长方体正方体体积教案设计(汇总20篇)

格式:DOC 上传日期:2023-11-07 09:24:20
长方体正方体体积教案设计(汇总20篇)
时间:2023-11-07 09:24:20     小编:雅蕊

教师编写教案可以提高自己的教学水平,不断优化自己的教学方法。那么我们如何编写一份高质量的教案呢?首先,要明确教学目标,确定教学重点和难点,使教学目标符合学生的学习需求。其次,要合理安排教学内容和教学步骤,注重知识的结构和逻辑性,确保教学过程的连贯性和清晰性。还要注重教学方法的选择和运用,灵活运用多种教学手段和教学资源,激发学生学习的积极性和主动性。同时,要重视教学评价,及时反馈学生学习情况,调整教学策略,促进学生全面发展。接下来是一些研究性的教案案例,希望能够为大家提供一些深入思考和探索的方向。

长方体正方体体积教案设计篇一

课题二:

教学要求  使学生理解长方体和正方体体积的计算公式,初步学会计算长方体和正方体的体积,培养学生实际操作能力,同时发展他们的空间观念。

教学过程。

一、创设情境。

填空:1、        叫做物体的体积。2、常用的体积单位有:     、     、     。3、计量一个物体的体积,要看这个物体含有多少个           。

师:我们已经知道计量一个物体的体积,要看这个物体含有多少个体积单位,那么怎样计算任意一个长方体、正方体的体积?这节课我们就来学习长方体、正方体体积的计算方法。(板书课题)。

二、实践探索。

1.小组学习------长方体体积的计算。

出示:一块长4厘米、宽3厘米、高2厘米的长方体橡皮泥,用刀将它切成一些棱长1厘米的小正方体。

提问:请你数一数,它的体积是多少?有许多物体不能切开,怎样计算它的体积?

实验:师生都拿出准备好的12个1立方厘米的小正方块,按第32页的第(1)题摆好。

观察结果:(1)摆成了一个什么?

(2)它的长、宽、高各是多少?

板书:长方体:长、宽、高(单位:厘米)。

4   3   1。

含体积单位数:4×3×1=12(个)。

体积:4×3×1=12(立方厘米)。

(3)它含有多少个1 立方厘米?

(4)它的体积是多少?

同桌的同学可将你们的小正方体合起来,照上面的方法一起摆2层,再看:

(1)摆成了一个什么?

(2)它的长、宽、高各是多少?

(3)它含有多少个1立方厘米?

(4)它的体积是多少?(同上板书)。

通过上面的实验,你发现了什么?(可让学生分小组讨论)。

结论:长方体的体积=长×宽×高。

用字母表示:v=a×b×h=abh。

应用:出示例1,让学生独立解答。

2.小组学习--正方体体积的计算。

结论:正方体的体积=棱长×棱长×棱长。

用字母表示为:v=a3。

说明:a×a×a可以写成a3,读作:a的立方。

应用:出示例2,让学生独立做后订正。

三、课堂实践。

1.做第34页的“做一做”的第1题。

(1)先让学生标出每个长方体的长、宽、高。

(2)再根据公式算出它们各自的体积。

(3)集体订正。

2、做第33页的“做一做”的第2题。

3、做练习七的第4、6题。

四、课堂小结。

五、课后实践。

做练习七的第5、7题。

长方体正方体体积教案设计篇二

课题三:

教学要求  在理解底面积的基础上,使学生掌握长方体和正方体体积的统一计算公式,提高学生综合运用知识的能力,发展学生的空间概念。。

教学重点  理解底面积。

教学用具  投影仪。

教学过程。

一、创设情境。

1、指出下图中长方体的长、宽、高和正方体的棱长。(投影显示)。

2、填空。

(1)长、正方体的体积大小是由       确定的。

(2)长方体的体积=                 。

(3)正方体的体积=                。

二、探索研究。

1.观察。

(1)长方体体积公式中的“长×宽”和正方体体积公式中的“棱长×棱长”各表示什么?(将复习题中的图用投影显示出“底面积”)。

结论:长方体的体积=底面积×高。

正方体的体积=底面积×棱长。

2.思考。

(1)这条棱长实际上是特殊的什么?

(2)正方体的体积公式又可以写成什么?

v = sh。

三、课堂实践。

1.做第35页的“做一做”的第1题。学生独立做后,学生讲评。

2.做第35页的“做一做”的第2题。

首先帮助学生理解:什么是横截面;把这根木料竖起来实际上就是什么?再让学生做后学生讲评。

3.做练习七的第9题,学生独立解答,老师个别辅导,集体订正。

四、课堂小结。

学生小结今天学习的内容。

五、课后实践。

做练习七的第10、11、12题。

长方体正方体体积教案设计篇三

课题三:

教学要求在理解底面积的基础上,使学生掌握长方体和正方体体积的统一计算公式,提高学生综合运用知识的能力,发展学生的空间概念。。

教学重点理解底面积。

教学用具投影仪。

教学过程。

一、创设情境。

1、指出下图中长方体的长、宽、高和正方体的棱长。(投影显示)。

2、填空。

(1)长、正方体的体积大小是由确定的。

(2)长方体的体积=。

(3)正方体的体积=。

二、探索研究。

1.观察。

(1)长方体体积公式中的“长×宽”和正方体体积公式中的“棱长×棱长”各表示什么?(将复习题中的图用投影显示出“底面积”)。

结论:长方体的体积=底面积×高。

正方体的体积=底面积×棱长。

2.思考。

(1)这条棱长实际上是特殊的什么?

(2)正方体的体积公式又可以写成什么?

v=sh。

三、课堂实践。

1.做第35页的“做一做”的第1题。学生独立做后,学生讲评。

2.做第35页的“做一做”的第2题。

首先帮助学生理解:什么是横截面;把这根木料竖起来实际上就是什么?再让学生做后学生讲评。

3.做练习七的第9题,学生独立解答,老师个别辅导,集体订正。

四、课堂小结。

学生小结今天学习的内容。

五、课后实践。

做练习七的第10、11、12题。

长方体正方体体积教案设计篇四

学具:1立方厘米的立方体20块.。

教学过程。

一、复习准备.。

1.提问:什么是体积?

2.请每位同学拿出4个1立方厘米的立方体,把它们拼在一起,摆成一排.。

教师提问:拼成了一个什么形体?(长方体)。

这个长方体的体积是多少?(4立方厘米)。

你是怎样知道的?(因为这个长方体由4个1厘米3的正方体拼成)。

如果再拼上一个1立方厘米的正方体呢?(5立方厘米)。

谈话引入:要计量一个物体的体积,就要看这个物体含有多少个体积单位.今天我们。

长方体正方体体积教案设计篇五

3.培养学生归纳推理,抽象概括的能力.。

教学重点。

教学难点。

教学用具。

教具:1立方厘米的立方体24块,1立方分米的立方体1块.。

学具:1立方厘米的立方体20块.。

教学过程。

一、复习准备.。

1.提问:什么是体积?

2.请每位同学拿出4个1立方厘米的立方体,把它们拼在一起,摆成一排.。

教师提问:拼成了一个什么形体?(长方体)。

这个长方体的体积是多少?(4立方厘米)。

你是怎样知道的?(因为这个长方体由4个1厘米3的正方体拼成)。

如果再拼上一个1立方厘米的正方体呢?(5立方厘米)。

谈话引入:要计量一个物体的体积,就要看这个物体含有多少个体积单位.今天我们。

长方体正方体体积教案设计篇六

教学内容。

教材第33~34页内容及例1。

教学目标。

知识与技能。

(1)理解长方体和正方体表面积的意义。

(2)理解并掌握长方体表面积的计算方法。

(3)发展学生的空间观念。

过程与方法。

(1)经历长方体表面积的计算方法的探究过程。

(2)通过合作探究培养学生的抽象概括能力、推理能力,发展学生的空间观念。

情感态度与价值观。

(1)培养数学与生活的联系,激发对数学学习的兴趣。

(2)体验合作探究的乐趣。

教学重点  长方体、正方体表面积的意义和长方体表面积的计算方法。

教学难点  确定长方体每一个面的长与宽。

教学准备   长方体和正方体表面积展开的教具、视频展示台。学生准备长方体和正方体纸盒各一个。

教学过程。

一、创设情境。

1、说出长方形面积的计算公式。

2、看图回答。

(1)指出这个长方体的长、宽、高各是多少?

(2)哪些面的面积相等?

(3)填空:

上、下两个面的长是       宽是       。

这个长方体   左、右两个面的长是       宽是       。

前、后两个面的长是       宽是       。

3、想一想。长方体和正方体都有几个面?

二、实践探索。

1.个别学习-------表面积的概念。

(1)老师和同学们都拿出准备好的长方体和正方体并在上面分别用“上”、“下”、“左”、“右”、“前”、“后”标在6个面上。

(2)沿着长方体和正方体的棱剪开并展平。

(3)你知道长方体或者正方体6个面的总面积叫做它的什么吗?

学生试着说一说。

2.小组合作学习-------计算塑料片的面积。

(1)想:这个问题,实际上就是要我们求什么?

使学生明确:就是计算这个长方体的表面积。

(2)学生分组研究计算的方法。

(3)找几名代表说一说所在小组的意见。

解法(一):(是分别算出上、下,前、后,左、右面的面积之和,然后算总和。)。

6×5×2+6×4×2+5×4×2。

=60+48+40。

=148(平方厘米)。

解法(二):(是先算出上、前、左这三个面的面积之和,再乘以2)。

(6×5+6×4+5×4)×2。

=74×2。

=148(平方厘米)。

(4)比较上面两种解法有什么不同?它们之间有什么联系?

三、课堂实践。

做第26页的“做一做”,学生独立列式算出后集体订正。

四、课堂小结。

你发现长方体表面积的计算方法了吗?

结论:

=长×宽×2+长×高×2+宽×高×2。

长方体的表面积。

=(长×宽+长×高+宽×高)×2。

五、课堂练习。

做练习六的第1、2题,学生口答,学生讲评。

六、课后实践。

做练习六的第3、4题在作业本上。

旁批:

后记:

长方体正方体体积教案设计篇七

(二)能运用长、正方体的体积计算解决一些简单的实际问题。

(三)培养学生归纳推理,抽象概括的能力。

教学重点和难点。

教学用具。

教具:投影片,长、正方体,1厘米3的立方体24块,1分米3的立方体一块,电脑动画软件(或活动投影片)。

学具:1厘米3的立方体20块。

教学过程设计。

(一)复习准备。

1.提问:什么是体积?

2.请每位同学拿出4个1厘米3的立方体,把它们拼在一起,摆成一排。

教师:拼成了一个什么形体?这个长方体的体积是多少?你是怎样知道的?(因为这个长方体由4个1厘米3的正方体拼成,所以它的体积是4厘米3。)。

教师:如果再拼上一个1厘米3的正方体呢?

教师:要计量一个物体的体积,就要看这个物体含有多少个体积单位。(出示长方体和正方体教具)今天我们来学习怎样计算长方体和正方体的体积。板书课题:长方体和正方体的体积。

(二)学习新课。

长方体正方体体积教案设计篇八

教学目标:

知识与技能:

经历对长方体和正方体的知识系统化的整理,加深对长方体正方体的形体特征的认识,分清表面积和体积的概念,能熟练地掌握形体的表面积和体积(容积)的计算,解决一些实际问题。

解决问题:

初步学会用形体知识提出问题、理解问题,并能综合运用所学的知识和技能解决问题,发展学生应用意识、实践能力与创新精神。

情感与态度:

通过解决实际问题,让学生感受到数学与生活的密切相关,使学生形成积极参与数学教学活动,并积极与人合作获得成功的体验,树立学好数学的信心与勇气。

教学过程:

一、假设问题情境,激发学习兴趣。

开展生生之间、师生之间对话,教师要引导注意安全与游泳前的准备运动等等的相关的内容。

指名学生回答,也可让学生小组讨论交流后反馈,由学生各抒己见。教师要注意凡学生提出的问题都要给于一定的评价性的肯定,同时要注意正确思想的引导。

二、自主合作整理,构建知识网络。

让学生每四人一组小组动手合作列出知识纲要。

小组的成果开展反馈并给于展示(可借投影仪)。

三、综合应用知识,解决实际问题。

师述:现在在请你们为学校设计建游泳池的方案?

你们认为建游泳池要解决哪些问题呢?

学生讨论说一说。

出示教师的几个问题:

(1)游泳池的长宽高各是多少米?

(2)池占地多大?

(3)挖出多少的土?

(4)池内的四周和底部用什么铺,要铺多大的面积?

(5)要放入多少的水?

小组反馈合作的结果。

四、开展激励评价,体验成功喜悦。

师述:你们说一说哪种好呢?

第9课时实践活动粉刷围墙。

教学目标。

1、让学生经历粉刷围墙的实践活动,巩固有关表面积等方面的知识,加强数学知识在实际生活中的应用。

2、在引导学生准备测量、明确分工、解救问题的过程中,培养学生的合作意识,提高学生收集、整理、分析信息的能力。

3、在利用数学知识制定方案的过程中,体验数学知识与生活的紧密联系,并利用数学知识科学地知道生活,感受成功。

教学重点。

整理分析和比较信息,制定方案。

教学难点。

策略多样化后的优化策略。

教学过程。

一、情境再现,激趣导入。

师:(课件出示围墙的污点和裂缝)大家看到这些图片想说些什么?(生争相发言)老师听出来大家都根热爱我们的学校,看来粉刷围墙势在必行。这节课我们一定要拿出一份可行的方案,解决这个问题。(板书题目:粉刷围墙)。

二、集体规划,确定步骤。

1、确定研究步骤。

作为粉刷围墙工作的小工程师,你认为应分哪几步去完成这项工作呢?(生回答)。

2、根据学生回答,教师引导学生确定研究步骤。

(1)调查相关数据信息(包括粉刷面积、涂料费用、人工费用等)。

(2)选择信息综合计算,得出粉刷草案。

(3)整理研究结果,呈现出书面粉刷方案。

三、引导学生汇报课前调查情况。

师:课前各组已经分头去调查了相关的粉刷信息,请大家以组为单位汇报搜集到的信息,其他小组有不同意见可以互相补充。

1、分组汇报。

(1)调查粉刷面积的小组汇报调查结果,明确围墙的长、高,并汇报计算面积的准确过程。

(2)调查涂料价目的小组汇报外墙涂料价目调查情况。

(3)调查人工费用的小组汇报人工费用调查情况。

2、指导学生计算人工费用及涂料数量。

(1)学生独立计算人工费用及涂料数量。

(2)集体订正。

四、小组合作,制订粉刷方案。

涂料型号不同,价格也不同,到底该选择哪种涂料?一共要花多少钱?怎样做才能有实用有美观呢?请各小组同学合作,拿出你们认为最好的粉刷计划。

1、小组合作综合分析。

2、小组为单位进行汇报,体现策略多样化,展示学生的多种方案。

3、优化选择。

4、学生独立计算买已选涂料粉刷一共需要的费用。

5、书面整理并呈现粉刷围墙的方案。

6、对方案的润色和个性化设计。

五、课外延伸,完美计划。

六、全课总结,感受成功。

长方体正方体体积教案设计篇九

3.培养学生归纳推理,抽象概括的能力.。

教学重点。

教学难点。

教学用具。

教具:1立方厘米的立方体24块,1立方分米的立方体1块.。

学具:1立方厘米的立方体20块.。

教学过程()。

一、复习准备.。

1.提问:什么是体积?

2.请每位同学拿出4个1立方厘米的立方体,把它们拼在一起,摆成一排.。

教师提问:拼成了一个什么形体?(长方体)。

这个长方体的体积是多少?(4立方厘米)。

你是怎样知道的?(因为这个长方体由4个1厘米3的正方体拼成)。

如果再拼上一个1立方厘米的正方体呢?(5立方厘米)。

谈话引入:要计量一个物体的体积,就要看这个物体含有多少个体积单位.今天我们。

将本文的word文档下载到电脑,方便收藏和打印。

长方体正方体体积教案设计篇十

教学目标。

知识与技能。

(1)在理解底面积的基础上,使学生掌握长方体和正方体体积统一计算公式。

(2)提高学生综合运用知识的能力,发展学生的空间观念。

过程与方法。

(2) 通过解决实际问题加深对所学知识的理解。

情感态度与价值观。

(1)体验合作探究的乐趣。

(2)感受数学与现实生活的密切联系,发展学生的思维。

教学重点 理解底面积的含义,统一公式的推导。

教学准备 课件。

教学过程。

一、创设情境。

1、指出下图中长方体的长、宽、高和正方体的棱长。(投影显示)。

2、填空。

(1)长、正方体的体积大小是由       确定的。

(2)长方体的体积=                 。

(3)正方体的体积=                。

二、探索研究。

1.观察。

(1)长方体体积公式中的“长×宽”和正方体体积公式中的“棱长×棱长”各表示什么?(将复习题中的图用投影显示出“底面积”)。

结论:长方体的体积=底面积×高。

正方体的体积=底面积×棱长。

2.思考。

(1)这条棱长实际上是特殊的什么?

(2)正方体的体积公式又可以写成什么?

v = sh。

三、课堂实践。

1.做第35页的“做一做”的第1题。学生独立做后,学生讲评。

2.做第35页的“做一做”的第2题。

首先帮助学生理解:什么是横截面;把这根木料竖起来实际上就是什么?再让学生做后学生讲评。

3.做练习七的第9题,学生独立解答,老师个别辅导,集体订正。

四、课堂小结。

学生小结今天学习的内容。

五、课后实践。

做练习七的第10、11、12题。

旁批:

后记:

长方体正方体体积教案设计篇十一

在理解底面积的基础上,使学生掌握长方体和正方体体积的统一计算公式,提高学生综合运用知识的能力,发展学生的空间概念。

教学及训练。

重点。

理解底面积。

仪器。

教具。

投影仪。

教学内容和过程。

教学札记。

一、创设情境。

1、指出下图中长方体的长、宽、高和正方体的棱长。(投影显示)。

2、填空。

(1)长、正方体的体积大小是由确定的。

(2)长方体的体积=。

(3)正方体的体积=。

二、探索研究。

1.观察。

(1)长方体体积公式中的“长×宽”和正方体体积公式中的“棱长×棱长”各表示什么?(将复习题中的图用投影显示出“底面积”)。

结论:长方体的体积=底面积×高。

正方体的.体积=底面积×棱长。

2.思考。

(1)这条棱长实际上是特殊的什么?

(2)正方体的体积公式又可以写成什么?

结论:长方体(或正方体)的体积=底面积×高,用字母表示:v=sh。

三、巩固练习。

1.做第20页的“练一练”。学生独立做后,学生讲评。

首先帮助学生理解:什么是横截面?再让学生做后学生讲评。

3.做练习三的第9、10题,学生独立解答,老师个别辅导,集体订正。

四、课堂小结。

学生小结今天学习的内容。

五、课后练习。

做练习三的第11、12、13题。

长方体正方体体积教案设计篇十二

长方体的体积计算这一内容是在学生认识了长方体(正方体)的体积的概念,长方体(正方体)的体积:立方米、立方厘米、立方分米的基础上学习的。通过这一节课的学习,可以帮助学生在今后的生产和生活中实际测量和计算一些物体的体积,解决一些实际问题,进一步体会到知识来源于实践、用于实践的道理,学习一些研究问题的方法。并且对学生空间观念的形成有着重要的意义。听了叶老师执教的《长方体的体积》一课,深受启发。我认为主要有以下几方面的亮点:

一、重视引导学生经历知识的探究过程。

究竟长方体的体积与长、宽、高有什么定量关系呢?叶老师安排了操作活动,引导学生用小正方体摆4个不同的长方体,通过观察、分析,发现长方体体积与长、宽、高的关系,逐步归纳得出计算方法。这一过程都是学生在教师的引导下,自主探究的过程,而不是教师的简单说教。

二、重视学生能力的培养。叶老师展示出6个大小不同的长方体,引导学生观察、发现长、宽、高与体积的关系的过程,是培养学生观察能力的过程。叶老师引导学生通过观察长、宽、高与体积的关系,让学生发现规律:长方体的体积正好是它们长、宽、高的乘积的过程,也是培养学生观察能力的过程。叶老师引导学生用棱长为1厘米的小正方体摆不同的长方体的过程,是培养学生动手实践的过程。老师引导学生练习的过程,是培养学生应用所学知识解决问题的能力的过程。在这一系列的探索活动中,学生通过动眼观察、动脑思考、动手操作,发散思维能力、解决问题的能力和策略都得到了不同程度的提高。

三、重视联系学生的生活实际。脱离生活的数学,把数学知识的学习与学生身边的事物割裂开来,既不利于学生理解抽象概括的数学知识,又无法让学生体会学习数学的意义。在课后练习中“一个长方体木箱长5分米,宽和高都是0.4米,它的体积是多少立方分米?”在课程接近尾声之时,叶老师始终没有忘记让学生再次感受我们今天学习的内容是解决我们身边的一些实际问题,我们学习了它,就应该把它运用到生活中。通过联系实际,进一步激发了学生对数学学习的兴趣,帮助学生更好地应用所学的知识。这样,不仅使学生感受到数学就在身边,激发学生从生活中寻找数学问题的兴趣。

四、重视反馈纠正。反馈纠正是改善教学过程,提高教学效率的重要手段。叶老师在教学中反馈形式多种多样,随堂提问、课堂交流、布置练习等反馈及时,纠正有力。反馈面较广,反馈角度多方面,有效地防止了学生知识缺陷的积累,增强了学生学习的自信心。

可以借助多媒体课件逐一展示每个长方体,要求学生记录每个长方体的长、宽、高、体积等有关数据,这样更直观。更便于学生发现体积与长、宽、高之间的关系。

长方体正方体体积教案设计篇十三

1、进一步掌握体积、容积单位之间的进率,并能比较熟练地进行化聚。

2、能根据有关体积、容积的计算方法,解答实际问题。

能比较熟练地进行化聚,并能根据有关体积、容积的计算方法,解答实际问题。

458立方厘米=()立方分米。

20.6立方分米=()立方米。

7060毫升=()升=()立方分米。

130毫升=()立方厘米=()立方分米。

800升=()立方分米=()立方米。

0.02立方米=()立方分米=()升。

2、一节货车车厢,从里面量长13米,宽2.7米,装的煤高1.2米。如果每立方米煤重1.3吨,这节车厢里装了多少吨煤?(得数保留整数)。

(1)学生独立完成。

(2)说说解题思路。

第一题:18×5=90(立方分米)90(立方分米)=90升。

90×0.74=66.6(千克)。

第二题:13×2.7×1.2=42.12(立方米)。

42.12×1.3≈55(吨)。

第三题:60×60×80=288000(立方厘米)。

2分米=20厘米。

20×20×20=8000(立方厘米)288000÷8000=36(个)。

第四题:9.6×4.2=40.32(平方米)。

9.6×4.2×2.5=100.8(立方米)。

第五题:80×40×(60-10)=160000(立方厘米)。

160000(立方厘米)=160升。

160000÷(40×40)=100(厘米)。

(3)重点分析第5题。

水面离箱口10厘米,说明水的高度是50厘米。从而求出水的容量。再根据底面边长40厘米的长方体水箱,求得水的高度。

1、学生独立研究。

2、小组讨论。

3、教师评议。

长方体正方体体积教案设计篇十四

2.能运用长、正方体的体积计算解决一些简单的实际问题.

3.培养学生归纳推理,抽象概括的能力.

教学重点

长方体和正方体体积的计算方法.

教学难点

长方体和正方体体积公式的推导.

教学用具

教具:1立方厘米的立方体24块,1立方分米的立方体1块.

学具:1立方厘米的立方体20块.

教学过程()

一、复习准备.

1.提问:什么是体积?

2.请每位同学拿出4个1立方厘米的立方体,把它们拼在一起,摆成一排.

教师提问:拼成了一个什么形体?(长方体)

这个长方体的体积是多少?(4立方厘米)

你是怎样知道的?(因为这个长方体由4个1厘米3的正方体拼成)

如果再拼上一个1立方厘米的正方体呢?(5立方厘米)

谈话引入:要计量一个物体的体积,就要看这个物体含有多少个体积单位.今天我们

来学习怎样计算长方体和正方体的体积.

长方体正方体体积教案设计篇十五

3、培养学生分析能力,发展学生的空间概念。

一、复习导入。

2、指出长方体纸盒的长、宽、高,并说出长方体的特征。指出正方体的棱长,并说出正方体的特征。

二、新课讲授。

(1)请同学们拿出准备好的长方体纸盒,在上面分另标出“上”、“下”、“前”、“后”、“左”、“右”六个面。

师生共同复习长方形的特征。请同学们沿着长方体纸盒的前面和上面相交的棱剪开,得到右面这幅展开图。

(2)请同学们拿出准备好的正方体纸盒,分别标出“上、下、前、后、左、右”六个面,然后师生共同复习正方体的特征。让学生分别沿着正方体的棱剪开。得到右面正方体展开图。

观察后,小组议一议。引导学生总结长方体的表面积概念。长方体或正方体6个面的总面积,叫做它的表面积。

(2)出示教材第24页例1。

理解分析,做一个包装箱至少要用多少平方米的硬纸板,实际上是求什么?(这个长方体饭包装箱的表面积)。

先确定每个面的长和宽,再分别计算出每个面的面积,最后把每个面的面积合起来就是这个长方体的表面积。

(3)尝试独立解答。

(4)集体交流反馈。

老师根据学生的解题思路进行板书。

0.7×0.4+0.7×0.4+0.5×0.4+0.5×0.4+0.7×0.5+0.7×0.5=0.28+0.28+0.2+0.2+0.35+0.35=1.66(m2)。

0.7×0.4×2+0.5×0.4×2+0.7×0.5×2=0.7+0.56+0.4=1.66(m2)。

方法三:(上面的面积+前面的面积+左面的面积)×2。

(0.7×0.4+0.5×0.4+0.7×0.5)×2=0.83×2=1.66(m2)。

(6)请同学们尝试自己解答教材第24页例2,集体交流算法,请学生说说你是怎样解答计算正方体表面积的。

三、课堂作业。

1、完成教材第23页“做一做”。

2、完成教材第24页“做一做”。

3、完成教材第25~26页练习六第1、2、3、4、6、7题。

四、课堂小结。

板书设计:

教学内容:

教学目标:

2、通过练习、操作发展空间想象能力。培养学生对数学的兴趣与求知欲。

教学重点:

能根据生活实际,对不是完整六个面的长方体、正方体的表面积进行正确的判断。

教学难点:

教具运用:

课件。

教学过程:

一、复习导入。

师:上节课我们认识了长方体和正方体的表面积,并且学习了表面积的计算方法,请大家试着解决下面的两个问题。(出示课件)。

1、做一个长8厘米,宽6厘米,高5厘米的纸盒,至少需要多少纸板?

2、一个棱长和为180的正方体,它的表面积是多少?学生独立计算,教师巡视指导,集体订正。师:通过前两节课的学习,我们学会了长方体、正方体表面积的计算方法,就是计算出它们6个面的面积之和,但在实际生活中,有时只需要计算其中一部分面的面积之和,这就要根据实际情况来思考了。

二、新课讲授。

1、教材25页第5题。

(2)学生读题,看图,理解题意。

(3)“上下面不贴”说明什么?(说明只需要计算4个面的面积,上下两个面不计算)。

(4)学生尝试独立解答。

(5)集体交流反馈。

方法一:10×12×2+6×12×2=240+144=384(cm2)。

方法二:(10×12+6×12)×2=(120+72)×2=384(cm2)。

答:这张商标纸的面积至少需要384平方厘米。

2、教材26页第8题。

(1)课件出示教材26页第8题图片及文字:一个玻璃鱼缸的形状是正方体,棱长3dm,制作这个鱼缸时至少需要玻璃多少平方分米?(鱼缸的上面没有盖)。

(2)学生读题,看图,理解题意。

(3)提问“鱼缸的上面没有盖”说明什么?(说明只需计算正方体5个面的面积之和)。

(4)请学生独立列式计算,教师巡视,了解学生是否真正掌握。

3×3×5=9×5=45(dm2)。

答:制作这个鱼缸时至少需要玻璃45平方分米。

三、课堂作业。

完成教材第26页练习六第9、10题。

四、课堂小结。

五、课后作业。

完成练习册中本课时练习。

板书设计:

长方体正方体体积教案设计篇十六

1、结合具体情境和实践活动,经历探索长方体、正方体体积的计算方法,掌握并能正确计算长方体、正方体的体积。

2、经历观察、操作、探索的过程,发展动手操作、抽象概括、归纳推理的能力。进一步发展空间观念。

3、运用体积计算公式解决一些简单的实际问题。

4、探究活动中体验学习数学、发现数学的乐趣,学会与人合作。

2.教学重点/难点。

教学重点:引导学生探索长方体体积的计算方法。

教学难点:理解长方体体积公式的意义。

3.教学用具。

教学课件、一个长方体拼制模型。

4.标签。

一、启发谈话,激趣引入。

二、学习“体积”、“体积单位”的概念。

2、出示差不多大的土豆和一个长方体石块,你知道它们哪个大吗?那你有什么办法?

演示书上的实验,得出:土豆占的空间小,石块占的空间大。

4、计量体积的大小,要用到什么呢?常用的体积单位有哪些?请同学们自学14页中间部分。

5、学生汇报:

(1)常用的体积单位。

(2)拿出课前做的1立方厘米、1立方分米的小正方体,说说哪边哪些物体的体积大约是1立方厘米、1立方分米。

(3)立方米是怎么规定的?老师用3根1米长的木条搭成一个互相垂直的架子,放在墙角感知1立方米的大小,并说说生活中哪些物体的体积跟1立方米差不多大。

6、摆一摆:用棱长是1厘米的正方体木块,摆成下图中不同形状的模型,你知道它们的体积是多少立方厘米?(见教材)。

得出:要计量一个物体的体积,就要看这个物体含有多少个体积单位。

2、实践:拼摆长方体,四人一组,用不少于16块小正方体拼摆长方体,并分别记下摆出的长方体的长、宽、高和体积。

3、小组合作:学生四人一小组操作并做好实验记录。

思考:

(1)每排摆几个?每层摆了几排?摆了几层?

(2)一共摆了多少个小正方体?

(3)这个图形的体积是多少?

4、汇报实验结果。

每排个数。

每层排数。

层数。

小正方体个数。

让学生观察表格中填写的各数,你发现了什么?

小正方体的个数=每排个数×每层排数×层数。

‖‖‖‖。

6、学生汇报,交流,板书。

读题,思考:求砖的体积就是求什么?这个长方体的长、宽、高分别是什么?利用公式,直接求出体积。

生:正方体是长、宽、高都相等的特殊的长方体。

师:根据这种关系,你能推导出正方体的体积公式吗?

2、师生共同归纳:正方体的体积=棱长×棱长×棱长。

用字母表示为:v=a×a×a=a3。

师强调:读作a的立方,表示3个a相乘。3a表示3个a相加。

3、应用公式:

例题2:一块正方体的石料,棱长是6厘米,这块石料体积是多少?课堂小结。

回顾一下,今天的学习大家有什么收获?

课后习题。

(1).一个长方体的长是4厘米,宽是3厘米,高是2厘米,它的体积是24立方厘。

米。()。

米)()。

大。()。

板书。

物体所占空间的大小,叫做物体的体积。

常用的体积单位有:立方米、立方分米、立方厘米。

小正方体的个数=每排个数×每层排数×层数。

‖‖‖‖。

v=abh。

v=a×a×a=a3。

读书破万卷,下笔如有神。上面这5篇《长方体和正方体的体积》优秀教学设计就是为您整理的长方体和正方体的体积教学设计范文模板,希望可以给予您一定的参考价值。

长方体正方体体积教案设计篇十七

1、结合具体情境和实践活动,探索并掌握长方体、正方体体积的计算方法,能正确计算长方体、正方体的体积,解决一些简单的实际问题。

2、在观察、操作、探索的过程中,提高动手操作能力,进一步发展空间观念。

3、培养学生动手操作、抽象概括、归纳推理的能力。 教学

使学生理解长方体的.体积公式的推导过程,掌握长方体体积的计算方法。

理解长方体的体积公式的推导过程。

小正方体若干个 教法学法 合作法、讨论法

教学环节 第一次备课 动态修改

这节课我们就来学习长方体的体积的计算。 (小本的字典,体积小)

(分割成若干个小正方体,再比较,求长方体的体积就是求长方体所含有多少个这样的体积单位。)

1、学生猜想

一个物体的大小和什么有关呢?

(1)长、宽相等的时候,越高,体积越大。

(2)长、高相等的时候,越宽,体积越大。

(3)高、宽相等的时候,越长,体积越大。

与长、宽、高都有关系。

大胆猜测长方体的体积怎样计算

学生猜想:长方体的体积=长宽高

2、动手实践操作

这个猜想正确吗?下面就请同学们通过实验去验证我们的猜想是否正确。

课件出示记录表。(课本29页)

(1)提出小组合作要求

请同学们小组合作,用你们手中的1立方厘米小正方体拼成形状不同的长方体,每拼成一种就记录下它的长、宽、高和体积各是多少,然后计算出来验证刚才的猜想是否正确。

(2)小组合作学习

(3)小组派代表汇报

生:把4个正方体摆成1排,每排4个,摆1层。这个长方体的长是4厘米,宽是1厘米,高是1厘米,体积是4立方厘米。

长方体正方体体积教案设计篇十八

1、经历自主探索正方体体积公式以及将长方体、正方体的体积公式归纳为“底面积×高”的过程。

2、掌握正方体的体积计算公式,知道字母表达式,会计算长方体、正方体的体积;理解体积公式“底面积×高”的实际意义,会利用公式计算长方体、正方体的体积。

3、在把长方体体积计算迁移到正方体体积计算及公式归纳的过程中,感受数学思考的条理性和数学结论的确定性。

一、复习引入。

(1)1号长方体,长4厘米,宽4厘米,高3厘米,它的体积是多少?

(2)2号长方体,长4厘米,宽4厘米,高4厘米,它的体积是多少?

二、学习新课。

探究正方体体积公式:

问:通过计算2号长方体的体积你们发现了什么?

引导学生明确:

(1)这个长方体长、宽、高都相等,实际上它是一个正方体。

(2)正方体体积=棱长×棱长×棱长(板书)。

(3)如果用v表示正方体体积,用a表示它的棱长字母公式为:v=a。

教师提示:a也可以写作“a3”读作“a的立方”表示三个a相乘。所以正方体的体积公式一般写成:v=a3(板书)。

三、议一议。

如果用s表示底面积,上面的公式可以写成:

v=sh。

四、巩固练习。

计算下面图形的体积。

板书设计:

正方体体积=棱长×棱长×棱长长方体(或正方体)的体积=底面积×高。

v=a3v=sh。

长方体正方体体积教案设计篇十九

1.1知识与技能:

1.2过程与方法:

在公式的推导过程中培养学生的观察能力、空间想象能力、提出问题的意识及解决实际问题的能力。

1.3情感态度与价值观:

使学生体会数学来源于生活,且服务于生活,产生热爱数学的思想感情。

2.1教学重点:

2掌握长、正方体体积的计算方法,解决实际问题。

2.2教学难点:

1、下列长方体的长、宽、高各是多少:

长:8厘米长:6分米长:8厘米长:12米。

宽:4厘米宽:2.5分米宽:4厘米宽:10米。

高:5厘米高:10分米高:4厘米高:1.5米。

2、下列图形是用1立方厘米的正方体搭成的。它们的体积各是多少立方厘米?

(1)活动一:

师:郑老师在每个4人小组都放了12个1平方厘米的小正方体和一张学习单,下面我们将以四人小组的形式进行探究。首先请看活动要求(课件出示):

a、四人小组合作用12个小正方体摆形状不同的长方体;

b、每摆出一种请在学习单上做好记录,然后再摆下一种;

c、摆完后想想你发现了什么,在四人小组内交流;

d、每组选出一位代表进行汇报。

生小组合作动手操作反馈,学生汇报,生每汇报出一种情况,师在黑板上的表格中板书:

师:观察表格,你发现了什么?

引导学生得出:只要用每行的个数乘以行数,得到一层所含的体积单位数,再乘以层数,就能得到这个长方体所含的体积单位数。

板书:体积=每行个数×行数×层数。

师:刚才同学们用12个小正方体摆出的长方体体积都是12平方厘米的,郑老师刚才也摆了两个,不过体积比你们大多了,但是要看懂郑老师的长方体必须发挥一下你们的空间想象能力。(课件出示)。

你知道这两个长方体的体积吗?你是怎么知道的?(生说,师填表)。

(2)活动二:

师:四人小组合作,你们能摆出一个体积更大的长方体吗?

预设:长5厘米,宽5厘米,高4厘米。

师:你发现了什么?每排个数、排数、层数相当于长方体的什么?

生:长宽高,因为每一个小正方体的棱长是1厘米,所以,每行摆几个小正方体,长正好是几厘米;摆几行,宽正好是几厘米;摆几层,高也正好是几厘米。

2、下面的长方体,看它包含有多少个体积单位?并指出它的长、宽、高各是多少。

(2)观察上面个部分之间的关系,可以得出:

第一个:5=5×1×1。

第二个:15=5×3×1。

第三个:12=3×2×2。

通过上面的关系式,可以得出:长方体的体积=长×宽×高。

如果用字母v表示长方体的体积,用a、b、c分别表示长方体的长、宽、高,那么长方体的体积计算公式可以写成:v=a×b×c。

因为正方体的性质,所有的棱长都相等,所以,正方体的体积=棱长×棱长×棱长。

如果用字母v表示正方体的体积,用a表示正方体的棱长,那么正方体的体积计算公式可以写成:v=a·a·a。

a·a·a也可以写作a?,读作“a的立方”,表示3个a相乘。

1、计算下面图形的体积。

v=abh=7×3×3=63(cm?)。

v=a3=4×4×4=64(cm)。

8×4×5=160(cm3)6×2.5×10=15(dm3)8×4×4=128(cm3)1.5×10×12=180(m3)。

解:v=abh。

=2.9×1×14.7。

=42.63(m?)。

答:这块石碑的体积是42.63立方米。

4、判断正误并说明理由。

(1)0.23=0.2×0.2×0.2。(√)。

(2)5x3=10x。(×)。

(3)一个正方体棱长4分米,它的体积是:43=12(立方分米)。(×)。

(4)一个长方体,长5分米,宽4分米,高3厘米,它的体积是60分米。(×)。

5、一个长方体的体积是48立方分米,长8分米、宽4分米,它的高是多少分米?

48÷8÷4=1.5(分米)。

答:它的高是1.5分米。

10×8×6=480(立方厘米)。

答:它的体积是480立方厘米。

(8×6)+(8×7+6×7)×2=244(平方分米)。

8×6×7=336(立方分米)。

答:制作这个鱼缸共需玻璃244平方分米。这个鱼缸的体积是336立方分米。

这节课我们学习了什么?

正方体的体积=棱长×棱长×棱长,v=a×a×a=a3。

v=a×b×h。

v=a×a×a=a3。

长方体正方体体积教案设计篇二十

使学生理解长方体和正方体体积的计算公式,初步学会计算长方体和正方体的体积,培养学生实际操作能力,同时发展他们的空间观念。

长方体、正方体体积公式的推导。

教师准备:一大块橡皮泥;1立方厘米的正方体木块24块;投影仪。

学生准备:1立方厘米的正方体12个

一、创设情境

填空:

1、叫做物体的体积。

2、常用的体积单位有:。

3、计量一个物体的体积,要看这个物体含有多少个。

师:我们已经知道计量一个物体的体积,要看这个物体含有多少个体积单位,那么怎样计算任意一个长方体、正方体的体积?这节课我们就来学习长方体、正方体体积的计算方法。(板书课题)

二、实践探索

1.小组学习:长方体体积的计算。

出示:一块长4厘米、宽3厘米、高2厘米的长方体橡皮泥,用刀将它切成一些棱长1厘米的小正方体。

提问:请你数一数,它的体积是多少?有许多物体不能切开,怎样计算它的体积?

实验:师生都拿出准备好的12个1立方厘米的小正方块,按第32页的第(1)题摆好。

观察结果:

(1)摆成了一个什么?

(2)它的长、宽、高各是多少?

板书:长方体:长、宽、高(单位:厘米)

431

含体积单位数:4×3×1=12(个)

体积:4×3×1=12(立方厘米)

(3)它含有多少个1立方厘米?

(4)它的体积是多少?

同桌的同学可将你们的小正方体合起来,照上面的方法一起摆2层,再看:

(1)摆成了一个什么?

(2)它的长、宽、高各是多少?

(3)它含有多少个1立方厘米?

(4)它的体积是多少?(同上板书)

通过上面的实验,你发现了什么?(可让学生分小组讨论)

结论:长方体的'体积=长×宽×高。

用字母表示:v=a×b×h=abh

应用:出示例1,让学生独立解答。

2.小组学习:正方体体积的计算。

思考并回答:长方体和正方体有什么关系?正方体的体积该怎样计算呢?

结论:正方体的体积=棱长×棱长×棱长

用字母表示为:v=a3

说明:a×a×a可以写成a3,读作:a的立方。

应用:出示例2,让学生独立做后订正。

三、课堂实践

1.做第34页的“做一做”的第1题。

(1)先让学生标出每个长方体的长、宽、高。

(2)再根据公式算出它们各自的体积。

(3)集体订正。

2、做第33页的“做一做”的第2题。

3、做练习七的第4、6题。

四、课堂小结

五、课后实践

做练习七的第5、7题。

【本文地址:http://www.xuefen.com.cn/zuowen/8763117.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档