设“5.1”假期情景,使本课内容与学生的现实生活经念相吻合。

1、在假期里你买了什么物品?花了多少钱?

2、老师买了一本书,同学们猜一猜要多少元?

从同学们的回答中归纳出不能用整元数表示的这种数,要用小数表示。引入课题。

这样的设计,旨在把枯燥的数学知识与学生的生活实际相联系,引发起学主的学习兴趣,点燃他们求知*的火花,从而进入的学习状态,为主动探究新知识聚集动力。

二、明确目标探索新知。

同学们都知道小数就在我们的生活中存在,那么同学们想了解小数的什么?

我预设学生的提问(预设)。

1、小数是怎么来的。(怎么产生的)。

3、小数是怎么读的,怎么写的?

根据学生提的问题,师生分析问题。

(1)象“0.1、0.3、0.9”这些小数叫1位小数。(分母是10的分数,可以写成1位小数。1位小数表示十分之几。)。

(2)象“0.01、0.04、0.18”这些小数叫2位小数。(分母是100的分数,可以写成2位小数。2位小数表示百分之几。)。

(3)象“0.001、0.015、0.219”这些小数叫3位小数。(分母是1000的分数,可以写成3位小数。3位小数表示千分之几。)。

2、学习小数的写法。

三、巩固新知。

1、练习“考考你”;(练一练)第1题。

2、用米做单位测量同桌的高度;

3、菜市场买菜统计表。

四、小结。

1、了解小数的历史。(小资料)。

【了解小数的历史,激发学生的爱国热情。】。

2、学了小数这节课,能谈谈你知道了些什么吗?

五、作业布置。

1、从生活中记录一些小数,明天同学之间相互交流;

2、完成《作业本》。

布置实践性的作业,使学生把小数在实际生活中的运用结合起来,体验教学就在身边,感受数学学习的乐趣。

北师大版小数的意义教学设计篇六

1、在认识小数现实模型(如元、角、分)的基础上,通过分数理解小数的意义,会进行十进分数与小数的互化。

2、结合寻找生活中的小数,体会小数与日常生活的密切联系。

重点难点理解小数的意义。

学具准备多媒体课件找一找生活中的小数,

学习过程设计。

【情境导入】(2分钟)。

教师出示书上的一些图片,让同学们看一看,说一说这些小数所表示的意思。说说看,和同学们交流一下。

【自主学习】(8分钟)。

(一)学生尝试解决。

2、一个盒子的宽是0.1米,谁知道这也就是多长?鼓励学生猜一猜。

师:为什么?你是怎样想的?为什么不猜“1厘米”?

学生根据自己的想法进行回答。

这个盒子的长是3分米,想一想,也就是多少米?

【合作探究】(8分钟)。

(二)教师引导探索。

学生:可以把“1”平均分成10份,其中的1份是十分之一,也可以用0.1表示。

教师再指名进行回答,最后同桌互说。

你能表示出0.4吗?学生尝试。集体订正。

你能解释为什么1分米可以表示成0.1米,3角可以表示成0.3元?

学生进行解答。

【展示交流】(8分钟)。

1分也就是多少元?0.02米,也就是多长?

猜一猜。能说一说想法吗?

教师根据学生的回答板书:

0.1=0.3=。

0.01=0.04=。

说一说你的发现吧。

学生根据探索的结果各抒己见。

【当堂检测】(12分钟)。

练一练。学生独立完成,教师巡视进行个别辅导,集体订正。

2、0.03米就是多长?为什么?0.12米呢?

4、0.001米也就是多长?为什么?5毫米也就是多少米?30毫米?

【总结评价】(2分钟)。

这节课你有什么收获?

板书小数的意义(一)。

0.1=0.3=0.01=0.04=。

北师大版小数的意义教学设计篇七

知识目标:在学生在了解小数产生的过程中,理解分数与小数的联系,理解小数的意义,知道小数的计数单位。知道小数和整数一样,相邻计数单位间的进率都是10。

能力目标:在探究过程中培养学生的观察能力、分析能力、抽象概括和迁移能力。

小数的意义,计数单位及进率。

三年级时学生已学习了小数的初步认识,会认识小数以及读写法,知道了小数在实际生活中的应用,并会进行两位以内小数大小的比较,以及一位小数的简单加减法。在生活中,小数的应用也普遍,所以学生已经具备一定的小数认识的基础。

操作法,观察法,讨论法,引导尝试法。

教学课时:1课时

一、情景导入

2.认识他们吗?读一读,生活中,这样的数多不多?还在哪儿见过这样的数?

3.在我们身边随处都能找到小数,小数的用处可大了,所以,我们今后还要反复学习小数,接下来我们继续去数学王国探究小数的奥秘。

二、新课教学

(一)认识一位小数

出示一米长的纸条

1.估一下,大概有多长?

2.确定是一米长的纸条。

出示长方形的纸片,老师想知道这个表的长和宽,怎么办?(量)

3.用一米的纸条做尺子,来量数位表的长。

4.发现:不够一米。不能得到一个整米数,怎么办?(用更小的单位,把一米分成10个一分米)

(板书)1分米

1/10米

0.1米

把1米平均分成10份,每一份是1分米。

也就是说1分米是把1米平均分10份里面的1份,也就是1/10米

也可以用小数表示为0.1米

【设计意图】

用一米的单位来量,得不到一个整米数,然后用分的方法引出小数0.1,让学生理解小数的产生及其作用。

5.通过测量,得到:长是3分米。

3分米

3/10米

0.3米

6.学生活动

(1)把“1”平均分成十份,其中五份用分数表示是(?),用小数表示是(??)。

(2)在方格纸上涂出0.6,你打算把方格纸平均分成多少份?

涂其中的几份?

【设计意图】

即时练习,举一反三,通过想、说、做,使学生明白以为小数与分母是10的分数的关系,理解一位小数的意义。

(二)认识两位小数

1.量出长方形的宽

比2分米长点,但不够三分米,没法用整分米数表示怎么办?(用更小的单位厘米,把一米分成100个一厘米)

(板书)

1厘米

1/100米

0.01米

2.得到21厘米,用米作单位怎么表示?

21厘米

21/100米

0.21米

3.学生活动

(1)在方格纸上涂出0.06,你打算把方格纸平均分成多少份?涂其中的几份?

(2)如果要在方格纸上涂出0.65呢?

(三)认识三位小数

如果仔细看,这个数位表的宽比21厘米还多一点点,但又比22厘米少,如果要得到更精确的宽度,可不可以再分?(用更小的单位:毫米,把一米分成1000个1毫米)

1毫米

1/1000米

0.001米

(四)如果我们需要更加精确的数,可不可以再分呢?分的完吗?

【设计意图】

在认识了一位小数的基础上,有层次,有规律地认识两位小数,学习三位小数,降低了学生对概念的理解难度。

(五)小数的计数单位

课件演示:用一个正方体的分解来演示

小数的计数单位分别是:十分之一,百分之一,千分之一……

分别写作:

0.1、

0.01、

0.001……

(六)教学小数计数单位之间的进率

10个0.1是1,10个0.01是0.1,10个0.001是0.01,也就是说,小数中相邻的两个计数单位进率是10。

师:同整数一样,小数里面每相邻的两个计数单位进率都是10。

【设计意图】

直观演示,有两方面的作用,一是加深学生对用“分”的方法来学习小数意义的过程的理解,二是通过观察,能更容易的理解小数计数单位之间进率的理解。

三、巩固练习

“勇闯智慧岛”

1.看图写出分数和小数。

2.我是小法官

四、课堂总结

1.观察,思考,小数跟哪种数有着密切的关系?(分母是10、100、1000……的分数)

2.评价学生活动,下课。

北师大版小数的意义教学设计篇八

1.通过测量活动,进一步理解小数的意义,体会小数在生活中的实际应用。

2.会进行单名数和复名数单位之间的换算。

3.体会小数与分数之间的关系,会进行互化。

4.通过动手操作,培养学生合作学习的能力,养成良好的学习习惯。

通过探索单位换算的过程,进一步体会小数的意义。

把单名数化成复名数。

多媒体课件。

课时一

一、导入:

生:学生边观察边交流。师板书课题。

在观察过程中让学生收集数据,探讨并理解几分米或几厘米换算成以“米”作单位应怎样表示,鼓励学生想出不同的表示方法。

二、探讨与交流:

1、学生汇报:黑板长2米,又多出36厘米。

师:这些数有什么地方不一样吗?

生:数的单位不一样。

师:单位不同,计量起来不方便,那我们该如何解决这个问题呢?

生:把这些数据的单位换算成统一的。

师:你认为换算成哪个单位来计量更合适呢?

生:我觉得换算写成以“米”为单位比较合适(也有同学说换算成以“分米”为单位比较合适)。

师:那我们一起来讨论一下如何用“米”来表示黑板的长度吧。

2、活动要求:

(1)要求学生分组讨论把以“厘米”作单位的数换算成以“米”作单位的数应该怎样操作。可以使用不同的方法。

(2)汇报结果:鼓励学生用自己的语言说出自己的想法。

生:因为1米=100厘米,把1米平均分成100份,36厘米就是36份,就是100(36)米,如果用小数表示就是0.36米。所以黑板的长度就可以表示为2.36米。

师:(归纳)把1米平均分成10份,1份或几份可以用一位小数表示;

把1米平均分成100份,1份或几份可以用两位小数表示······

(1)一位小数表示十分之几;

(2)两位小数表示百分之几。

设计意图:进一步使学生掌握以“分米”“厘米”作单位的数换算成以“米”作单位的数,可以用小数表示。

三、探讨与延伸

师:刚才我们学习了长度单位的一种表示方法,那么,鹌鹑蛋和鸵鸟蛋的质量又如何表示呢?(师出示图片课件,生思考回答)

生:可以用克与千克来表示。

生1:鹌鹑蛋的质量是12克= 1000(12)千克=0.012千克。

生2:鸵鸟蛋的质量是先把500克用千克表示出来再加上原来的的1千克。500克=1000(500)千克=0.5千克,鸵鸟蛋重0.5千克+1千克=1.5千克。

师:(归纳)把1千克平均分成1000份,1份或几份可以用三位小数表示,也就是说三位小数表示千分之几。同学们通过思考,懂得了用小数表示物体的质量,大家表现得都很好。用小数表示物体的质量在生活中的应用很广泛,所以,大家都应该熟练掌握。

设计意图:结合情境图,让学生明白由低级单位数化成高级单位数的方法,培养学生的分析能力和合作学习能力。

四、生活与应用:

师:为了能更好的熟悉低级单位和高级单位数之间的互化,我们现在做个活动,前后位的同学相互合作,通过目视估算出对方的身高和体重。

活动要求:

1、目测估算出的结果要尽可能的接近事实。

2、把身高转换成以米为单位的数,体重转换成以千克为单位的数。

3、与其他同学互相交流,选出较为准确的数据,汇报给老师。

生:(认真估测、交流并汇报)

设计意图引导学生把课堂上学到的知识运用到生活中去,发现生活中更多的.数学信息。

五、巩固练习:

1、师:我们先看一看这个表格,哪位同学愿意来填一填?(师出示教材第5页“练一练”第一题课件)

学生纷纷举手抢答。师给予评议。

2、师:(出示课件“练一练”第二题。)同学们知道图片上的这只鸟叫什么名字吗?它是世界上飞的最快的鸟?叫军舰鸟。大家认真读题后,自己独立完成有关军舰鸟的数学信息。

六、总结:这节课我们学习了长度单位和质量单位换算的方法,其他的数量单位也是可以换算的。生活中,很多时候都需要进行单位换算,你可以与同学一起去找一找。

七、作业:教材第5页第4题。

八、板书设计:

36厘米=0.36米

12克=0.012千克

500克=0.5千克

九、后记:

这节课的内容主要是要求学生会把低级单位的数转化为高级单位的数,会进行单名数和复名数的互化。在单位换算方面,特别是在小数意义的基础上理解单位换算,相对孩子们来说有一定的难度,所以对于这部分知识,只是要求孩子们重在理解,掌握方法。

在备课时,我就考虑到由于孩子们在日常生活中对小数的接触不是很多,小数的意义又具有一定程度的抽象性,怎样在教学中找出孩子们生活与这一数学知识的契合点,让他们能自然地融入到学习中去,作了详细地分析。由于孩子们的接受能力有所不同,在教学中我对问题的设置与教材略有变化。我认为这样学生学习起来比较顺畅。

北师大版小数的意义教学设计篇九

小数的意义是西师版教材四年级下册的内容。本节内容是学生在三年级下册学习“小数的初步认识”的基础上来学习的,同时小数的意义是学生系统学习小数知识的开始,是学生认数范围的一次扩充,也是对学生日常经验的一个归纳与总结。依据新课程理念,我在本节教学设计中力求让学生结合现实情境,进一步认识小数,充分调动学生的旧知,促进知识的正迁移,同时加强操作活动,引导学生主动获取知识。

1、让学生理解和掌握小数的意义,以及小数的计数单位,理解相邻两个计数单位的进率是十进关系。

2、让学生经历观察、操作、探索等活动,理解小数的意义以及数的计数单位,培养学生动手能力、推理能力和创新意识。

3、让学生感受数学与生活的密切联系,激发学生的求知欲。

重点:理解一位小数,二位小数的意义。

难点:理解三位小数的意义,同时归纳小数的意义。

课件、学习卡2张、米尺、皮尺。

一、创设情景,引入新知。

师:孩子们,北京奥运会的脚步离我们越来越近了,全国各地都在积极迎接奥运的到来,我们学校为了迎接奥运也举办了一场校动会。(课件出示,主题图)。

师:你们从这幅图上了解了哪些信息?

生:张兵跳远的成绩是2.36米。

生:王志跳高的成绩是0.92米。

生:校运会60米的纪录是7.8秒,100m的纪录是13.4秒,跳远的纪录是2.87m,跳高的纪录是1.06m。

生:我知道这些数都是小数。

师:孩子们真聪明,观察真仔细.那么你们想知道为什么会产生小数吗?

生:想。

师:现在我想让两位孩子来量一量黑板的长和宽。

学生上台用皮尺测量。

生:黑板长3米10厘米。

生:黑板宽95厘米。

师:孩子们黑板的长和宽是不是都是整数呢?

生:不是。

师:在测量的计算中,我们有时不能得到整数的结果,通常可以用小数表示。板书:小数。

师:孩子们,我们在三年级时都已经初步认识了小数,那么下面这些空我相信大家都能填出来吧!(课件出示)。

1角=()10元=()元0.1元是把1元平均分成10份,取其中()份。

1dm=()10米=()m0.1米是把1米平均分成()份,取其中()份。

5角=()()元=()元0.5元是把1元平均分成()份,取其中()份。

3dm=()()m=()m0.3是把()平均分成()份,取其中()份。

(生独立完成,并汇报)。

二、探索新知。

师:孩子们完成的真不错,来鼓励一下自己。好!现在请大家拿出老师课前发给你们每个小组(二人一组)的学习卡片1,然后听清老师讲要求。(课件出示)。

(1)、涂一涂:用斜线把其中十个直条涂出阴影,并用分数、小数表示,再把7个直条涂上阴影,用分数小数表示。

(2)、填一填:

分数()10。

分数()10小数()。

小数()。

(3)、说一说:0.7表示把一个正方形平均分成()份,取其中()份。

0.7里面有()个0.1。

0.1、0.7都是一位小数,都表示把1个整体平均分成()份,分别取其中的()份,()份。

(4)、讨论:一位小数表示几分之几?几分之几表示一位小数?

(5)、完成后,组内两个同学相互说一说。

(学生两人一组合作完成)。

师:好!孩子们我看大家完成的差不多了,谁来给大家汇报一下?

生:(上台用视频展示台把学习卡1展示)我们小组是这样涂的。

分数110分数710。

小数(0.1)小数(0.7)。

北师大版小数的意义教学设计篇十

苏教版《义务教育课程标准实验教科书 数学》三年级(下册)第100~101页。

教学目标

1. 使学生经历认识小数的过程,初步了解小数的含义,会读、写一位小数,知道小数各部分的名称,知道自然数和整数。

2. 使学生在解决实际问题的过程中,培养初步的自主探究、合作交流的意识,感受数学和生活的密切联系,增强学好数学的信心。

教学过程

出示:1/2 58 5/12 0.5 1.2 5.8

提问:同学们,知道这些数分别是什么数吗?

谈话:后面的三个数,你平时在什么地方见到过?

学生可能会想到:铅笔芯的规格、眼睛的视力、商品的价格等。

揭题:是的,在日常生活中经常接触到这样的数。它们都是小数,今天我们一起来认识小数。(板书课题:认识小数)

1. 提出问题。

提问:你想了解小数的哪些知识?

学生可能提出:小数是怎么来的?学了小数有什么用处?小数应该怎样读,怎样写?……

2. 教学第一个例题。

谈话:同学们想知道小数是怎样产生的吗?其实小数就来自我们的生活。先让我们来做这样一个活动:小组合作测量课桌面的长和宽,并用不同的数、不同的单位把测量结果表示出来。比一比,哪个小组想到的表示方法最多。

学生在小组内测量课桌面的长和宽,交流不同的表示方式。教师巡视,并作适当指导。

反馈:你们小组的测量结果是多少?想到几种不同的表示方法?

学生量出课桌面的长是60厘米,宽是40厘米,并用600毫米、60厘米、6/10米等表示课桌面的长,用400毫米、40厘米、4/10米等表示课桌面的宽。(根据学生回答,板书:6分米=6/10米,4分米=4/10米)

提问:除了上面几种表示形式外,你还能用其他方法来表示吗?

如果学生主动想到分别用0.6米、0.4米表示课桌面的长和宽,则让学生说一说是怎样想到的,0.6米和0.4米分别表示什么意思。

如果学生不能主动地用小数来表示,则讲述:其实,6/10米还可以用小数0.6米来表示,0.6读作零点六。(板书:= 0.6米 0.6读作零点六)也就是说把1米平均分成10份,其中的6份可以用0.6米表示。

提问:你能说一说0.6米表示的意思吗?

学生回答后,让同桌间互相说一说。

引导:那么4/10米还可以怎样用小数来表示呢?(板书:0.4米 0.4读作零点四)

提问:0.4米表示什么意思?

学生交流时,分别让学生在米尺上指出0.1米、0.5米、0.8米的实际长度。

小结:十分之几米可以写成零点几米。

3. 做“想想做做”第1题。

先让学生弄懂题意,然后把答案填在书上。完成后,电脑出示答案,集体校对。

4. 教学第二个例题。

谈话:昨天三(5)班的李萍同学在育才商店里买了这样一些文具用品。我们一起来看看吧。

出示文具的图片及标价:

铅笔 圆珠笔 笔记本

3角 1元2角 3元5角

提问:一枝铅笔是3角钱,如果用元作单位,是多少元呢?(分别用3/10元和0.3元表示,并读一读、写一写。)

讨论:一枝圆珠笔的价钱是1元2角,怎样用元作单位,用小数来表示圆珠笔的价钱呢?请先在小组里讨论讨论,再说一说你是怎样想的。

反馈时,着重引导学生体会:1元2角是1元多2角,2角可以用0.2元来表示,1元和0.2元合起来就写成1.2元,1元2角可以写成1.2元。(板书:1元2角= 1.2元 1.2读作一点二)

提问:一本笔记本的价钱是3元5角,用元作单位的小数又怎么来表示呢?你是怎么想的?(板书:3元5角=3.5元 3.5读作三点五)

小结:几元几角写成小数就是几点几元。

5. 做“想想做做”第2题。

让学生在书上完成填空,并说一说是怎样想的。

6. 介绍自然数和整数。

让学生自由阅读书本第100页的最后一段,提出不懂的问题。

7. 游戏。

男同学代表整数,女同学代表小数,看到你所表示的数请你站起来。

8 0.2 3.8 0 59 95.4 1 1/4 1.6

谈话:我们已经认识了小数。现在我们以小组为单位,一起来进行比赛好吗?

1. 听录音,把听到的小数记录下来。

一只青蛙跳过0.4米的田埂,来到宽16.8米的河面上,踏上了0.2平方米的荷叶,狂叫三声,扑通一声掉进了深3.9米的河里。

2. 做“想想做做”第3题。

出示题目,让学生抢答,并说一说每道题中分数、小数的意义。

3. 回答下面的问题。

一包上好佳,价钱在1元到2元之间,请你猜猜它的价钱是多少?

小组合作讨论后把价钱写在纸上,交流时引导学生用“几元几角”和“几点几元”两种方式表达,并在数轴上分别找出每种可能价钱所在的点。

提问:今天你学得开心吗?你有什么收获?

课件介绍十进分数的发展史和古代数学家刘徽的杰出成就。

北师大版小数的意义教学设计篇十一

1.理解小数的意义,认识小数的计数单位,知道相邻两个计数单位之间的进率。

2.借助学生熟悉的米尺和格子图等实物,让学生多角度理解小数与分数的关系,经历探索小数意义的过程,在探索交流中体会数学学习的乐趣。

3.培养学生迁移、类推的能力及良好的数学学习品质。

课件、米尺。

(一)交流资料。

师:昨天老师让同学们收集一些生活中的小数,收集了吗?谁愿意和大家分享一下?

生汇报交流。

如:一袋方便面的价钱是1.2元;一个笔记本的价钱是2.6元……。

(二)师出示图片。

师:王老师也找了一些图片,看大屏幕。

请你认真读一读,并说一说每张图表示什么含义。

生读小数并结合图说小数表示的含义。

(三)小结。

看来小数在我们的生活中应用非常广泛,三年级时我们已经对它有所了解,今天我们进一步研究小数(板书:小数的意义)。

(一)观察猜测,实践体验。

师:今天老师给同学们带来一个大家伙,(师举起给学生们看)什么呀?(生:米尺)它有多长?(1米)可以干什么用?(测量物体的长度)今天这节课上它的功劳是最大的,借助它我们会掌握很多新知识。

请两位同学合作测量一下课桌的高度及它表面的长度,谁愿意?

两位学生测量,其他学生观察,教师板书记录:桌子长60厘米多,高80厘米。

师:如果用米作单位,不够1米怎么办?

生:可以用小数。

小结:在我们测量和计算时,往往得不到整数的结果,这时常用小数来表示。

(设计意图:教师选择学生熟悉的情境,让学生通过动手实际测量活动,进一步理解和感受小数产生的必要性。)。

(二)直观感知。

1.借助课件,引导理解一位小数的意义。

师:那3分米、7分米如果用米作单位,用分数和小数怎么来表示?

学生独立思考后同桌交流,汇报。

生:3分米是表示把1米平均分成10份,表示其中的3份,用分数表示是十分之三米,也可以用0.3米表示;7分米则是……(生汇报的同时课件出示。)。

生独立思考后汇报。

师出示米尺教具:谁能在我的米尺上指出0.1米、0.3米、0.7米及0.9米……。

生台前汇报结果,并说说是怎么想的。

师:你们太棒了!通过观察以上分数和小数,发现了什么?

小组讨论交流汇报。

生:像这样十分之几的分数可以用一位小数表示。

(设计意图:多角度、多形式地强化认识,理解一位小数是十进分数的另一种表现形式,并渗透小数的计数单位和进率。)。

2.借助直观迁移,理解两位小数的意义。

课件出示32页图片。

师:把1米平均分成100份,每份是多少?(生:1厘米)1厘米用米作单位,用分数怎么表示?(一百分之一米)也可以用0.01米表示。那么4厘米、8厘米用分数怎么表示?用小数呢?生独立思考后组内交流。

汇报整理(课件演示)。

生找,指,并说为什么,那么1米里又有多少个0.01米呢?(100个)。

师:你们又有什么发现呢?

生:分母是100的分数可以用两位小数来表示(师板书)。

3.直观迁移,独立探究,理解三位小数的意义。

师出示课件,33页的图。

生独立思考后完成书中练习,然后小组交流。

师追问:你能从这幅图中找到其他小数吗?(如:0.006,0.015……)。

你又有什么发现呢?

汇报:分母是1000的分数也可以用三位小数表示。

(设计意图:在初步理解一位小数的意义的基础上,通过独立探究、小组交流等方法理解两位小数、三位小数的具体意义,突破了难点,使学生进一步体会和理解了小数的意义,又一次渗透了计数单位和相邻两个计数单位间的进率。)。

4.迁移推理。

师:试想一下,什么样的分数可以用四位小数来表示?五位小数呢?

小结:分母是10、100、1000……这样的分数可以用小数来表示(板书)。

(设计意图:学生通过迁移应用,已经对小数的意义有一定的理解,在此基础上继续推理下去,有助于学生清晰而深入地理解,从而感知十进分数与小数的关系,归纳出小数的意义。)。

(三)认识计数单位。

师:整数有计数单位,小数也有计数单位,你知道小数的计数单位吗?尝试说一说。

生根据自己的理解说。

师课件出示,并要求学生齐读(板书上显示)。

追问:通过观察发现,相邻两个计数单位之间的进率是多少?(生:10)。

板书:相邻两个计数单位之间的进率是10。

(设计意图:通过前面的学习,学生对小数的意义有了更深入的理解,所以这部分知识我采用让学生试着说一说然后直接出示,提高了学生探究的自主性。)。

1.完成书33页“做一做”,独立完成,全班订正。

2.完成书36页1、2、3题,要求:认真读题,独立思考。

(设计意图:通过这几道基础练习题,让学生进一步理解小数的意义,并掌握小数的计数单位,为后续的学习奠定基础。)。

1.师:回顾一下本节课的内容,谈一谈自己的收获。生畅所欲言。

2.齐读书33页“你知道吗?”内容,了解小数的产生。

(设计意图:通过学生对本节课知识的梳理,加深对本课内容的认识、理解。通过阅读,让学生了解小数产生的历史,对学生进行了数学文化的渗透。)。

相邻两个计数单位的进率是10。

完成书37页7、8题。

在本节课教学中我重视让学生亲自经历测量活动,结果不能用整数表示时,加强了对小数产生的必要性认识。

在教学小数意义这部分时,我充分利用教学课件和实物教具相结合,直观引出十分之几、百分之几、千分之几的数都可以用小数表示,然后抽象概括出小数的意义,在此过程中我充分借助迁移类推,合理安排引导和放手的时机,给学生创造了大量的自主探索的机会,从而提高了学生自主学习的能力。

北师大版小数的意义教学设计篇十二

1、了解小数的产生,理解和掌握小数的意义。

2、初步理解整数、小数与分数之间的内在联系,掌握相邻两个计数单位间的进率。

3、在合作与交流中的过程中,体验探究发现和迁移推理的学习方法,感受数学学习的乐趣。

1、测量讲台的长度。

我们学校的多功能教室更换了新的讲台和桌椅,你们能帮老师量一量新讲台的长度吗?

学生用米尺测量讲台的长度。

测量得不到整米的`结果。

2、揭示课题。

在进行测量和计算时,往往不能正好得到整数的结果,这时常常用小数来表示。今天这节课我们继续来认识小数。

1、一位小数。

(1)为了帮助大家理解小数,我们可以借助米尺。

(出示米尺图)。

(2)把一米长的尺子平均分成了多少份,每一份有多长?(1分米)。

(4)口答:3分米用分数表示是多少米?用小数表示是多少米?为什么?

(5)7分米是多少米?

(6)1/10可以写成0.1,3/10可以写成0.3,7/10可以写成0.7,像十分之几这样的分数我们都可以用零点几这样的小数来表示。

2、两位小数。

(1)如果把1米中的每一分米再平均分成10份,那么1米就平均分成了多少份?

(2)我们来看它的放大图。每一份是多少?(1厘米)。

1厘米是一米的几分之几?用分数和小数表示分别是多少米?

(3)3厘米呢?6厘米呢?

(4)13厘米是多少米?为什么?

(6)像1/100,3/100……,这些表示百分之几的分数我们可以用零点几几这样的小数来表示。

3、认识三位小数。

(2)我们来看它的放大图。这样的一份是多长?(1毫米)。

(3)1毫米是一米的千分之一。所以1毫米是1/1000米,也就是0.001米。

(4)想一想:6毫米和13毫米分别是多少米?为什么?

(5)35毫米呢?135毫米又该如何表示呢?

(6)表示千分之几这样的分数我们可以用零点几几几这样的小数来表示。

4、更多位小数。

(1)如果把一米平均分成10000份,这样的一份用小数表示是多少米?

(2)如果把1米平均分成100000份,这样的一份用小数表示是多少米?

(1)回顾前面的学习过程,什么样的分数可以用小数来表示呢?

生分组讨论,汇报讨论结果。

(2)分母是10、100、1000……的分数可以用小数表示。这就是小数的意义。

(3)0.1、0.3、0.7的小数点右面只有一个数字,像这样的小数就是一位小数。一位小数表示十分之几。

依次介绍两位小数、三位小数。

(1)0.3里面有几个1/10?0.03里面有几个1/100?

(3)每相邻两个计数单位间的进率是10。

三、巩固练习。

1、完成51页做一做。

2、完成55页第1、2题。

四、全课小结。

在今天的学习活动中你有什么收获?

北师大版小数的意义教学设计篇十三

小数的意义和产生,课本50—51页内容。

1、我能通过观察知道小数的产生。

3、我知道小数的计算单位及单位间的进率。

一、知识链接。

1/、谈话引入:

我们已经初步认识了小数,小数是怎样产生的?小数的意义是什么呢?这节课我们就来学习小数的产生和意义。

二、探究新知。

1、探究活动:

认真阅读教材第50、51页内容,结合“导学案”中的学习提示,先自主探究,再在小组内相互交流,初步理解小数的产生和意义。

温馨提示:

(1)能你测量课桌的长度和宽度吗?测量时发现了什么?

(2)、你知道米尺是把1米平均分成了多少份吗?它的每一份用分数怎样表示?

(3)、你能用小数表示分母是10的分数吗?

(4)、你能用小数表示分母是100的分数吗?

(5)、你能用小数表示分母是1000的分数吗?

(6)、什么是小数,小数的计数单位是什么。

(7)、每相邻两个计数单位之间的进率是多少。

(8)、小数的'计算单位和分数的计数单位有什么不同之处。

2、我会总结:

(1)分母是10、100、1000……的分数可以写成小数,像这样用来表示十分之几、百分之几、千分之几……的数叫做小数。

(2)、每相邻两个计数单位之间的进率是()。

3、解决问题:

(1)0.457,每个数位上的数各表示几个几分之一?

(2)一个小数由5个1、3个0.1、6个0.01组成,这个小数是()。

1、判断:

(1)0.40里面有4个0.01()(2)35克=0.35千克()。

3、括号里能填几?你是怎么知道的?

(1)、0.3里面有()个,0.09里面有()个;0.08里面有()个。

(3)、找朋友:(用线把上下两组数连起来)。

0.0450.130.00010.9。

这节课我们学习了什么?你知道了什么?你还有什么问题?

北师大版小数的意义教学设计篇十四

教材以两位小数的意义为主要研究对象,向前联系一位小数与整数,往后发展到三位小数和四位小数,逐渐形成比较完整的小数概念以及记数方法。例1从学生已有的经验切入,先教学两位小数的读法,再感受两位小数的含义,学生体会两位小数的意义不是很轻松的。而小数部分的读法与整数部分不同,又是他们初学时感到不习惯的。从有利于教学出发,例题先讲两位小数的读法,再让学生感受到两位小数的含义。例2通过数形结合,建立小数的概念。

1、通过学习使学生在分数的基础上认识小数,知道什么是小数,小数的意义,学会分数、小数的互化。

2、培养学生的理解空间想象能力。

3、训练学生思维的灵活性。

多媒体课件。

一、复习。

用分数表示下面的数。

1角=()元,1分米=()米。

2角=()元,1厘米=()米。

1分=()元,1毫米=()米。

二、教学例。

1、出示例1:用“角”或“分”作单位,说出下面物品的价钱。

指名回答问题。注意学生回答问题时要完整。

橡皮的单价0.3元是3角;信封的'单价0.05元是5分;练习簿的单价0.48元是4角8分或48分。

(联系学生的已有经验,既使学生消除对这三个小数的陌生感,又为下面体会小数的意义埋下伏笔。)。

2、教学小数的读法:

你能读出下面的小数吗?鼓励学生大胆尝试。

0.05读作:零点零五;0.48读作:零点四八。

引导学生总结读整数部分为0的小数的方法:

从左往右依次读出各位上的数。

想一想:0.3元是1元的几分之几?0.05元是1元的几分之几?0.48元呢?

小组讨论交流。

汇报:0.3元是1元的十分之三。

(学生根据三年级的知识,完全可以回答出第一个问题。)。

0.05元是1元的百分之五。提问:为什么:

(根据学生的回答情况,可以作如下的引导。)。

思路:1元=100分,1元平均分成100份,1份是1分,1分就是1元的_____;0.05元是5分,是5个,也就是1元的_____。

根据上面的思路,让学生说明0.48元是1元的。

学生回答:1元=100分,1元平均分成100份,1份是1分,1分就是1元的_____;0.48元是48分,是48个,也就是1元的_____。

观察板书:

你发现了什么?

引导学生看到0.05和0.48都是两位小数,都表示百分之几。

4、“试一试”

a、理解:1厘米是米,米可以写成0.01米。

指名理解1厘米为什么是米。

(1米=100厘米,1米平均分成100分,1份就是1厘米,1厘米也就是1米的,就是米。)。

b、用米为单位的分数和小数分别表示4厘米与9厘米。

学生回答并说名理由。

c、观察板书:

这三个分数都是什么样的分数?(百分之几的分数)。

这三个小数呢?(两位小数)。

我们知道一位小数表示十分之几,那两位小数又表示什么呢?(百分之几)。

三、数形结合,建立小数的概念。

1、出示例2:

把什么看作“1”?(正方形)。

看着图形将和写成小数。学生自主填空后回答。

提问:0.1表示什么?0.01又表示什么?

北师大版小数的意义教学设计篇十五

教学主要内容:

一位、两位、三位小数的意义。小数的计数单位,每相邻两个计数单位之间的进率是10.

教材编写特点:

简化了小数意义的叙述重视了对小数意义的理解加强了小数与实际生活的联系在探究的过程中注重给学生创设自主研究的空间。

教学的重点、难点:

理解一位、两位、三位小数的意义,知道相邻的两个计数单位之间的进率是10。

教学关键:

理解一位、两位、三位小数的意义。

基本活动经验:

在老师引导下,重视学生实际动手操作的能力、合理安排引导给学生自主探索的空间、借助学生已有知识经验的迁移,促进学生自主学习。

2、学情分析。

小数的意义是学生系统学习小数的开始。这是在学生三年级学习“分数的初步认识”和“小数的初步认识”基础上教学的,通过这部分内容的学习,使学生进一步理解小数的意义,为今后学习小数四则运算打好基础。

学生学习该内容可能的困难:

教学时,学生必须依托分数和整数的相关知识,借助分数理解小数的意义,借助整数掌握小数的结构特征。理解每相邻两个计数单位之间的进率是10时,必须联系生活中的货币、长度或者重量等理解小数之间的关系。

学习方式:

充分的运用演示、操作、观察等直观的手段,把基本概念的本质属性和普遍意义形象地展示出来,是学生在头脑中建立起这些内容的丰富表象,再组织学生进行分析、讨论,加深这些知识概念的感性认识;最后对表象进一步加工,形成概念,从而实现对概念的深刻理解。

3、教学目标。

知识与技能。

1使学生结合生活经验和实际测量活动了解小数的产生,体会小数产生的必要性。借助熟悉的十进制关系的显示原型多角度的理解小数与分数之间的关系,理解计数单位0.1、0.01、0.001。

2明确一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几.....知道相邻两个计数单位间的进率是10。

过程与方法。

充分的运用演示、操作、观察等直观的手段,引导学生经历从直观到抽象、概括的心理活动过程,实现“动作表征”、“直观表征”、“符号表征”的循序渐进发展,进而培养学生发现和构建知识的能力、迁移和类推能力。

情感态度与价值观。

培养学生的抽象、概括、归纳的思维能力和应用数学的能力。

4、教学过程。

1、已知导入、情境感知。

师:(出示教室场景图)同学们看,这个地方熟悉吗?

生:熟悉。

师:是哪?

生:我们的教室。

师:我们的教室,这是黑板的高度,讲台的长度,课桌的长度(课件出示)。

生:我知道了,讲台的长度、课桌的长度有1米多。

生:我知道讲台的长度跟1米差不多。

生:可以用重叠法。

生:可以把黑板的高度那里,对直画一根虚线下来,再看。

师:课桌的长度是1米多,具体多多少呢?你有办法吗?

生:先测量出1米,多余的部分截取下来,再接着去测量。

师:谁还来说说......

生:先测量出1米,多余的部分截取下来,再拿多余部分去跟1米比较(边说边用手比划)。

师:你们看看,是这样的吗?(课件演示,将多余的部分截取下来,放在1米的下面测量)。

生:是的。

师:接下来,谁有办法?

生:用多余部分去比,看看1米里面有几个那么长。

生:将1米平均分成10份,再比较。

师:比不出来啊,谁有办法?

生:1个1个去比,看看几个那么长正好是1米。就用除法解决。

师:是这样的吗?(课件演示)。

生:是的。

师:我们一起来数数。

生:1个,2个,3个......正好10个这么长是1米。

(在出现问题的时候,想解决问题的办法:我们可以把已经知道的1米的刻度标记出来,再继续测量,先用多余部分去比较,发现正好10个那么长就是1米。所以多余部分是10份中的1份,也就是说将1米平均分成10份,这样的1份,它的长度正好是多余部分,所以多余部分可以用十分之一米表示;十分之一米用小数表示是0.1米。在测量或者计算时,我们往往不能正好得到整数的结果,这时,可以用分数或者小数表示。

师:那现在知道怎么具体表示了吗?说说我们刚才的思路。

生:因为老师在操作的时候,我们可以发现10个多余部分的长度正好是1米,也就是说每个多余部分的长度是1米的1/10,也就是1/10米。写成小数的话是0.1米。还可以用1分米表示。

生:根据观察我们发现,将1米平均分成10份,多余部分正好是10份中的1份,可以用分数1/10米表示,还可以用小数0.1米表示。

生:将1米平均分成10份,多余部分是1米的1/10,也就是1/10米,用小数表示是0.1米。

师:我们一起来说说:将1米平均分成10份,多余的部分正好是这10份中的1份,也就是1/10,1米的1/10是1/10米,也可以用小数表示为0.1米。

师:这就是我们这节课要研究的“小数的意义”(板书课题)。

生:0.1表示的是十分之一。

师:你还能在1米(用手比划)中找到其他的小数吗?并说说它的意义。

生:0.3米(学生说,老师点课件,并根据课件演示,学生说意义)。

师:那0.3里面有几个0.1呢?表示什么。

生:0.3里面有3个0.表示十分之三。

师:还找到了其他的小数吗?

生:0.7米(老师点课件,学生说意义)0.7里面有7个0.1。

师:那1米里面有多少个0.1呢?

生:1米里面有10个0.1米。

师:10个0.1是1。

仔细观察这些小数和分数(用手比划并引导学生观察分数),你发现了什么?

生:这些小数都表示十分之几。

生:这些分数的分母都是10,小数都是一位小数。

生:分母是10的分数可以写成一起小数。

生:10个0.1是1。

师:说得非常好。一位小数表示十分之几。分母是10的分数可以写成一位小数,10个0.1就是1。一位小数,它的计数单位是十分之一,写作0.1。

我们一起把这句话小声齐读:分母是10的分数可以写成一位小数,一位小数的计数单位是十分之一,写作0.1。

师:我们在这个1米中找到了很多的小数,是不是只能在这里找到小数呢?

(出示数轴图)你能在这里找到小数吗?

生:能(学生上台寻找并说明理由。)。

师:为什么是这里呢?

生:因为0-1之间分成了10份,每一份是0.1,表示十分之一。

生:0.1还可以表示刻度。也就是说:这里的每个刻度依次是0.1、0.2、0.3......

师:我们在学习数轴的时候知道数是按照从小到大的顺序依次排列的,所以0.1在这里。

师:那你能找到0.8吗?

生:某一个点,某一个范围(指出0.8的具体位置)。

师:你是怎么找到0.8的?

生:数8个0.1(10份中数出其中的8份)。

生:从1开始往左边数2个0.1(10-2=8)。

师:那数轴上还有其他的小数吗?

生:有,学生说小数。

师:如果将数轴无限的延长,这样的小数说得完吗?

生:说不完。

师:回归到米尺中,理清我们刚刚的思路:我们知道多余的这个部分—可以用分数十分之一米表示,用小数0.1米表示。所以课桌的长度是1.1米。

师:课桌的长度已经具体的表示出来了,黑板的高度呢?

生:还是拿红色部分进行重叠,多余的部分截取下来。继续用红色部分测量(课件演示)。

师:遇到了什么问题?

生:测量时,多余的部分不够1米,

生:那就用蓝色部分比较。(学生边说,课件演示)也不够1分米。

师:那怎么办?

生:用刚刚的方法去比,看多少个紫色部分有是一个蓝色部分。用分米的下一个单位厘米表示。

师:(课件演示)我们发现......

生:我们发现10个紫色部分的长度就是蓝色部分。

生:把蓝色部分平均分成10份,紫色部分是其中的1份。

生:是1厘米。

师:把蓝色部分平均分成了10份,那1米里面会有多少个这样的紫色部分呢?

生:有100个这样的紫色部分。

生:还可以用0.01米表示。

师:对的,1/100米写成小数是0.01米。

师:那红色部分有多少个0.01米蓝色部分呢?

生:1米里面有100个0.01米。1分米里面有10个0.01米。

师:那这样的4份呢?可以怎么表示?

生:4/100米,写成小数0.04米。

师:请同学们拿出抽屉中的软尺。

师:这根软尺长度是多少?

生:1米、10分米、100厘米、1000毫米。

师:看来长度单位的换算学的很好哦。

操作:拿出软尺,在软尺上找到1米,1分米,1厘米,1毫米。以米为单位,找出一个可以用小数表示的地方,跟同桌说一说,并将它写在练习纸上)。

学生汇报。

生1:我找到的是0-99厘米。是99厘米,用分数表示是99/100米,用小数表示是0.99米。

生2:我找到的是0-20厘米。是20厘米,用分数表示是20/100米,用小数表示是0.20米。

生:老师对于生2找的还有表示方法,我可以用分数2/10米,用小数表示是0.2米。

生:一个是表示把1米平均分成100份,取其中的20份,是20/100米=0.20米;一个是表示把1米平均分成10份,取其中的2份,是2/10米=0.2米。

生:它们表示的长度是一样的,但是它们表示的意义是不同的。

师:仔细观察这些小数,你又有什么发现呢?

生:这些分数的分母都是100,小数都是两位小数。

生:分母是100的分数可以写成两位小数。

生:100个0.01是1。

师:说得非常好。两位小数表示百分之几,它的计数单位是百分之一,写作0.01。

(课件出示:分母是100的分数可以写成两位小数,两位小数的计数单位是百分之一,写作0.01。)。

师:通过我们刚才的探究,我们知道黑板高度中1米之外多余的这个部分—1厘米,可以用分数百分之一米表示,用小数0.01米表示。所以讲台的长度是1.01米。

4、拓展,认识三位小数、四位小数的意义。

师:(出示课件显示1毫米)这是多长?

生:1毫米。

师:你是怎么知道的?

生:.因为把1厘米平均分成了10份,其中的1份就是1毫米.....

师:1米里面有多少个这样的1毫米呢?

生:1000个(1米里面有1000个1毫米),因为1米=1000毫米。

出示课件。

师:将1米平均分成1000份,这样的1份是1毫米,这样的1份还可以怎么表示?

生:1/1000米,0.001米。

师:对的,把1米平均分成1000份,其中的1份是1/1000米,用小数表示为0.001米。

师:那这里的7份可以怎么表示?米尺中的1厘米可以怎么表示呢?

生:这里的7份可以用分数7/1000米表示,用小数表示为0.007米。

生:米尺中的1厘米是1000份中的10份,用分数千分之十米表示,用小数0.010米表示。

生:1厘米也可以用分数百分之一米表示,用小数0.01表示。

师:也就是说10个0.001等于1个0.01。

师:观察这些小数,你发现了什么。

生:还可以知道,分母是1000的分数可以写成三位小数,三位小数的计数单位是千分分之一,写作0.001。1厘米中有10个1毫米,所以0.01里面有10个0.001;1米里面有1000个1毫米,所以1里面有1000个0.001。

5、总结及应用。

(观察板书可以知道)。

分母是10.100.1000......的分数可以用小数表示。

小数的计数单位是十分之一、百分之一、千分之一......写作0.1、0.01、0.001......

每相邻两个计数单位之间的进率是(10)。

生:因为我们刚刚在黑板上标记了。

生:进率是100。

生:进率是10.看黑板我们知道0.1米是1分米,0.01米是1厘米,0.001米是1毫米。它们之间的关系是10毫米=1厘米,10厘米=1分米。所以相邻两个计数单位之间的进率是10(学生根据小数的计数单位自己理解这句话,并且填空,说明理由。)。

写出合适的分数和小数。

说一说你的收获。

生:我知道了分母是10.100.1000......这样的分数可以写成小数。

生:我知道了小数的计数单位。

是的,这些都是我们这节课的收获,希望大家在以后的生活或者学习中能够好好的运用这些知识。你们将会发现,原来数学与生活是息息相关的。

1米1计数单位。

1/10米=0.1米十分之一0.1一位小数。

1/100米=0.01米百分之一0.01两位小数。

1/1000米=0.001米千分之一0.001三位小数。

1/10000米=0.0001米万分之一0.0001四位小数。

【本文地址:http://www.xuefen.com.cn/zuowen/9046514.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档