无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?以下是小编为大家收集的优秀范文,欢迎大家分享阅读。
长方体和正方体的教学反思中班篇一
复习的重要目的在于知识的综合化,因此,复习时要注意对知识进行归纳整理。
本节课前我布置给学生的作业是:采用自己喜欢的方式去梳理本单元的知识点。在课前的十分钟时间里,采用小组交流的环节,让学生对自己梳理的知识进行补充及系统化。反馈:每小组里1号或2号学生能用大括号、知识(框架)表格、知识树等形式去归纳,但学生归纳的系统性、条理性欠缺。然后学生又给这棵“树”添加了“绿叶”。如:复习长正方体的特征:8个顶点、12条棱、6个面。计算它的棱长和、表面积、体积,在计算的同时说说计算的依据。这是通过计算,复习长正方体的求积方法,说依据,反过来帮助学生认清了长正方体的特征就是计算方法的根本。根据长正方体的特征,请学生用一句话概括长方体与正方体的关系,为的是让学生理解长正方体间的关系。
在课前做一些调查,学生对这一单元知识点还存在哪些疑问,教师再把这些疑问集中起来,然后进行归纳分类。在课堂上将所有的疑问摆出来,分小组,让学生交流汇报,老师将学生们的闪光的东西总结出来,通过实践活动,把问题一一解决。
复习课不能仅仅停留于巩固和梳理,更要为学生的思维创设条件,搭设一个思维深化的平台,切实提高学生的思维能力。如遇到不规则的立体图形求体积时,我们也可以用底面积乘以高来进行求解。
基本练习采取选择、连线等方式把体积与容积、表面积的几种不同的解答方法柔和在一起,同时渗透表面积的判断方法。学生脑中先呈现出一幅图,这幅图就是学生脑中的“形”;然后连线,就是将脑中的“形”抽象成了数的运算,最后请学生讲算理,就是将“数”又还原成学生脑中的“形”,这时学生脑中的“形”就更为丰满。几何知识的教学是“形”与“数”最好的结合点。创设好的情景,架构起学生“形”与“数”之间的桥梁。
本节课我觉得设计最好的一道题是最后那道鱼缸的题,这道题几乎涵盖了本单元所有的知识点。在选择此题的时候就是看中了它的综合性,在分析时让学生清晰地明确每个问题所求的是什么。比如:求长方体鱼缸一周用了多少米铝合金条?这个时候听到学生在下面七嘴八舌:这是求棱长总和的……本课最遗憾的是学生参与不积极,每次发言总是那几个。结合班情,剖析班状:学生太懒,学习习惯差,缺乏自主学习的能力。今后努力方向,继续抓学习习惯。
长方体和正方体的教学反思中班篇二
在这单元的教学中,我重视以下几个方面。
长方体和正方体这单元中有许多概念对学生来说是一个新概念,由认识平面图形到认识立体图形,是学生空间观念的一次重大的发展,但是此时,学生空间观念还很模糊,所以在教学时注重实物演示,以发展学生的空间观念,加深对这单元知识的理解。例如:教学认识长方体和正方体时,让每个同学都准备好一个实物模型,课上让学生具体数一数长方体和正方体的面、棱、顶点的个数,观察面和棱的特点,再集体总结,使这些知识和具体的实物联系起来,在头脑中形成清晰的映象。在教学长方体的表面积计算时,通过让学生展开所带的长方体,具体观察哪些面是相等的,一共计算几个面。从具体的模型中观察每个面是什么形状,每个面的面积该怎么计算,来推到长方体的体积计算方法。在教学容积和容积单位时,为了让学生对于10ml、 50ml、100ml 、 500ml 、 1l大概占据的空间有多大,展示具体的实物模型,让学生真实的感受到它们大概有多少。
学生有时很急功近利,只求知道要怎么做就好了,却不求知道为什么要这样做,所以在教学时我注重引导学生探究计算方法的由来。例如:教学体积计算的时候,刚告诉学生要探索长方体的体积和正方体的体积计算公式,就有同学说道:“长方体的体积=长×宽×高,正方体的体积=棱长×棱长×棱长”。显然有些学生通过自学已经知道了计算公式,但当我请学生说说为什么要这样算,这些同学傻眼了,显然他们只知其然但不知其所以然。这时引导学生用体积单位摆出的长方体,通过填写长、宽、高、正方体的个数和体积的个数,从而探索出长方体的体积与它的长、宽、高的关系。
本单元的特点是计算比较多,特别在学习完长方体和正方体的体积计算之后,很多学生就不管三七二十一的都拿到题目就计算长方体或者正方体的体积了。这样就出现了较多的错误,特别是把计算表面积的题目求成了体积了。而表面积的计算则是涉及到较多的实际问题,例如在计算粉刷教室需要多少颜料和给游泳池贴瓷砖时,很多学生会不根据具体的情况来选择,直接就计算六个面了,出现错误。根据这些,在教学时,我主要是让学生观察我们的教室是怎么样的,数一数需要粉刷的一共几个面。不用粉刷的是哪个面,尽可能的减少失误。对于部分学生在学习完体积之后,不知道是计算表面积还是体积时,我主要引导学生看题目中的关键字眼,例如可以看题目问题中的单位,可以根据单位来具体确定是求什么的。
但是本单元的教学很出现了很多的问题,例如,教学时,由于计算表面积比较麻烦,而且学生很容易在计算的过程中有些面重复计算,而有些却没有计算到。在计算的过程中,不注意所使用的单位,在单位不统一的问题中没有化单位就直接计算了,出现较多这些情况的错误。
长方体和正方体的教学反思中班篇三
“综合与实践”是课程改革之后出现的一个新领域,它是以问题为载体,以学生自主参与为主体,以积累活动经验、培养应用意识和创新意识、激发创造潜能为目标的学习活动。在本课的教学中我突出了以下几点:
在综合实践活动中,学生深入到生活实践之中,处处碰到数学的存在,处处遇到数学问题,感受到数学与生活的紧密联系,比起数学知识的学习过程来,这种感受更实在,更真切,更深刻,因此也更具有现实意义。比如学习了本课之后,学生就可以计算灯箱上张贴的海报的面积、超市里的大立柱需要多大的彩纸才能张贴完整,那么在准备海报和彩纸时就可以先计算,再准备。让学生真切的体验到数学与生活的联系,体验到生活中处处有数学,处处用到数学,进一步认识数学在生活中的价值,增强学好数学的信心。
自主探究、动手实践、合作交流是新课程标准倡导的学习方式,在日常的学习过程中,虽然也可以实现这种学习方式的转变,但我们总是那么不能放手,总是那么不由自主的把知识灌输给学生。然而在综合实践活动中,学生成了活动的主体,必须自主地去探索,去实践,去交流,教师不得不放手,否则,就不成其为综合实践活动了。本节课中,从学习内容的收集——学习内容的分类——探究每一类的计算方法——规律的总结,无不是学生们自己实践、探索、交流的结果。整节课中学生真正成为了学习的主体,教师只是起到组织和引领的作用。
综合实践活动最本质的要求,就是让学生灵活地运用已学的知识和已具备的经验,解决生活中的实际问题,这比起课堂上、作业中、试卷里的纸上谈兵似的解决问题,来得更直接、更实在、更真实、更具有灵活性、更具有综合性,也就更能培养学生解决实际问题的能力。本节课中求火柴盒、烟囱、正方体立柱等的表面积问题,是学生在生活中亲眼看到、亲手摸到的东西,比在教室里想象更直接、更真实、更易于灵活掌握方法,从而提高解决问题的能力。
在进行实践活动的过程中,离不开合作交流,在师生、生生,小组与小组,小组与大组等的交流中,学生对知识或活动内容的理解更丰富,更全面。所以在合作交流中要让学生想说、敢说、乐说,畅所欲言。在交流的过程中学生的思想在撞击、知识在整合,在相互启发的过程中思维会实现质的飞跃。本节课中在计算衣柜的的表面积时,学生一句“摆放位置不同,表面积的求法肯定不一样”,激活了学生的思维,想象出了表面积是一个面、两个面、三个面、四个面等不同情况,发展了学生的创新能力。
长方体和正方体的教学反思中班篇四
《长方体的表面积》是北师大版小学数学五年级下册的内容,这部分知识的教学是在学生认识并掌握了长方体、正方体特征的基础上教学的,也是学生学习几何知识由平面计算扩展到立体计算的开始,是本单元的重要内容。本节课的重点就是理解表面积的概念及掌握表面积的计算方法。学生对旧知识已经有了一定的积累,但空间思维还没有真正形成的。为了使学生更好地建立表面积的概念和计算方法,应加强动手操作和直观演示,按照引入情境——自主探究——掌握规律的教学思路设计教学方案。本节课教学本着“结合实际、本本真真”的原则,让学生充分自主学习、讨论、操作,从而得出结论,激发了学生的学习兴趣,培养了学生思维能力和实践操作能力。
《新课程标准》指出:在教学中要创设与学生生活环境、知识背景密切相关的,又是学生感兴趣的学习情境,让学生在观察、操作、猜测、交流、反思等活动中逐步体会数学知识的产生、形成与发展的过程,获得积极的情感体验,感受数学的力量,同时掌握必要的基础知识与与技能。开课时我用长方体的实际的学具引入新课,讲明长方体有六个面,老师想知道长方体的六个面到底有多大,请你利用小组中的学具帮助老师解决。学生通过思考与交流,认识到“要想知道长方体的六个面到底有多大,必须计算出六个面的面积总和”,这时我因势利导指出:“长方体六个面的面积之和叫做它的表面积”,然后再让学生摸一摸、说一说。这样设计既能刺激学生产生好奇心,又能唤起学生强烈的参与意识,产生学习的需要,使学生在自主的观察与思考中理解了表面积的意义,为探索长方体和正方体表面积的计算打下了良好的基础。
数学知识具有高度的抽象性,我要引导学生在操作中思考,促进学生思维发展。在教学长方体表面积计算方法时,我先让学生动手操作,以长方体学具为依据,学生在动手操作的过程中,通过比较更为深刻地认识了长方体的特征,抓住了长方体表面积计算方法的关键,然后让学生在小组活动中通过说一说、算一算等方法,共同探索出长方体表面积的计算方法。在这里鼓励学生有不同方法,培养了学生的求异思维。学生在掌握了正方体的特征后,可以在学习的过程中很自然地发现了正方体表面积的计算方法,这样,改变了以往将正方体的表面积独立用一单位时间教学的方法这样既节省了时间,又培养了学生优化思维和求异思维的能力,促进课堂效益的提高。
在学生掌握了长方体表面积的计算方法后,利用所学知识解决一些实际的问题。使学生在愉快的气氛中,在师生共同参与和评价中完成练习训练,达到由浅入深、推陈出新的效果,并从中感受到学习的乐趣。
数学来源于生活,同时又服务于生活。应用学到的知识解决实际生活中的问题,不但能使学生感受数学与实际生活是密切联系的,而且能培养学生的创新精神。为此,我出示了以下几种情况的练习:(1)无盖的玻璃鱼缸(2)四个面的沉箱。使学生认识到长、正方体的表面积也会遇到许多特殊情况,我们求表面积不可以千篇一律要根据实际情况具体问题具体分析。
1、部分学困生还是没有完全照顾到。因为是从平面到立体,从二维到三维,成人看似简单,而对小学生却有一定的难度。如果
在课堂上我能够抓住学生实践的过程适时把展开的平面图做出点拨效果会更好。
2、有些学生缺乏空间想象力,还是分不清楚具体的面应该怎样求才是它的面积,而且学生缺乏耐心细致,做不到具体情况具体分析,因此在解决实际问题时,失误较多。在今后的教学中我应注重通过观察物体、认识方向、制作模型、设计图案等活动,发展学生的空间观念。
这节课对我来说是一次挑战也是一次机会,它也给我带来了更多的思考。无论对老师还是学生都需要知道结论,而相对来说更重要的还是经历过程。一次经历、一次反思、一次锻炼、一次提高!
长方体和正方体的教学反思中班篇五
(一)创设情境,提出问题
师:(电脑出示饼干盒、木箱)这两个物体大家认识吗?它们分别是什么体?
生1:饼干盒是长方体。
生2:木箱是正方体。
师:对于长方体和正方体你们已经知道了什么?
生1:长方体和正方体都有6个面,12条棱,8个顶点。
生2:长方体相对面的面积相等。
生3:长方体的每个面都是长方形,可能有两个相对面是正方形。
生4:正方形的6个面的面积相等。
……
师:同学们知道的可真多,那对于这两个物体你还想知道什么?
生1:我想知道它们的12条棱共有多长?
生2:我想知道它们的面积是多少?
……
师:同学们想知道的可真多,我们今天先来研究长方体和正方体的表面积好吗?(板书课题)
(二)探究
1、表面积的意义
师:那什么叫做长方体和正方体的表面积?
(拿出饼干盒、木箱)谁愿意上来摸一摸,并说说什么是它们的表面积?
生1:(边摸边说)长方体6个面的和是它的表面积。
生2:(边摸边说)正方体6个面的和是它的表面积。
师:(电脑演示长方体、正方体展开的过程)长方体和正方体6个面的总面积叫做它们的表面积。
师:现在知道了长方体和正方体6个面的总面积,就叫做她们的表面积。我们身边还有许多物体,你能举例说说它们的表面积吗?
生1:课本是长方体,它6个面的面积和是它的表面积。(边说边摸)
生2:橡皮的6个面的面积和是它的表面积。(边说边摸)
……
师:老师这里也有两个物体(出示无盖杯子和香皂盒),这两个物体的表面积在哪里?谁愿意上来摸一摸。
(指名学生上来边摸边说)
师:象这些物体几个面的总面积,就叫做它们的表面积。
2、表面积的计算
(1)一般长方体的表面积计算
师:现在我们知道了什么叫做物体的表面积,(拿出1号长方体木块)请同学们猜猜这个长方体的表面积可能会和它的什么有关?
生1:可能和长方体的棱长有关。
生2:可能和它的长、宽、高有关。
师:那请大家再猜猜它的表面积大概会是多少?
生1:74平方厘米。
生2:90平方厘米。
生3:120平方厘米。
……
师:那这个长方体的表面积到底会是多少呢?你们敢自己去探究它的表面积吗?
生:敢。
师:真勇敢,那请同学们拿出1号物体独立思考一下,求它的表面积需要测量它的哪几条棱,怎样计算3的表面积,好吗?然后再开始研究,研究时做好记录,完成表格,如果自己研究有困难,可以和小组里的同学一起研究。
数据记录计算方法
长方体长:
宽:
高:
(自主探究)
师:接下来我们在小组里交流一下自己的方法,交流时要求每位同学都说说自己的方法,交流结束后各小组准备派两个代表汇报。(生在小组里交流)
师:各小组准备汇报你们组里的方法,汇报时先说说记录下来的数据,再说说你们是怎样求得它的表面积?
生1:我们先算上面的面积10×6,再算左侧面的面积4×6,再算前面面的面积10×4,因为长方体相对面的面积相等,所以把3个面的面积加起来,再把它们的和乘以2,10×6+4×6+10×4(方法一)
生2:我是先算上面的面积10×6,因为上下两个面的面积相等,所以上下面的面积和是10×6×2,再算前面的面积10×4,因为后面的面积和它也相等,所以前后面的面积和是10×4×2,然后算左侧面的面积6×4,右侧面的面
积和它相等,它们的和是6×4×2,最后把他们加起来是10×6×2+10×4×2+6×4×2。(方法二)
生3:10×(4+6)×2+4×6×2(方法三)。
师:你是怎样想的?
生3:因为前后两个面的面积是10×4×2,上下两个面的面积是10×6×2,两部分合起来是10×4×2+10×6×2,我再利用乘法分配律把它改写成10×(4+6)×2,再加两个侧面的面积10×(4+6)×2+4×6×2。
师:你真聪明!
师:现在我们来看看刚才的猜测,我们猜得准吗?
生:不准。
师:不过同学们还是很能干,研究出了这么多种计算长方体表面的方法,那么,在这么多种计算方法中,你比较喜欢哪一种?
生1:我比较喜欢第一种方法。
生2:我喜欢第三种。
……
(2)特殊长方体、正方体的表面积计算
师:接下来,我们就用自己喜欢的方法来解答两个物体的表面积,每个桌上还有两个物体,2号长方体的长是8厘米,宽是5厘米,高也是5厘米,正方体的棱长是5厘米,请你们求出他们的表面积。
生独立计算后交流
师:我们先来看2号物体,说说你是怎样解答的?
生1:8×5×2+8×5×2+5×5×2。
生2:(8×5+8×5+5×5)×2。
生3:8×5×4+5×5×2。
师:说说你是怎样想的?
生3:因为这个长方体的左右两个侧面是正方形,所以中间4个面就相等,先算出一个面的面积8×5,把它乘以4就可以了,再加上两个侧面的面积5×5×2,就是8×5×4+5×5×2。
师:这三种方法,你们比较喜欢哪一种?
生:第三种。
师:我们再来看看这个正方体,你是怎样求它的表面积的?
生1:5×5×6,我是这样想的:因为正方体6个面的面积相等,所以可以先算一个面的面积,再乘以6。
生2:5×5×2+5×5×2+5×5×2。
师:哪种方法比较简便?
生:第一种。
师:看来特殊情况下,我们还要灵活处理,可能回有更好的方法。
……
1、鼓励大胆猜想,诱发探究意识
关于猜想,著名数学教育家波利亚有一段精彩的论述:我想谈一个小小的建议,可否让学生在做题前猜想该题的结果或部分结果。一个孩子一旦表示出某些猜想,他就把自己与该题连在一起,他会急切地想知道他的猜想正确与否,于是他便主动地关心这道题,关心课堂的进展。在教学中,我从学生的生活实际出发,设计问题情境,为学生提供两种生活中常见的几何体(饼干盒、木箱),要学生说说“对于这两个物体,你已经知道了什么?”“还想知道什么?”使他们自发地提出所要探究的问题,然后再鼓励学生用自己的思维方式大胆地猜想:“这个长方体的表面积可能与什么有关?”“它的表面积大概会是多少?”学生凭借自己直觉和自己的数学实际,提出各种看法,虽然有些“猜想”是错误的,但创新的智慧火花瞬间被点燃,同时一种种不同的猜想又激起了学生的探究愿望和进行验证的需要。
2、搭建探究舞台,挖掘思维潜力
在上面的教学中,在学生独立探究长方体表面积计算的活动中,先引导学生思考“求长方体表面积需要测量哪几条棱?”“怎样计算他的表面积?”这两个问题,再让学生独立思考。在这独立思考的过程中,每个学生都在根据自己的体验,用自己的思维方式自由的、开放地去探究,去发现解决长方体的表面积计算方法。在测量棱长的过程中,有的学生只测量长方体的长、宽、高就可计算,而有的学生其实也测量长、宽、高,但他们需要测量6次,也有的学生测量12次。在探索其计算过程中,有的学生是先算上面的面积10×6,因为相对面的面积相等,所以只用再乘以2,也就是10×6×2+10×4×2+6×4×2,有的是(10×6+10×4+6×4)×2,还有两位学生解决的方法更是出乎意料。在这过程中,我们不难发现学生的活动是自主的,是鲜活生动的,是富有个性和创造的,学生的创造潜力能在这样的活动中得到充分的发挥。学生经过自己的探究,找到了解决的方法,不仅智慧能力得到发展,而且获得了深层次的情感体验。
3、提供交流机会,实现合作互动
由于学生之间存在着各种差异,学习内容开放,学习活动自主。因此,面对同样的问题,学生中会有出现各种各样的思维方式
长方体和正方体的教学反思中班篇六
《长方体和正方体的初步认识》,是学生由平面图形到立体图形的一次过渡,也是学生学习其它立体图形的基础。是学生对图形认识的一个转折点,它从平面图形过渡到立体图形,从计算面积到计算体积,而且对于学生空间观念的发展更是一个质的飞跃。学生在空间方面的认识从二维发展到了三维。虽然说长方体在学生的身边随处可见,但是要发现它的特征,还是不怎么容易的,特别是对于那些构建空间念能力薄弱的学生来说,本单元的学习是有一定难度的。而对长方体正方体特征的充分认识就显得尤为重要了。我在教学《长方体和正方体的认识》这一课时注重做到以下几点:
1、关注学生已有的知识和经验,先让学生说说生活中哪些物体的形状是长方体或正方体的,关于长方体和正方体已经了解了哪些知识。然后根据学生的回答组织教学。
2、给学生更多的时间与空间动手操作,让学生通过看一看,摸一摸,数一数认识长方体正方体的特征。在解决“从不同的角度观察一个长方体,最多能同时看到几个面?”我让学生把一个长方体放在课桌上,然后坐着观察,站着观察,再换个角读观察,学生在观察后得到结论:最多能同时看到3个面。在探究长方体特征时,我先和学生认识面、棱、顶点,然后把学生分成四人一小组,运用长方体事物,在小组内通过看一看、量一量、比一比发现长方体面、棱、顶点的特征。学生在操作讨论交流中很快发现了长方体的很多特征,我想这样发现的特征学生肯定印象深刻。
3、注重知识的条理性,培养学生有条理地研究问题,有条理地总结结论。在研究长方体特征时,我让学生分别从面、棱、顶点三方面去研究,学生对于研究有了方向。学生在小组内讨论结束后我组织学生有条理地总结,并有条理地板书。
4、新增了有两个面是正方体的特殊长方体。同样让学生自己先研究再交流,发现这样的长方体除正方体外的四个长方体完全相同,为后面学习长方体的表面积做铺垫。
5、在练习中注重学生灵活解决问题的能力的培养。如在学习了长方体正方体棱的特征以后,我增加了一些题目,已知长方体的长、宽、高,求棱长总和;已知正方体的棱长总和,求棱长。
1、对于课堂教学的调控能力还需加强,注重各环节所用时间分配比例,合理组织课堂教学。
2、教师自身数学语言应进一步规范,使学生逐步形成严谨的数学思维。
3、对于长方体中相对的面面积相等,以及棱长之间的关系,如果能在学生汇报时,恰当地运用多媒体课件进行演示,那样就会有效地突破教学重点和难点。
4、对于数学知识之间的总体把握还有待于提升,教师应多钻研教研,全面把握知识之间的内在联系,教学中使学生形成完整的知识框架,并逐步掌握解决问题的方式与方法。
长方体和正方体的教学反思中班篇七
《长方体和正方体的表面积》是在学生认识并掌握了长方体、正方体特征的基础上教学的,也是学生学习几何知识由平面计算扩展到立体计算的开始,是本单元的重要内容。学生对旧知识已经有了一定的积累,但空间思维还没有真正形成。为了使学生更好地建立表面积的概念和计算方法,应加强动手操作,按照创设情境——实践操作——自主探究——掌握规律的教学流程进行设计教学方案。本节课教学本着“让学生自主探究活动贯穿于课的始终”的原则,让学生充分自主学习、研究、讨论、操作,从而得出结论,激发了学生的学习兴趣,培养了学生思维能力和实践操作能力。
这节课是在认识长方体、正方体特征的基础上进行教学的。整个教学过程是:从实际出发设置情境提出问题——引出表面积概念——当直觉无法判断时需要计算表面积——学生尝试求表面积——总结求表面积的方法、条件和规律——学生独立解决正方体表面积——应用知识,解决问题。这样设计,层次清楚、结构严谨、学生主动建构,积极回忆联想,使教材结构与学生的认知结构达到和谐的统一,真正做到“凡学生能想的,应该认学生自己去想”,从而使学生在获得真知的同时,也学会了怎样学习,个性得到了充分的发展。整堂课学生动手实践操作,合作讨论交流,积极主动参与探究,体现了“以人为本,以学生发展为本”的新理念。
培养学生的空间念是空间与图形教学的重要任务,而求长方体表面积必须具备长方体每个面是由哪两条棱相乘的空间观念,这是教学的难点。为此,教师在教学中一方面充分运用电教手段,精心设计各种投影片(立体图),在投影片上用不同的颜色有规律地衬托出不同面的位置以及面与棱的关系,从而较好地化抽象为具体,克服了学生空间想象中的困难;另一方面,教师引导学生观察实物、立体图,将纸盒展开再还原整合,动手触摸长方体的面与棱等,也有效地增加了学生的空间观念,为独立探索长方体表面积打下了扎实的基础。
通过这节课,我体会到教学方法、途径是各种各样的,教师自己要摒弃唯上、唯师、唯本的传统理念,不迷信静态的教材和传统的经验,将"已完成"的数学当成"未完成"的数学来教,使教师自身思维放开,富于创新。
其次,不要以自身成人的眼光看待学生的思维,而应"蹲下身子",以儿童的眼光去欣赏数学,接纳学生的不同意见。尤其是对于学生"异想天开"的答案,不要过早作出简单的判断,更不能嘲笑、讥讽学生,而应耐心倾听,积极肯定,小心呵护学生刚刚萌发的创新意识。
再次,教学不应围着自己的"教"转,应多为学生的"学"服务。应积极倡导延迟评价,多给学生表达自我的机会,尤其是当学生的答案"离奇古怪"时,教师不应急于主观猜测、简单评价,草率收场,而应真诚地多问几个"为什么?""你是怎样想的?"或许学生富有个性化的火花就会随之迸发而出。这时你会惊叹,学生的创造潜能是难以估量的,而课堂也会因学生丰富多彩的答案而变得精彩。
长方体和正方体的教学反思中班篇八
本课学习之前,孩子们们已经掌握了长方体体积的计算公式v=abh和正方体体积的计算公式v=a3,为了沟通这两个公式之间的联系,减轻学生记忆的负担,培养学生的抽象概括能力,也为以后学习柱体体积计算公式打下基础,本节课学习长方体和正方体统一的体积公式,即底面积乘高。
课始我引入了古代数学家计算长方体体积的方法引入:
西汉末年我国古代数学家编撰了一本不朽的传世名著《九章算术》。这本书共九章,其中一章叫商功章,它收集的都是一些有关体积计算的问题。书中是这样叙述有两个面是正方形的长方体体积的计算方法的:“方自乘,以高乘之即积尺.”就是说,先用边长乘边长得底面积,再乘高就得到长方体的体积。
目的是想让孩子们知道两千多年前,我国古代数学家已经明白了怎么计算长方体的体积,让他们明白我们在此基础上学习肯定能学得更出色,从而激发孩子们学好数学知识的情感。
接着围绕四个问题展开讨论:
(1)看完这段叙述,你想到什么?
(2)这段文字中描述的长方体有什么特征?底面积指的是哪一个面的面积?
(3)古代数学家是怎样计算长方体体积的?它与我们今天掌握的计算方法相同吗?为什么?
(4)怎样将这个长方体变成一个最大的正方体?它的体积怎样计算?
这四个问题为孩子们思考、交流并推出长方体、正方体的体积计算统一公式起了一个导航的作用。它加深了学生对长方体、正方体特征及之间的关系的认识,渗透了几何变换的思想方法,也让孩子们感受我国数学的源远流长。
在第三个问题的交流中,我主要引导学生将自己掌握得长方体和正方体体积计算公式和古代数学家总结出来的底面积乘高进行对比,在交流对比中明白长乘宽或者棱长乘棱长其实就是底面积,之后,在调整中概括出长方体和正方体统一的体积计算公式。这次对比,使孩子们对原有的计算公式进行了重组,使他们对柱体体积计算方法也有了一个基本的认识,也为日后学习各种柱体体积奠定了基础。
【本文地址:http://www.xuefen.com.cn/zuowen/877963.html】