2023年大数据安全的论文(优质19篇)

格式:DOC 上传日期:2023-11-07 04:43:02
2023年大数据安全的论文(优质19篇)
时间:2023-11-07 04:43:02     小编:雁落霞

商业是现代社会经济发展的核心,对于商业方面的总结有助于我们进一步改进商业策略。写总结时要充分运用自己的思考和判断能力,以推动问题的解决。以下是一些关于如何提高自我学习能力的范文,供大家参考学习。

大数据安全的论文篇一

2.1加强法律的监督。

信息交换与传输在日常生活中是极为正常而又普遍的事情,在大数据时代背景下为保证信息安全,则需加强信息管理。而在信息安全管理中,仍会面对多种多样的问题,因此需要进一步建立和加强相关法规法律监管制度,运用法律来保障用户的信息安全[7]。通过加强法律监督的方式,用户会受到一定的约束。例如,网友“人肉搜索”其它公民的个人信息实际上已经侵犯了他人的隐私,这就需要运用法律保护个人信息,相关的法律需要进一步完善和加强,细化相关标准。而从国家和企业的角度看,同样要用法律的形式保护一些有关机密信息的安全,建立健全信息安全保护相关的法律,并加强监督。例如,在我国现有的有关网上信息保护的法律中,警察可对网上信息传输交换进行实时监督,对窃取用户信息行为进行处理,将触及到法律的行为加以管制,从而保障人们的信息安全。

2.2加快安全防护系统的更新升级。

信息科技发展极为迅速,但是相关的网络安全防护系统发展还相对滞后。在当前网络环境下,数据传输与交换量非常大,与此同时机密或敏感的数据信息也会增多,因此数据管理也容易出现漏洞和风险。在这种形势下,需要随时对数据信息泄漏以及网络攻击保持警觉的态度,并加大对数据信息的监管力度。为维护信息安全,可以从提高和升级信息安全防护系统入手。信息安全防护系统的更新升级利用大数据的优势,将各类数据资源的处理和分析机制进行整合,研究当前网络攻击关键技术所在,进而提高信息安全防护的能力。首先,安全防护系统要求能识别数据中的风险能力,并能够对风险进行分析评估,进一步抵御风险或网络攻击。简而言之,就是不断开发研制出更为高级的安全防护系统。此外,用户需要增强信息保护的意识,对自身的信息进行管理,必要时需要设置保密措施。

2.3调整信息采集策略。

就目前数据信息而言,数据已经朝着商品化的趋势发展,即用户的信息可以作为商品进行交易或买卖,虽然用户已经有意识地在保护自己的个人信息安全。因此为保障自身信息的安全以及私人信息不被泄露,可以对信息采集采取有效策略,并加强对程序内部数据的监督。例如,用户下载某个软件或app,这个软件或app有一些相关的协议,涉及到用户的隐私信息的采集。用户可以对自己的隐私数据进行限制采集,或者数据采集时该程序要对用户隐私进行保护,或者可以选择进行匿名处理。而无论是个人、企业还是国家,都可以开发相关的软件对程序内部加强监督,实施限制信息采集措施或者其他方式保护信息安全。

3结语。

综上所述,大数据时代信息安全问题主要包括了信息隐私的泄漏、信息安全防护系统的滞后以及网络恶意攻击等。因此有必要加强信息安全的保护,加大对数据信息的监管,调整信息采集的策略,并从法律上约束信息泄漏以及网络攻击的行为。而加强信息安全保护最关键还在于数据信息保护的技术层面,提高信息安全防范系统的层面,并且要及时更新升级,进而处理面对信息安全问题,推动信息安全进一步发展。

参考文献:

[1]马晓星.大数据时代面临的信息安全问题研究[a].天津市社会科学界联合会.科学发展协同创新共筑梦想——天津市社会科学界第十届学术年会优秀论文集(中)[c].天津市社会科学界联合会,:5.

[6]底涵钰,郑允凡,吕琳.大数据时代新媒体传播中个人信息安全问题研究——以“广东人肉搜索第一案”为例[j].西部广播电视,2015(12):42-46.

大数据安全的论文篇二

摘要:大数据时代来临,信息安全、数据泄漏的问题频频发生,有不少企业担心重要的数据外泄对企业形象及实际利益带来重大损害。

对于企业来说,能够在信息安全防护中快速的找出威胁源头是至关重要的。

何为大数据?根据维基百科的定义,大数据(bigdata),或称海量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的信息。

自以来,数据已成为一种新的经济资产类别,就像货币或黄金一样。

3月,美国宣布投资2亿美元启动“大数据研究与开发计划”,借以增强收集海量数据、分析萃取信息的能力。

美国政府认为,大数据是“未来的新石油”,一个国家拥有数据的规模、活性及解释运用的能力将成为综合国力的重要组成部分,未来对数据的占有和控制甚至将成为继陆权、海权、空权之外国家的另一个核心资产。

对企业来说,数据正在取代人才成为企业的核心竞争力。

在大数据时代,数据资产取代人才成为企业智商最重要的载体。

这些能够被企业随时获取的数据,可以帮助和指导企业对全业务流程进行有效运营和优化,帮助企业做出最明智的决策。

这些数据的规模是如此庞大,以至于不能用g或t来衡量。

同时,如此巨大的数据信息量,怎样做好信息安全的防护也是随之而来的问题。

当前大数据集群应用的数据库并不使用集中化的“围墙花园”模式(与“完全开放”的互联网相对而言,它指的是一个控制用户对网页内容或相关服务进行访问的环境),内部的数据库并不隐藏自己,而使其它应用程序无法访问。

没有“内部的”概念,大数据并不依赖数据访问的集中点。

大数据将其架构暴露给使用它的应用程序,而客户端在操作过程中与许多不同的节点进行通信,要验证哪些数据节点和哪些客户有权访问信息是很困难的。

1.2智能终端的数据安全威胁。

中国已经超过美国成为全球最大的智能终端市场。

这些随身携带的终端不仅占用了人们大部分的时间,也存储了大量个人化的数据。

人们对于大数据总有这样一种担忧:“大数据并不安全”。

不仅如此,携带大量个人数据的智能终端也不安全,因此智能终端数据安全就变成了一个严重问题。

智能家居开始走向产品化,如果你所用的智能手机可以控制家里的所有智能终端,一旦被病毒控制,估计全家的智能终端都会成为攻击目标,那后果就不堪设想了。

1.3数据虚拟化带来的数据泄密威胁。

如果数据是财富,那么大数据就是宝藏,而数据虚拟化术就是挖掘和利用宝藏的利器。

与任何虚拟化一样,数据虚拟化是一种允许用户访问、管理和优化异构基础架构的方法。

而典型的应用则是数据的虚拟化存储技术。

对于用户来说,虚拟化的存储资源就像是一个巨大的“存储池”,用户不会看到具体的磁盘、磁带,也不必关心自己的数据经过哪一条路径通往哪一个具体的存储设备。

在应用虚拟化存储的同时,面对异构存储设备的.特点,如何统一监管则是一个新的难题,且虚拟化后不同密级信息混合存储在同一个物理介质上,将造成越权访问、数据泄密等问题。

2.1数据结构化。

数据结构化对于数据安全和开发有着非常重要的作用。

大数据时代的数据非常繁杂,其数量非常惊人,对于很多企业来说,怎样保证这些信息数据在有效利用之前的安全是一个十分严肃的问题。

结构化的数据便于管理和加密,更便于处理和分类,能够有效的智能分辨非法入侵数据,保证数据的安全。

数据结构化虽然不能够彻底改变数据安全的格局,但是能够加快数据安全系统的处理效率。

在未来,数据标准化,结构化是一个大趋势。

2.2加固网络层端点的数据安全。

常规的数据安全模式通常是分层构建。

现有的端点安全方式对于网络层的安全防护并不完美。

一方面是大数据时代的信息爆炸,导致服务端的非法入侵次数急剧增长,这对于网络层的考验十分的严峻;另一方面由于云计算的大趋势,现在的网络数据威胁方式和方法越来越难以预测辨识,这给现有的端点数据安全模式造成了巨大的压力。

在未来,网络层安全应当作为重点发展的一个层面。

在加强网络层数据辨识智能化,结构化的基础上加上与本地系统的相互监控协调,同时杜绝非常态数据的运行,这样就能够在网络层构筑属于大数据时代的全面安全堡垒,完善自身的缺陷。

2.3加强本地数据安全策略。

由于大数据时代的数据财富化导致了大量的信息泄露事件,而这些泄露事件中,来自内部的威胁更大。

虽然终端的数据安全已经具备了成熟的本地安全防护系统,但还需在本地策略的构建上需要加入对于内部管理的监控,监管手段。

用纯数据的模式来避免由于人为原因造成的数据流失,信息泄露。

在未来的数据安全模式中,管理者的角色权重逐渐分化,数据本身的自我监控和智能管理将代替一大部分人为的操作。

在本地安全策略的构建过程中还要加强与各个环节的协调。

由于现在的数据处理方式往往会依托于网络,所以在数据的处理过程中会出现大量的数据调用,在调用过程中就容易出现很大的安全威胁。

这样就必须降本地和网络的链接做的更细腻,完善缓存机制和储存规则,有效保证数据源的纯洁,从根本上杜绝数据的安全威胁。

2.4建立异构数据中心安全系统。

针对传统的数据存储,一般都建立了全面完善的防护措施。

但基于云计算架构的大数据,还需进一步完善数据存储隔离与调用之间的数据逻辑关系设定。

目前,大数据的安全存储采用虚拟化海量存储技术来存储数据资源,数据的存储和操作都是以服务的形式提供。

基于云计算的大数据存储在云共享环境中,为了大数据的所有者可以对大数据使用进行控制,可以通过建立一个基于异构数据为中心的安全系统,从系统管理上保证大数据的安全。

3结束语。

随着大量企业的入驻,对数据安全这一行业的发展起到了巨大的促进作用,对安全分析提供了新的可能性,对于海量数据的分析有助于信息安全服务提供商更好地刻画网络异常行为,从而找出数据中的风险点。

与此同时,大数据时代也同时促进了整个信息安全行业的发展,大数据分析与安全软件有效的结合后解决安全问题将变的容易简单并且快捷无比。

对实时安全和商务数据结合在一起的数据进行预防性分析,可有效识别钓鱼攻击,防止诈骗和阻止黑客入侵。

参考文献:

[1]孟小峰,慈祥.大数据管理:概念、技术与挑战[j].计算机研究与发展,2013,1.

[2]陈明奇,姜禾,张娟.大数据时代的美国信息网络安全新战略分析[j].信息网络安全,2012,8.

[3]王珊,王会举,覃雄派.架构大数据:挑战、现状与展望[j].计算机学报,,10.

[4]郭三强,郭燕锦.大数据环境下的数据安全研究[j].计算机软件及计算机应用,2013,2.

大数据安全的论文篇三

引言:

大数据时代的大数据时代环境之下,各类网络信息的管理工作重要性不断提高,同时所需要管理的信息量也在随之提升。但是在这一个过程中管理问题油然而生,例如数据丢失、访问速度慢以及数据安全等问题。对此,有必要提高对基于大数据时代的信息安全性进行分析,从而保障计算机使用价值。

大数据安全的论文篇四

摘要:大数据时代来临,信息安全、数据泄漏的问题频频发生,有不少企业担心重要的数据外泄对企业形象及实际利益带来重大损害。对于企业来说,能够在信息安全防护中快速的找出威胁源头是至关重要的。本文就大数据时代的典型信息安全威胁进行分析,提出在数据安全方面的主要防护措施。

何为大数据?根据维基百科的定义,大数据(bigdata),或称海量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的信息。自20以来,数据已成为一种新的经济资产类别,就像货币或黄金一样。203月,美国宣布投资2亿美元启动“大数据研究与开发计划”,借以增强收集海量数据、分析萃取信息的能力。美国政府认为,大数据是“未来的新石油”,一个国家拥有数据的规模、活性及解释运用的能力将成为综合国力的重要组成部分,未来对数据的占有和控制甚至将成为继陆权、海权、空权之外国家的另一个核心资产。对企业来说,数据正在取代人才成为企业的核心竞争力。在大数据时代,数据资产取代人才成为企业智商最重要的载体。这些能够被企业随时获取的数据,可以帮助和指导企业对全业务流程进行有效运营和优化,帮助企业做出最明智的决策。这些数据的规模是如此庞大,以至于不能用g或t来衡量。同时,如此巨大的数据信息量,怎样做好信息安全的防护也是随之而来的问题。

1.1大数据集群数据库的数据安全威胁。当前大数据集群应用的数据库并不使用集中化的“围墙花园”模式(与“完全开放”的互联网相对而言,它指的是一个控制用户对网页内容或相关服务进行访问的环境),内部的数据库并不隐藏自己,而使其它应用程序无法访问。没有“内部的”概念,大数据并不依赖数据访问的集中点。大数据将其架构暴露给使用它的应用程序,而客户端在操作过程中与许多不同的节点进行通信,要验证哪些数据节点和哪些客户有权访问信息是很困难的。

1.2智能终端的数据安全威胁。大数据时代的来临,使智能终端的数据安全问题显得越发关键。中国已经超过美国成为全球最大的智能终端市场。这些随身携带的终端不仅占用了人们大部分的时间,也存储了大量个人化的数据。人们对于大数据总有这样一种担忧:“大数据并不安全”。不仅如此,携带大量个人数据的智能终端也不安全,因此智能终端数据安全就变成了一个严重问题。智能家居开始走向产品化,如果你所用的智能手机可以控制家里的所有智能终端,一旦被病毒控制,估计全家的智能终端都会成为攻击目标,那后果就不堪设想了。

1.3数据虚拟化带来的数据泄密威胁。如果数据是财富,那么大数据就是宝藏,而数据虚拟化术就是挖掘和利用宝藏的利器。与任何虚拟化一样,数据虚拟化是一种允许用户访问、管理和优化异构基础架构的方法。而典型的应用则是数据的虚拟化存储技术。对于用户来说,虚拟化的存储资源就像是一个巨大的“存储池”,用户不会看到具体的磁盘、磁带,也不必关心自己的数据经过哪一条路径通往哪一个具体的存储设备。在应用虚拟化存储的同时,面对异构存储设备的特点,如何统一监管则是一个新的难题,且虚拟化后不同密级信息混合存储在同一个物理介质上,将造成越权访问、数据泄密等问题。

2.1数据结构化。数据结构化对于数据安全和开发有着非常重要的作用。大数据时代的数据非常繁杂,其数量非常惊人,对于很多企业来说,怎样保证这些信息数据在有效利用之前的安全是一个十分严肃的问题。结构化的数据便于管理和加密,更便于处理和分类,能够有效的智能分辨非法入侵数据,保证数据的安全。数据结构化虽然不能够彻底改变数据安全的格局,但是能够加快数据安全系统的处理效率。在未来,数据标准化,结构化是一个大趋势。

2.2加固网络层端点的数据安全。常规的数据安全模式通常是分层构建。现有的端点安全方式对于网络层的安全防护并不完美。一方面是大数据时代的信息爆炸,导致服务端的非法入侵次数急剧增长,这对于网络层的考验十分的严峻;另一方面由于云计算的大趋势,现在的网络数据威胁方式和方法越来越难以预测辨识,这给现有的端点数据安全模式造成了巨大的压力。在未来,网络层安全应当作为重点发展的一个层面。在加强网络层数据辨识智能化,结构化的基础上加上与本地系统的相互监控协调,同时杜绝非常态数据的运行,这样就能够在网络层构筑属于大数据时代的全面安全堡垒,完善自身的缺陷。

大数据安全的论文篇五

为了更好的保障大数据信息的价值,必须强化对大数据的管理与控制能力,尤其是对于分布式的信息数据进行观察、筛选,从而保障数据的利用价值[4]。大数据的发展路径中仍然存在许多的缺陷与不足,经常存在肆意传播谣言、恶意煽动等现象,在信息管理中必须采取科学的技术手段与理念实行管理,准确辨别信息的真假实现对大数据环境的还原与控制。例如,近些年伴随着大数据的持续发展,信息泄漏问题也在随之提升,这也间接为不法分子提供了许多的可用信息。对此,在今后管理过程中需要强化操作原则的管理,例如企业应当及时安装并更新系统补丁,构建入侵防范体系,同时为用户提供服务时杜绝在软件上安装后门,确保用户的信息不会被切取或泄漏。

3.2管理政策要求。

按照大数据的发展特征以及信息安全管理的基本规律,国家的相关部门应当及时将数据的管理当做是一项法律条款来完成,并不断的完善和优化这一条款,从而促使我国的数据信息发展可以实现持续性,有法律依据可以查询。应用统一性的管理方式,在信息不断开放的环境之下能够实现更加有价值与意义的管理,改善以往的信息网络各自作战的问题,借助整合数据的方式扩大数据信息的应用价值,进而保障信息的风险控制到最小,在网络信息的持续性发展中,借助法律方式可以更好的保障个人信息,在信息流通效益的同时也构建了完善的法律体系。对于上述所提到的而言,今后仍然需要在政策方面强化管理,一方面强化市场的自律性,尽可能完善大数据相关企业的信息使用安全性,预防信息泄漏以及信息恶意专卖等现象的发生。另一方面需要做好相应的监督与管理工作,构建完善的信用数据库的同时实现对征信系统的完善,做好对恶意信息传播的控制与监督,从而预防和减少诈骗现象的发生。

4总结。

综上所述,大数据时代的信息因为普及程度较高的特征,衍生出了大数据时代之下信息的安全性问题,用户之间的隔离不完全、不法分子的网络攻击等都会导致用户信息的泄漏,在实际工作中需要采取针对性措施进行预防和控制,提高大数据时代之下数据储存的安全性。

参考文献:

大数据安全的论文篇六

在大数据时代,信息量庞大,在利用和交换信息的过程中还应当重视保护信息安全。信息传输与交换也日益频繁,大数据时代面临的信息安全问题也日益凸显。

1.1隐私泄漏问题。

在人们的日常生活生产当中,涉及到的信息多种多样,包括自己的相关信息也包括别人的信息。总而言之,日常生活生产使用信息是不可避免的。在大数据时代背景下,信息能够更加快捷方便地交换传输,提高人们生活工作的效率[3]。但大量的数据信息汇集,用户的信息隐私等泄漏的风险也在加大。例如,用户通过微信、qq、等社交平台晒自己的生活日常,以及网上购物,收发邮件等都会涉及到个人信息以及个人隐私,如手机号码、姓名、住址、照片等等,这些信息不仅会被他人的掌握,也被网络运营商掌握。通过我们的网上足迹,可以查到我们的很多的信息和隐私。以网上购物为例,新浪和阿里巴巴公司合作后,淘宝用户浏览的相关商品以及购物的习惯等会被记录下来,当与之关联的账户登录新浪时,数据库会经过特定算法推算后,精确地推荐该用户应该感兴趣的商品信息[4]。网络服务渐趋“人性化”,但与此同时也给人们的信息和隐私安全带来极大的风险。

1.2安全防护系统存在问题。

随着社会信息化加强,人们在利用各种电子、信息设备时,信息安全防范意识也在不断增强,无论是手机还是电脑,都会安装一些安全防护系统如360安全卫士、手机管家、电脑管家等等安全防护软件。对于普通大众来说,这种方式可以较好地保护自己的信息和隐私。但是对于企业以及国家来说,这些安全防护系统起到的作用并不大。企业和国家的信息涉及到一定的机密成分,在数据大量储存的情况下,则需要提高安全防护系统的层次和水平。如果信息安全得不到保障,严重的会导致整个行业甚至是国家陷入危险的境地。但是,目前的安全防护系统应对不断发展的.信息技术时,仍然还有许多的漏洞[5]。而安全防护系统的更新升级速度远远跟不上数据量爆炸式的增长,也不能抵御新的病毒,系统也因此瘫痪,由此大数据时代面临的信息安全问题也涉及到安全防护系统的滞后问题。

1.3网络恶意攻击。

大数据时代主要的特征之一是数据量大,并且数据汇集形成大的数据库,因此容易吸引。而攻击数据之后能获得更多的数据,这些数据往往是比较复杂、敏感或机密的数据[6]。而这些数据一般会有较高的安全防护系统,但是的攻击手段也在不断升级,并且获得大数据后则可以进一步扩大攻击的影响效果。而除了黑顾客攻击网络数据以及攻击企业或国家的机密数据信息外,某些个人的数据信息也会受到攻击。例如,“人肉搜索”,这种方式可以把个人信息调查得十分清楚,如年发生的广东“人肉搜索”第一案。这种方式可以将个人信息展露无疑,这既有好的一面,也有坏的一面。不管出于何种目的,“人肉搜索”的方式实际上也说明了信息安全存在极大的隐患。在大数据时代背景下,我们必须重视信息安全问题,重视信息数据的安全保护。

大数据安全的论文篇七

[摘要]在互联网络飞速发展的今天,由于技术上的缺陷以及思想上不购重视等原因,在现代网络信息社会环境下,存在着各种各样的安全威胁。

这些威胁可能会造成重要数据文件的丢失,甚至给政府、银行证券以及企业的网络信息系统带来了极大的损失和危害。

网络攻击的主要方式包括口令攻击、软件攻击、偷听攻击、欺诈攻击、病毒攻击以及拒绝服务攻击等,而网络安全的防范措施则包括安装防火墙、防止内部破坏、口令保护和数据加密等多种方式。

网络安全防范是一个动态的概念,重要的是要建立一个网络安全防范体系。

[关键词]网络安全信息安全网络攻击安全防范。

大数据安全的论文篇八

摘要:文章通过对计算机信息安全的研究,分析了信息安全的风险,在遵循信息安全策略的基础上,利用计算机信息安全技术保护信息安全。

同时对现今主流的几项安全技术进行了简单介绍,以此引起企业或者用户对信息安全问题的重视。

关键词:信息安全;防范技术;系统安全。

计算机硬件蓬勃发展,计算机中存储的程序和数据的量越来越大,如何保障存储在计算机中的数据不被丢失,是任何计算机应用部门要首先考虑的问题。

计算机网络安全措施主要包括保护网络安全、保护应用服务安全和保护系统安全三个方面,这三个方面均涉及物理安全、防火墙、信息安全等领域。

信息安全是指信息网络的硬件、软件及其系统中的数据受到保护,不因偶然或者恶意的原因而遭到破坏、更改、泄露,系统连续可靠正常地运行,信息服务不中断。

信息安全是一门涉及计算机科学、网络技术、通信技术、密码技术、信息安全技术、应用数学、数论、信息论等多种学科的综合性学科。

从广义上来说,凡是涉及到信息的保密性、完整性、可用性、真实性和可控性的相关技术和理论都是信息安全的研究领域。

总的来说,信息安全是用于避免计算机软硬件以及数据不因各种原因而遭到破坏、修改。

其中计算机的硬件可以看作是物理层面,软件可以看做是运行层面,再就是数据层面;而从属性的角度来说,其中破坏涉及的是可用性,更改涉及的是完整性,显露涉及的是机密性。

在信息安全的概念中,网络信息安全包括了四个方面的内容:

1.硬件安全:即网络硬件和存储媒体的安全。

要保护这些硬件设施不受损害,使其可以正常的工作。

2.软件安全:也就是说计算机网络保护其软件不会被修改或破坏,不会因为非法操作而更改其功能,或者使功能失效。

3.运行服务安全:也就是删除网络中的部分信息,网络通讯仍然正常,系统运行正常。

在保障网络顺畅运行的情况下,系统应该及时发现破坏因素,并采取报警和解决策略。

4.数据安全:从信息安全最重要的目的出发,要避免网络中流通的数据不被任意修改,不被非法增删改,不被非法使用。

图1是供电局有限公司的信息网络示意图:

图1广州供电局有限公司图形信息管理系统网络描述图。

计算机病毒的威胁:在因特网日益发展的今天,各大公司、各大企业的网络环境也得到了改善,这就助长了病毒的繁衍和传播,且其传播能力越来越不可忽视,传播途径也由单一变得复杂。

概括地说,当今的网络环境为病毒的肆掠奠定了良好的环境基础。

黑客攻击:近年来黑客攻击经常出现,他们为了盗窃系统的私密信息,或者为了破坏信息,或者想非法占用系统资源,于是利用数据库或系统漏洞,采用信息炸弹、网络监听,或者密码破解、移植后门程序等非法手段入侵计算机系统,使达到其目的。

信息传递的安全风险:近几年企业开始关注信息传递的安全性,这使得信息安全中隐藏的许多问题得以暴露。

在企业与国内外的工作联系中,通过网络传输的大量数据以及日常事务信息,都存在着各种传输的安全性问题,比如在传输过程中非法拦截用户信息,盗取用户账号,非法截取保密信息以及商业机密等。

这就使企业的正常运作得到了严峻的考验,造成秩序紊乱。

身份认证以及访问控制存在的问题:只有被设定了权限的用户才可以对信息系统中的相应数据和信息进行操作,也就是说系统中的信息和数据是在一定范围内对含有对应权限的用户才是开放的,没有被授权的用户不可以访问。

因此,在计算机系统中都设立了用户账户管理的功能,它可以创建用户、设定权限等等。

虽然系统中的用户账户管理功能能够在一定程度上加强系统的安全性,但在实际应用时仍然存在一些问题。

在信息安全的管理中,为了使安全保护达到相应的程度,我们制定了相应规则,这被定义为信息安全策略。

1.信息安全中把先进的信息安全技术作为网络安全的根本保障。

要建立一个全方位的安全系统,是以这样的形式产生的:首先用户要对所面临的威胁进行风险评估,在所对应的安全服务类别前提下,选择相应的安全机制,最后利用先进的信息安全技术,建立一个全方位的安全系统。

2.严谨的安全管理。

在已建立的安全体系中,要着重加强内部协调和用户的授权管理,建立安全的审计和追踪体系,提高全民网络安全意识,建立安全的网络安全管理体系。

3.制定并实施严格的法律体系。

近几年网络犯罪日益泛滥,因此制定并实施严格的法律法规体系刻不容缓。

防火墙:防火墙作为一种访问控制产品,它位于内部网络与不安全的外部网络之间,起着障碍的作用。

为了防止访问不安全的情况发生,防火墙阻止外界非法访问内部资源。

目前主流的技术有:应用网管技术、包过滤技术和代理服务技术。

防火墙能够对数据流进行监控、记录以及报告,特别对于内外网络之间的联系有着较好的过滤作用,因此,黑客利用漏洞对内部网络的破坏攻击的时候,防火墙起着不可或缺的作用。

图2所示是目前新兴防火墙技术:

图2新兴防火墙技术。

安全的路由器:通常控制网络信息流的主要技术采用访问控制列表技术,利用路由器来控制网络中的数据传输。

虚拟专用网(vpn):具有加密功能的路由器和防火墙能够使在公共信道上的数据实现可信赖传达,而vpn在利用加密技术和访问控制技术的前提下可以在两个或多个可信赖内部网络中进行通讯互联。

因此我们使用vpn技术来构建这样的防火墙或路由器。

安全的服务器:在一个局域网内,信息或数据的存储和传输是保密的,安全的服务器可以实现这个功能,这是基于它对局域网资源和用户的控制管理,它能够对安全相关事件进行审计和跟踪。

ca和pki产品:ca(电子签证机构)为用户发送电子签证证书,具有用户身份验证和密钥管理的功能,因此被作为一种可提供信任的认证服务为大众使用。

用发展的眼光来看,pki有着光明的发展前景,它可以为认证服务提供能为完善的功能和服务。

用户认证的产品:将ic卡个人密钥和数字签名相结合,使得ic卡更广泛的被应用于认证产品。

在存储账户密钥的同时,将它与动态口令恰当结合,这使得用户身份验证和识别更为安全信赖。

安全管理中心:安全管理中心可以在大范围、多产品的情况下提供完善的服务。

它监控网络运行的安全,分配安全设备的密钥,收集网络安全以及提供审计信息等。

ids:id是一种传统的保护安全机制。

安全数据库:安全数据库的建立使得存储在计算机内部的数据和信息更为完善、更为可靠有效,能够保障其机密性和可审计性,也使得在用户身份识别的时候更为安全。

安全的操作系统:稳定安全的操作系统为信息数据的存储提供了一个可靠的平台,因此要确保信息安全,首先要确保所在的操作系统安全。

五、结语。

信息网络系统的迅速发展和全面普及,人类与计算机的关系发生了质的'变化,人类社会与计算机和网络组成了一个巨大的系统,出现了一个全新的世界――网络社会。

信息安全是21世纪经济安全和国家安全的首要条件,也是国家生存的前提条件。

在全球一体化成为趋势的时代背景下,每个国家都要在维护国家主权前提下参与国际合作,共同维护信息安全。

参考文献。

[1]胥家瑞.网络信息安全及其防护策略的探究[j].计算机安全,,(9).

[2]williamstallings.网络安全基础教程:应用与标准(英文影印版)[m].清华大学出版社,.

[3]赵树升,等.信息安全原理与实现[m].清华大学出版社,.

[4]沈波.信息系统安全:数字化企业的生命线[j].中国会计报,2011,(9).

[5]刘玉秀,王磊.安全管理是重点[j].榆林日报,2011,(10).

[6]高永仁.局域网中信息安全管理研究[j].中原工学院学报,2011,(4).

[7]李仲伟.关于网络信息安全管理的思考[j].中小企业管理与科技(下旬刊),2011,(10).

大数据安全的论文篇九

摘要:2015年5月,工业和信息化部公布了我国4月份通信业经济运行情况报告,报告显示:我国移动用户数总规模达12.93亿户,互联网宽带用户数达到2.05亿户。智能手机、微博和微信等新事物的出现,使随时随地的接收及发送数据信息成为可能,每天都有海量的各种数据的产生,人类显然已经进入了大数据时代。在这一时代背景下,人类经济发展模式、社会运转方式等方方面面也都将受到影响,大数据在使用过程中给人们带来极大的便利,同时也可能造成一定程度的负面影响。因此,新时期我国高校在开展就业指导工作的过程中,积极应用大数据技术已迫在眉睫,应能够转变传统模式,对大数据优势进行充分的利用。

将本文的word文档下载到电脑,方便收藏和打印。

大数据安全的论文篇十

探究式教学法是教师在教学过程中以问题为教学研究对象,组织教学内容,使学生通过对问题的了解、资料查询、阅读、思考、研究、探讨、交流和听讲,学会获取知识和应用知识,收集和辨析有效数据,系统地分析问题,获得解决问题的答案,并进行交流、评价的一种教学方法。其核心内容是通过问题的设定进而激发学生的学习热情,变被动为主动,把学生真正当成教学主体,培养学生养成创新思维模式。在摸索和探究中不断前行,从而系统地掌握课程知识内容并形成完整知识体系。

统计学原理课属于经济与管理类专业的一门必修基础课程。对构建学生基本知识体系,逐步形成分析和解决问题的方法体系尤为重要。然而该课程内容较多,包括了统计工作过程、综合指标体系、动态数列分析、指数分析、抽样调查推断、统计预测等多项内容。每一项内容均由完整的理论知识和独特的方法构成。知识点较多且晦涩难懂,学生不易理解掌握。尤其在以往的传统教学模式下,老师卖力地讲,拼命地试图将理论知识与生产生活实践相结合,却始终无法有效激发学生的学习热情。最终是“教师讲得累、学生打瞌睡”。鉴于此,我们结合经济与管理专业的非统计类专业特点,在我校四个经济与管理类专业的统计学原理教学中逐步引入“探究式教学”方法,把教学的主体定位到学生,充分挖掘学生的主观能动潜力,拓展学生的创新思维模式,增加学生实际动手能力。把教学课堂变成探究讨论场所,让传统的教学活动重新激起一个又一个的思维涟漪,收到了较好的教学效果。

一探究式教学法在统计学原理课程中的实施环节。

1问题选取。

要依据教学大纲的定位,同时又要结合非统计专业的现有实际,结合我校应用型本科的基本定位,选择难易适中且和工作实践紧密结合的内容。做到由易到难,逐渐加大难度,稳步推进,慢慢形成学生的探究思维定式。

在实施探究式教学的初期阶段,应选取单一的并能够在较短时间内完成的问题。最好是能够当堂形成结论且给学生较深的印象。随着探究问题的不断深入,结合教学大纲,问题的.选取进一步深化,逐步设置有一定探究压力但系统性不强并限定探究学习难度的问题。此时可以按照不同的抽样标准实施抽样,让各抽样小组分别观察其组内的方差水平。在此基础上一旦实施整群抽样,则误差水平可能的变动趋向。也可以就静态指标和动态指标的特点提出问题,让学生分别去对应会计课程的存量指标和流量指标,以学科之间的交叉和连贯激发学生的探究热情。等到学生逐步适应探究式学习这一新的学习模式后,教师就可以布置系统的、需要学生分组分任务在较长时间内才能完成的任务。

2布置问题。

将选取的问题布置给各个小组。小组根据问题的大小与多寡,通常5~6人为一个小组。对于较单一的问题,可以多分几个组,各组的问题不强调其唯一性,可以重复,以便于比较不同小组的完成质量。对于较为复杂的问题,可根据问题的数量和工作任务情况,先确定各组组长(初期组长可由教师根据学生的综合能力统一指定,但随着探究活动的逐步开展,组长应鼓励个人报名或学生推荐),然后由学生根据自己的知识侧重和个人喜好选择小组成员。每一个小组承担不同的探究任务。但无论问题难易程度如何,都必须确保每一个学生分担不同的探究任务,不允许有学生轮空,也禁止探究能力较强的学生大包大揽(但不排除必要的协作)。

3迅速完成组内分工。

各组领取任务后,在较短时间内由组长在本组内根据个人的特长确定组内分工(3~5分钟即可)。制定抽样方案、实施抽样、搜集整理数据、查阅资料、分析推断、撰写报告等。对于具有共性并较为重要的知识点,应要求每一个学生都独自完成,不因分工而隔断知识体系。

4收集分工情况,据此串讲知识点,引导学生的工作方向。

教师可收集各组分工情况的书面结果,根据分工结果分别讲授各方面、各环节涉及的知识内容。讲解应详略得当,有针对性,可以打破书本固有的知识点顺序。告诉学生在各自的工作中可能涉猎的知识内容,资料查找的方向以及分析解决问题要用到的方法。说到统计指数,涉及同度量因素,就涉及了物量指标和价值指标问题,涉及派氏、拉氏指数的选取,常用的cpi确定方法同样会牵扯到基期的选择、权数的确定。因而鼓励学生去查找相应的文献资料,并进一步思索可能出现的新问题。拉氏、派氏指数分别代表了哪一种思维定势和探究趋向?指数体系的确立基于什么考量和出发点?指数体系的确立和因素分析的实际意义在哪里?等等。这种串讲,既为学生指明了工作的方向,帮助学生打开思路,同时又告知了基本的分析方法。

5文献检索,初步探究。

学生根据教师的点拨,依据各自工作任务,分头查阅相关文献资料。指导学生利用图书馆、互联网查阅相关的统计公报、统计年鉴、报纸杂志和相关学科的理论知识。并在此基础上对所持问题进行初步探究。资料文献的查阅也是一个循序渐进的过程。学生很可能在探究初期只是查阅了和问题直接相关的表象资料,而忽略了深层探究所需数据的收集,结果出现“头疼医头、脚疼医脚”的局面。

6集中讨论,相互激励,深入探究。

各小组成员在收集相关资料并形成初步意见后,可及时组织大家集中讨论。每个人均可阐述自己观点,对所选用数据资料的可信度,使用方法是否得当等,听取他人意见。讨论过程中可有效实施相互的智力激励,迸发出灵感火花,为进一步发现深层次问题,探究和解决深层问题打下良好基础。

7课堂交流、汇报。

学生在组内讨论探究的基础上,各自完成分工任务。形成统一意见后,应将成果制作成ppt文档。在规定时间内由教师组织集中进行课堂交流、汇报。由各组主讲人通过ppt演示本组工作过程和工作成果,允许组内其他成员加以补充完善。

8教师讲评。

根据各组汇报结果,教师要进行及时讲评。既要对学生的分析运用能力给予充分肯定,又要对其在方法、思路上存在的问题给予指正。指导学生及时转换思路,回归正确的探究方向。探究式教学虽能够有效激发学生的探究热情,但由于学生认识问题和所学知识的局限性,极易形成学生“钻进去、出不来”。问题的叠加效应可能会打击学生探究热情,或导致“不可知论”。教师的及时讲评和肯定,是进一步引导学生回归探究学习正途的指南针。

二探究式教学法在应用中应注意的几个问题。

探究式教学可以很好地调动学生的学习积极性,最大程度激发学生的探究创新活力,提升教学质量和强化教学效果。但是在实际应用时必须注意以下几个问题。

探究式教学从表面看是把探究学习的主体转化为学生,但实质上绳子的另一端是教师。教师的备课、引导、启发在整个教学环节中起着至关重要的作用。教师的备课任务不仅不能削弱,而且更应该得到加强。从问题的选取设定到最后的验收讲评,教学的主线仍然紧握在教师手中。哪些问题可以选来作为探究目标,什么样的问题可以实施分组讨论、协作完成,都需要教师精心设计。这就需要教师具备完备的知识体系和对教学方法的综合把控能力。需要教师不断充电并择机走向生产实践一线,了解学科发展动态,始终站在学术发展前沿。

2探究式教学需要教师的及时引导和启发。

在实施这种教学方法的初期,由于学生对新的教学模式一时难以适应,会因各小组组织不力,学生无从下手,不了解整个教学活动的核心内容,而产生畏惧情绪。因而教师要及时地加以引导,为学生指明工作的方向并及时答疑解惑。教师可以利用常规教学课堂平台,也可以利用互联网的相应沟通平台或手机飞信、微信等方式,收集学生意见和问题并及时给予指导,将学生引导到独立探究、合作探究的学习环境中,逐步形成探究式学习的良好氛围。

3探究式教学仍需要传统的课堂讲授模式加以配合。

对于学科的基础知识、基本概念我们很难将之归为探究式问题。加之学生在接收一门新的课程知识时往往出现短暂的不适应。因而教师仍要利用讲堂这一平台向学生讲解基础知识。教师在讲授这些内容的时候应着力使用启发式教学方法,多列举实例,多提出问题,逐步培养学生思考问题的能力,并产生探究问题的冲动和欲望。进而实现从传统教学模式向探究式教学的自然过渡。

4探究式教学课后占用时间较多,容易加大学生的学习负担。

教师要合理安排探究式教学内容。挑选有针对性和实际意义的内容作为选题,并适度调整教材体系中的相关章节。做到教学有重点、探究有实效。把一些容易理解和掌握的知识交给学生自我消化,或由教师使用传统方式串讲带过,把核心知识且具有探究的条件和意义的章节认真组织学生探究学习。避免全面开花、拘于形式,结果造成学生到最后劳神费力、难有所获。

统计学原理课程内容较多,结构复杂且难懂。但却是经济与管理类专业学生必修的一门方法论学科,在整个学科知识体系中占有重要位置。传统的课堂讲授模式无法激发学生的学习热情,很难收到良好的教学效果。实施探究式教学法,可以充分调动学生主观能动性,培养学生学习探究的良好习惯,为今后的实际工作和终身学习奠定基础。教师要先弄清楚探究式教学的真正意义,对探究式教学的实施环节、问题的选取、节奏的把控、效果的评定有着全面而深刻的认识。欲使探究式教学能够实现预期教学目的而非只是“标新立异”,则需要教师不断充实完善自我,做到高屋建瓴、游刃有余。

大数据安全的论文篇十一

摘要:随着就业信息化建设的发展,信息技术已经被广泛应用于高校毕业生就业中,就业信息化建设是近年来大学生就业问题关注和努力的重点方向。但目前就业信息化建设中依然存在很多不足,如信息整合程度低、信息利用率低下、信息平台功能不完善、信息交流不足、网络求职成功率偏低等。在当今大数据时代背景下,就业信息化建设迎来了新的发展机遇。

关键词:大数据;信息化;就业。

随着互联网的发展,信息技术被广泛用于生活、工作、学习、服务、交通、生产等各个领域,改变了世界,为人类带来了诸多便利。就业信息化建设对我国经济社会发展稳定具有重大战略意义。在各种信息化平台的帮助下,大学生能够更容易、更便捷地找到就业岗位,在我国高校扩招造成毕业生数量逐年递增的情况下,极大地缓解了社会的就业压力,为我国经济建设提供了各方面的劳动力和人才。因此国家高度重视就业信息化建设,21世纪以来,党中央、国务院、教育部多次下达指令,要求大力开展各项就业信息化建设工作。

一、目前我国就业信息化建设的现状及不足。

经过十几年的努力,目前我国就业信息化建设已经基本完善,形成了以各级政府就业指导部门、用人单位、高校、毕业生为核心的就业信息化体系,通过各种信息化平台,把各级政府就业指导部门、用人单位、高校、毕业生连接起来。各级政府就业指导部门网络平台、各高校就业指导中心网站、各种招聘信息、毕业生求职信息等信息化要素的相互作用,实现大学生完成就业。但目前我国就业信息化建设依然存在很多不足,主要有一下几点:

(1)信息整合程度低、信息利用率低下。目前已有的就业信息平台数量很多,各种就业平台发布的信息数量非常巨大,但信息分布松散,整合程度较低。比如,同一岗位的招聘信息,可能会在多个不同的招聘网站上看到,求职者需要到多个求职网站去搜寻。这就增加了求职者获得求职信息的时间成本,导致信息利用率低下。

(2)信息化建设视野狭窄,平台之间联系不够,信息交流不足。政府部门在信息化建设统一规划方面做得不好,没有从高的层面进行部署,建设视野不够宽广。各个信息平台一叶障目,平台之间的联系不够紧密,最终导致了信息交流不足。

(3)信息平台功能不完善,不能更好服务就业工作。目前大部分的信息平台以发布就业信息为主,一些平台具备网络简历投递的功能,但这些对于实现求职者顺利就业是不够的。求职者需要通过信息化平台了解到当前就业形势、各行业就业现状、薪酬水平、地域差异、前景分析等信息,需要得到实时疑问解答,进行广泛交流,这些都是当前的信息平台所缺乏的功能。

(4)网络求职成功率不高。十几年来信息化建设促进了大学生就业工作的开展,越来越多的求职者在网上进行简历投递等求职活动,但不可否认的一个事实是招聘会、宣讲会、人才市场对于就业依然作用突出。调查显示,很多求职者认为网络对于求职的最大帮助是提供便捷、高效、廉价的就业信息,而网络招聘中简历投递成功率太低,所以求职者更愿意到招聘现场去求职,各地招聘现场的火爆状况就是很好的证明。这也说明了目前信息化对求职的帮助仍然处于较低的水平。

随着信息化技术的发展,家用电脑、智能手机、宽带技术、移动互联网、物联网等数据来源及数据承载方式的高速发展,全球的信息数据量出现了跨越式增长,信息大爆炸成了时代的特征,大数据时代已经正式到来[1]。

大数据(bigdata,megadata),或称巨量资料,指的是需要新处理模式才能具有更强的决策力、洞察力和流程优化能力的海量、高增长率和多样化的信息资产[2]。在维克托・迈尔-舍恩伯格及肯尼斯・库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样的捷径,而采用所有数据进行分析处理。大数据的特点可以概括为4v:volume(大量)、velocity(高速)、variety(多样)、value(价值)。大数据最核心的价值就是在于对于海量数据进行存储和分析。大数据技术可以从各种各样类型的数据中,快速获得有价值的信息。

利用大数据技术可以解决目前就业信息化建设中存在的种种不足,进一步加强就业信息化建设,更好帮助大学毕业生就业。

(1)加强预测分析,更好开展就业指导工作,加强就业针对性。大数据技术通过对国内国际形势、当前经济发展、过往就业信息、地域信息等大量数据进行分析,预测就业形势、各行业就业前景、薪酬水平、地域竞争状况、行业前景等能内容进行分析,给出可靠的预测数据,便于政府就业指导部门更好安排部署就业工作;企业可以合理安排招聘岗位,选择适合的求职者,避免员工频繁跳槽现象,节约招聘成本;高校可以更好地开展大学生就业指导工作,大学毕业生根据自己专业、兴趣、爱好、特长、个人发展规划,有针对性地明确求职目标,进行充分的求职准备。这些能加强各方面开展就业工作的针对性。

(2)高度整合信息,紧密联系信息平台,加强信息交流,提高信息利用效率。通过对大量信息的收集和分析,大数据平台可以完成信息的高度整合,使各个信息平台紧密联系在一起,平台之间的信息可以实现快速交流,大幅度提高信息利用效率。在大数据的帮助下,求职者搜寻求职信息时,重复的信息可以自动合并,同一类信息可以全部展现,信息获取效率得以提高;求职者的简历、求职信等求职信息可以储存在云端,在需要时随时可用于不同的网络招聘,这样求职者可以省去大量重复写简历的时间;通过大数据综合分析,网络上的虚假招聘信息可以迅速被识别剔除,信息审核得以强化,避免求职者上当受骗。

(3)完善信息平台功能,扩展信息平台种类,提高网络求职成功率。大数据技术可以进一步完善各信息平台的功能。信息平台将不仅仅提供求职信息,还会增加就业分析预测、实时交流、就业指导、网络简历投递和筛选、视频面试等功能。

随着大数据技术的发展,信息的传播已经不只是依赖电脑,智能手机、便携平板电脑、智能穿戴设备都成了信息传播媒介,信息平台也不再局限于互联网网站,qq、微信、微博等实时交流工具和各种app应用也成了新的信息平台,更加方便、快捷地发挥作用,借助于这些平台,求职者可以随时、随地进行信息浏览、投递简历、疑难询问、交流沟通等,企业hr可以随时发布信息、筛选简历、疑问解答、视频面试等,极大地提高求职的便捷性和成功率。

总而言之,大数据时代的到来,为以后的就业信息化建设提供了新的发展机遇和发展思路,充分利用大数据技术的各种优点和优势,就业信息化建设将更好服务于就业工作。

参考文献:

[2]杨旭,汤海京,丁刚毅.数据科学导论[m].北京理工大学出版社,2014.

大数据安全的论文篇十二

随着信息技术的发展和智能设备的普及,大数据已经成为当今社会的热门话题。作为数据时代的核心,大数据不仅改变着人们的生活方式,也深刻影响着社会经济发展。在长时间的学习和实践中,我对大数据有了一些心得体会。本篇文章将从数据的来源、数据的处理、数据的应用、数据的挑战以及数据的未来五个方面,对大数据进行思考和总结。

首先,大数据的来源不仅包括了传统的企业内部数据,而且还包括了社交媒体、物联网、日志文件等非结构化和半结构化数据。与传统的数据相比,大数据具有体量大、速度快和多样性的特点,因此更加具有价值。大数据的产生与人们日常生活中的各个方面密不可分,例如我们在社交媒体上发布的照片、留言、评论等、在手机、电视、汽车等智能设备上的操作和行为也都产生了大量的数据。因此,我们要充分利用这些数据,挖掘出数据中的价值。

其次,对大数据的处理成为突破瓶颈之一。由于大数据的特点,传统的数据处理方法已经不能满足当前的需求。因此,人们开始采用云计算、分布式存储和分布式计算等新技术。云计算可以提供强大的计算和存储能力,分布式存储可以方便地处理大规模数据的存储,分布式计算可以加速大规模数据的处理。同时,机器学习和深度学习等算法的出现,为数据处理提供了新的思路。通过建立合适的模型和算法,可以更好地处理大数据,并从中发现隐藏的规律和关联。

第三,大数据的应用已经渗透到各个领域。在商业领域,大数据可以帮助企业更好地了解客户需求、优化产品设计、优化营销策略等,从而提高企业的竞争力。在医疗领域,大数据可以帮助医生更准确地诊断疾病、制定个性化治疗方案。在城市管理中,大数据可以帮助政府更好地了解城市运行的状态,制定科学合理的城市规划和交通管理。在交通领域,大数据可以帮助交通公司更好地安排班车和线路,提高乘客的出行效率。

然而,大数据也面临着一些挑战。首先是数据安全和隐私问题。大数据的应用离不开个人信息的采集和存储,而这又与用户的隐私密切相关。因此,我们需要建立合理的数据保护机制,使用户数据安全可控。其次是数据质量问题。大数据的质量直接影响数据分析和决策的准确性和有效性。因此,我们需要加强数据质量的管理和控制。此外,大数据的运营和维护也需要相应的技术和人才支持,这对于很多企业来说是一个挑战。

最后,对于大数据的未来,我非常看好。随着技术的进步和应用场景的拓展,大数据将会有更广泛的应用。例如在智能家居领域,大数据可以帮助家庭更智能地控制和管理各类设备。在教育领域,大数据可以帮助教育机构更好地了解学生的学习情况和学习模式,从而制定更适合的教学方案。在环保领域,大数据可以帮助我们更好地了解环境污染的情况,从而制定合理的治理方案。

总之,大数据已经成为时代的潮流,对于社会发展和个人生活都起到了重要的推动作用。对于大数据的深入思考和理解,有助于我们更好地把握和利用数据,发现新的需求和机遇。希望未来大数据的应用能够更好地服务于人类的发展和进步。

大数据安全的论文篇十三

去年的“云计算”炒得热火朝天的,今年的“大数据”又突袭而来。仿佛一夜间,各厂商都纷纷改旗换帜,推起“大数据”来了。于是乎,各企业的cio也将热度纷纷转向关注“大数据”来了。有一张来自《程序员》微博的漫画很形象。我觉得这张图,很真实地反映了现实中小企业云计算,大数据的现状。

不过话又还得说回来,《大数据时代》是本好书。

当然,很多it知名人士也大力推荐,写了好多读后感来表述对这本书的喜欢没看此书之前,对所谓大数据的概念基本上是一头雾水,虽则有了解关注过现在也比较火热的bi,觉得也差不多,可能就是更多的数据,更细致的数据分析与数据挖掘。看过此书后,感觉到之前的想法,只能算是中了一小半吧―。巨量的数据,而另一前:着眼于数据关联性,而非数据精确性,或许才是大数据与现时bi的不同,不仅仅是方法,更多的时思想方法。不过坦白讲,到底是数据的关联性重佳,还是数据的精确性更好,还真的需要时间来检验一下,至少从现在的数据分析方法来论,更多的倾向于数据的精确性。

看完此书,我心中的一些问题:

1、什么是大数据?

查了查百度百科,是这样定义的:大数据(bigdata),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。大数据的4v特点:volume、velocity、variety、veracity这个好像是ibm的定义吧。

以个人的观点来看:数据海量,存储海量都是大数据的基本原型吧。

2、大数据适合什么样的企业?

诚然,大数据的前提是海量的数据,只有拥有巨量的数据资源,方能从中查找出数据的关联性,才可以让通过专业化的处理,让其为企业产生价值。针对电信运营,互联网应用这样海量用户的数据的大企业,也是在应用大数据的道路上拥有得天独厚的条件,但是针对中小企业呢?销售订单数据?若非百年老店,估计数据也是少得可怜,能用的可能只有消费者数据了吧。貌似大多数厂商,用来举例的也就是消费都购买行为分析为最多。

3、大数据带来的影响。

1)预测未来书中以google成功预测了未来可能发生流感的案例来开篇,表明通过大数据的应用,可以为我们的生活起一个保驾护航的指向标。实质很简单,技术改变世界。

3)变革思维书中所说:因为有海量的数据作基础,未来,我们可能更关注数据的相关,而非精细度。对这条,本人还是持保留意见的。

大数据安全的论文篇十四

随着大数据技术的快速发展和广泛应用,大数据安全问题日益突出。目前,越来越多的个人和机构都在使用大数据来进行商业分析、决策支持等活动。然而,与此同时,我们也面临着来自黑客、数据泄露等各种安全威胁。为了更好地保护大数据的安全,我在大数据应用过程中总结了一些心得和体会。

第二段:数据保护与加密。

在大数据应用中,数据保护和加密是最基本的安全措施。我们应该在数据采集、传输、存储和应用过程中加强对数据的保护工作。首先,要建立安全的数据采集系统,限制数据的采集范围,并保证采集的数据是真实可靠的。其次,在数据传输过程中,应该使用安全的加密协议,并确保数据在传输过程中不被窃取或篡改。此外,在数据存储过程中,要采用安全的存储技术,如数据分区、备份、灾难恢复等措施。最后,在数据应用过程中,要采用权限控制机制,限制用户对数据的访问权限,以防止数据泄露。

第三段:网络安全防护。

大数据应用离不开互联网的支持,因此网络安全也是保护大数据的重要环节。首先,要加强对网络设备和服务器的安全管理,保证其系统和应用软件的安全漏洞得到及时修补;其次,要用防火墙、入侵检测系统等技术手段,对网络进行实时监测和阻断攻击;同时,要定期进行网络安全漏洞扫描和渗透测试,及时发现并修补漏洞。此外,还可以采用虚拟专用网络(VPN)等安全工具,对远程访问进行加密和隧道传输,确保数据在网络传输过程中的安全。

第四段:应急预案与团队培训。

在大数据应用中,要做好应急预案的制定和培训工作,以应对各种安全事件和突发情况。首先,要建立完善的安全事件管理机制,制定不同级别的应急预案,并明确各类事件的响应程序、责任人和解决方案。其次,要定期组织安全演练,提高团队成员的应急响应能力和协同配合能力。同时,还要对团队成员进行定期的安全培训,提高其安全意识和技术能力,确保他们能够及时、有效地应对安全事件。

第五段:合规与监管。

在大数据应用中,要严格遵守相关的法律法规和行业规范,通过合规和监管来保护大数据的安全。首先,要建立健全的数据管理制度,明确数据的收集、存储、传输和应用规则。其次,要确保数据的使用和共享符合个人隐私保护的法律要求。此外,还要积极参与行业组织和标准制定,推动行业的自律和规范化。

结尾段。

在大数据应用中,安全问题是一个长期而复杂的任务,需要我们保持高度的警惕性和创新精神。通过加强数据保护与加密、网络安全防护、应急预案与团队培训以及合规与监管等措施,我们可以更好地保护大数据的安全,为数据应用的顺利进行提供保障。

大数据安全的论文篇十五

摘要:传感器网络协议作为传感器与传感器之间,传感器与用户之间的通信媒介,在数据传输过程中因缺乏数据管理,经常导致传输给用户的数据是混乱的。针对上述问题,研究一种基于数据管理的传感器网络协议。该协议采用分层思想,将传感器网络协议分为四层:物理层、访问控制层、网络层以及应用层,并将传感器网络协议层集合成网络协议栈,完成数据有序传输。

关键词:数据管理;传感器;网络协议;协议层;协议栈。

目前存在的传感器网络协议由于层次划分的并不明确,经常导致采集到的数据出现混乱,不利于后期的数据管理(存储、处理和应用等)[1]。因此为方便后期数据管理,在数据管理的前提下,对传感器网络协议进行研究,以期解决数据混乱的问题。首先构建传感器网络协议层,协议层主要包括物理层、访问控制层、网络层以及应用层;然后将各层组合在一起构建传感器网络协议栈,协议栈主要为各层之间的数据传输提供软件方面的指导。基于数据管理的传感器网络协议研究,为数据通信工作奠定基础,加快了数据的`获取,方便了数据传输。

一、传感器网络协议研究。

传感器网络是微电子技术、嵌入式信息处理技术、传感器技术等几种结合并构建的一种属于计算机网络。数据量大且繁杂是当代大数据时代的特点,如果不对数据加以处理,人们要想快速、有效获得自己需要的数据,无疑大海捞针的,因此为应对当前传感器网络存在的问题,将设计好的网络协议嵌入其中是当前研究的重点课题之一[2]。

(一)传感器网络协议层。

为解决传统传感器网络协议划分不明确,导致数据混乱,不利于数据管理的问题。本次研究的传感器网络协议明确划分为4个层次,每个层次负责数据管理过程中的不同步骤,以规范数据流向。下图1为是传感器网络协议结构图。从图1中可以看出,本次研究的传感器网络协议一共分为4层:物理层、访问控制层、网络层以及应用层[3]。(1)物理层。传感器网络协议物理层主要负责定义物理通信信道和与访问控制层之间的连接。简单的说,就是接收或发送传感器前端摄像头采集到的数据,以及维护由以上数据构建的数据库。(2)访问控制层。传感器网络协议物理层主要负责物理层中数据的分类管理和传输。分类管理主要根据采集的数据类型进行分类确认,而传输主要是将分类结果进行传输。(3)网络层。传感器网络协议网络层是整个协议中的核心层次,主要负责传感器与传感器、传感器与观察者之间的通信以及信息交流。在网络层中可以实现多种异构数据的兼容、融合以及转换、传输,为后续数据管理做好前期的工作准备,使得不必在后期进行二次处理[4]。(4)应用层。传感器网络协议网络层是整个协议中的最后一个层次,主要负责与用户之间的数据交互,也就是将以上几层的数据分析结果按照用户的请求发送给用户。

(二)传感器网络协议栈。

协议栈,又被称为协议堆叠,是上述介绍的4个层次的总和,其实质反应了数据的往复传输过程。从下层协议的数据采集到数据传输再到上层协议的数据呈现,之后又从上层协议发出命令,命令下层传感器进行数据采集。传感器网络协议栈协调了不同层级之间的数据属性,在协议体系中,数据按照规定的格式加入自己的信息,形成数据位流,在各层级之间传递[5]。传感器网络协议标准采用了ieee802.15.4标准,各层级之间利用接入点实现数据交流和管理,一般接入点有两个,一个接入点负责数据传输,另一个接入点负责数据管理。在传感器运行过程中,各种不同属性的数据在不同层级上奉行不同命令。这样做有利于数据的有效分类,使得数据管理更为方便。

二、结束语。

传感器能够监测外部环境信息并按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求,广泛应用工业生产、机械器件制造、灾害监测、气象预测等诸多领域。但是由于传感器的监测是实时监测,所以数据量过于庞大,如果不加以管理,将会直接影响后期数据分析结果。本次研究针对上述问题,将数据管理作为中心指导思想,进行传感器网络协议研究,以期为数据管理做出技术支持。

参考文献。

大数据安全的论文篇十六

随着时代的快速发展,招标代理企业的信息化进程是未来社会需求的必然产物,所以,企业只有不断提升信息化建设的速度、提高自动化运营的效率,才能与时代的发展保持一致,以免被社会所摒弃。在招标代理企业的信息化管理过程中,还必须引进先进的管理观念、高质量的人力资源以及科学的管理模式等。

信息化;招标代理;企业管理。

第一,重视程度不够。由于高校对档案管理重视程度不够,在档案管理工作中,沿用传统的工作模式,对档案进行人工检索、整理、立卷和归档。即使大部分高校引进了先进的计算机设备,但是仍然只是发挥基本的输入、输出功能。由于缺乏现代化的管理系统,使得高校的档案管理工作繁琐,效率低下,限制了档案管理的价值。教师及学生的档案采集不全,档案卷内目录填写不完整,档案序号、文件编号、责任者、卷内文件的起始时间等信息有遗漏,档案文件保密级别不限定。第二,从事档案管理的人员素质不够。部分高校没有严格按照规定,完成档案管理工作,甚至缺乏专门的档案管理,只是简单的将档案堆在墙角里,使得档案丢失,这给档案查找工作带来非常大的困难。而且从事档案管理的人员,大部分是为了解决高校代课老师或教授配偶的工作,临时安排的,他们大部分人员缺乏计算机操作技能,不能利用计算机技术对档案信息进行开发和研究,并且缺乏工作积极性。第三,档案管理平台不健全。近些年来,高校电子文档、表格、音频、视频等各种数据信息,种类繁杂,这些庞大的数据信息难以有效的管理及存储。高校档案数据资源不断扩张,若不引入虚拟云存储技术,就有可能引发资源存储容量不够,导致数据库膨胀危险。

大数据的意义不是数据信息庞大,而是对数据信息进行高质量的处理。面对大数据时代的到来,高校如何在招生、教学、管理、就业方面进行大数据整合和管理,为高校的发展提供技术支持,是学校发展的重点工作。目前,很多学校已经建立了信息门户、统一用户管理与身份认证、综合信息服务门户,已经在信息管理中取得了进步,但是目前高校档案管理仍存在很多挑战。第一,组织维度。高校内各个部门应该优势互补,实现不同类型的大数据资源的优质整合。例如在高校内各部门建立数据管理机构、将数据整合和管理常态化,该机构由各个部门分管领导直接负责,协调部门内部事务,并将数据整合工作纳入年终评价体系,保障数据整合工作的效果。为加强高校档案管理,建议高校成立活动领导小组和工作小组。如下:其一,领导小组。组长;副组长;成员;职责;其二,工作小组。组长;副组长;成员;职责:统筹安排档案管理,研究制定管理措施;负责对档案信息进行协调、监督、考核。工作小组办公室设在公司后勤,负责日常工作联系及相关组织工作。第二,数据维度。高校档案来源丰富,包括教师和学生的人事档案、学籍档案、医疗保健档案、试题库、学校的基建档案、学校的资产档案、财务原始报销凭证、公文、电子邮件等。在档案大数据应用时,要将档案资源进行数据模型的转换,将二维的信息转换为多维的模型。第三,技术维度。在高校大数据时代,信息应用服务引领高校档案由常规分析向广度、深度分析转变。师生用户可以共享档案信息,并从海量档案信息中,挖掘出自己可用的信息,并从这些信息资源中进行价值判断和趋势分析,找出用户和档案之间的逻辑关系。4g移动通信终端、云技术与云存储服务、校园app等媒介渠道的引入,可以解决档案资源存储的问题。

第一,增强服务意识,提高服务水平,争取领导重视。大数据时代的来临,档案管理工作会面临许多新情况、新特点、新问题。实现现代化的管理,需要提高领导干部的档案意识,配备先进的设备,实现档案管理的现代化,网络化。第二,加强档案管理教育培训,提高管理人员的综合素质。大数据的管理不在是传统的简单数据和信息的归集,在信息化管理工作中,提高管理人员的素质是有必要的。加强人才培养,实现竞争上岗,培训上岗,加强业务宣贯,为档案管理创造一个新台阶。第三,提高档案管理信息化利用水平。引进现代化档案管理设备,用于快速档案查阅、检索、分析,提高工作效率,实现档案管理的现代化办公。一是加大资金投入,不断完善档案信息数据库,不断摸索档案应用软件和实际工作的结合,建立可行的档案信息系统,提高档案数据的实用性,使得档案查阅更快捷、更方便、更可靠。二是建立规范的制度保障体系,提高信息化管理的技术水平。

今年两会,大数据第一次出现在政府的工作报告中,这表明,大数据已经上升到国家层面。为了适应大数据时期,档案管理工作对管理人员的要求越来越高,学习现代计算机技术、网络技术、多媒体技术,跟上当代时代的节拍,对高校的发展有着重要的意义。

作者:张贤恩高秀英单位:枣庄市团校。

[1]杨似海,闫其春.大数据背景下的高校图书馆档案管理策略研究[j].四川图书馆学报,2016,4(35):81.

大数据安全的论文篇十七

在大数据时代的大数据管理的人员管理形式,不断发展和改革的过程中,计算机的软件和硬件都得到了有效的提高,磁盘、磁鼓等储存软件,得到了全面的普及和发展。同时,在在不断发展的过程中,计算机将大数据的组成形式,叫做大数据文件,并且在大数据文件上就可以直接的取名字,直接的进行查看,这对大数据的管理,无疑不是一个新的发展的起点。在大数据时代的大数据文件管理的过程中,由于大数据长期的保存在外面的,这样在对的大数据处理、分析、查找、删除、修改等操作的过程中,提供了极大程度上的'便利,其对其操作的程序,也具有特点的要求。但是,在文件管理的过程中,由于共享性能较大,数据与数据之间缺乏一定的独立性,对其管理和维护的费用和时间较大,这样往往工作效率提高,不能被广泛的使用。

大数据安全的论文篇十八

在当今科技发展迅猛的时代,大数据已成为不可忽视的重要资源。它为我们的生活带来了很多改变,也给企业、政府和个人提供了更多机会。通过对大数据的学习和实践,我意识到了大数据的重要性和潜力。在这篇文章中,我将从数据收集、数据分析、数据隐私、数据治理和数据应用五个方面分享我对大数据的心得体会。

首先,数据收集是进行大数据分析的基础。无论是企业、政府还是个人,我们都应该积极参与数据收集。在大数据时代,每个人都是潜在的数据生成源。企业可以通过设备和传感器收集销售数据和用户行为数据,政府可以利用数据收集来改善公共服务,个人可以通过社交媒体和移动应用来分享自己的数据。数据的多样性和数量越大,分析结果越准确,应用场景也会更多。

其次,对数据进行分析是利用大数据的核心。大数据分析可以帮助企业和政府发现隐藏的模式和趋势,为决策提供有力支持。在我们的日常生活中,大数据分析也是无处不在的。我们可以通过购物网站推荐来发现感兴趣的产品,通过社交媒体的算法来找到和我们兴趣相投的人。然而,大数据分析不仅仅是利用算法和工具,还需要人的智慧去理解数据背后的故事。

第三,数据隐私是大数据时代面临的主要问题之一。随着数据的不断增长,隐私问题也日益突出。个人数据的泄露可能导致信息被滥用,对个人和社会带来无法估量的风险。因此,数据隐私保护应该成为我们在使用大数据时考虑的重要因素。政府需要制定相应的法律和法规来保护个人隐私,企业需要建立严格的数据使用和保护机制,个人也应该提高自我保护意识,选择安全可靠的应用和平台。

第四,数据治理是保障数据质量和安全的重要手段。数据治理是一种组织和管理数据的方式,涉及到数据的标准化、清洗、分类和存储等方面。数据治理的目标是确保数据可靠和可用,提高数据价值和利用率。在数据治理过程中,需要建立明确的责任和权限,制定相应的规范和流程,采用合理的技术手段来保护数据的完整性和安全性。

最后,大数据的应用是实现数据价值的最终目标。大数据的应用可以涵盖各个领域,如金融、医疗、交通和教育等。通过大数据分析,金融机构可以预测风险,提高客户满意度;医疗机构可以个性化治疗,提高疗效;交通部门可以优化交通流量,减少拥堵;教育部门可以根据学生的兴趣和能力提供个性化教育。大数据的应用可以为企业提供竞争优势,为政府提供决策支持,为个人提供个性化服务。

综上所述,大数据是当今信息社会的重要资源,对企业、政府和个人都具有重要意义。通过对大数据的学习和实践,我深刻认识到了数据收集、数据分析、数据隐私、数据治理和数据应用的重要性和挑战。在未来的发展中,我们需要更加重视数据的收集和利用,同时加强对数据隐私的保护和数据治理的规范,以实现大数据的最大价值。

大数据安全的论文篇十九

在大数据时代的大数据管理形式不断发展过程中,给企业发展带来冲击非常巨大。因此,企业要根据我国信息技术不断发展的形式,对大数据管理框架进行全面的设计和创新,如图1所示。在大数据的处理的过程中,主要是围绕着数据资产进行管理的,同时对大数据时代的大数据管理制度,进行全面的规划行、设计、创新,这样对其它信息技术管理领域,提供了便利的条件。其实,大数据时代的大数据管理最主要的目的,就是将大数据的价值进行充分的展现。另外,在大数据时代的大数据管理框架不断创新的过程中,有效的实现了大数据共享等性能,不断扩大了大数据时代的大数据管理的内容,对我国现代化信息技术的发展,起到了重要的作用和意义。

2。2开发与内容的管理形式。

在不断提高大数据时代的大数据管理形式的过程中,可以从两个方面进行,一是大数据开发管理,二是内容管理。其中大数据开发管理注重于大数据管理的定义,和管理解决策略,对其大数据的存在价值,进行有效的开发。换句话说,其实也就是在大数据时代的大数据管理的过程中,对其管理形式的开发,对大数据的功能和价值,进行充分的理解。

大数据时代的大数据管理中的内容管理是指:企业对大数据进行不断的获取、使用、存储、维护等工作活动。因此,传统的大数据时代的大数据管理形式,已经无法满足对这个时代发展需求。因此,在时代快速发发展的推动下,要对开发管理和内容管理,进行全面的创新和设计,对需要专门设定的管理形式,要给予高度的重视,可以利用的集合型的保存形式,进行全面的保存。

其实,大数据时代的大数据管理主要是为企业提供重要的发展方向,为企业提供重要的价值信息。大数据时代的大数据管理在数据应用和开发的过程中,起到了重要的衔接作用,也为我国信息技术的发展,打下了坚实的基础。

在大数据时代的大数据管理的过程中,数据框架管理起到了重要的作用,并且与大数据开发的过程中,有很多相似的地方。在传统的大数据时代的大数据管理的过程中,对其数据的开发、处理、保存等形式,都受到了一定程度上的限制。因此,在对大数据时代的大数据架构管理的过程中,对其操作形式,进行了全面的管理创新,避免受到范围的限制。另外,随着大数据不断的增加,大数据构架管理可以根据大数据的用途,质量良好的应用形态。例如:社交网络等形式。

与此同时,在最近几年的发展中,大数据时代的大数据管理形式,也面临着新的挑战基机遇。以此,只有对大数据时代的大数据管理形式,对个人信息、隐私等进行全面的管理,避免个人信息、隐私等发生泄露、不对称等现象的发生,这样不仅仅企业在发展的过程中,提供了最大程度上的安全保障,也为大数据时代的发展,带来了新的发展篇章。

3结语。

综上所述,大数据时代是信息技术时代不断发展的产物,不管对我国经济的发展,还是人们在日常工作、生活的过程中,都起到了重要的作用和意义。因此,本文对大数据时代的大数据管理发展的历程进行了简要的分析,并对大数据时代的大数据管理形式,提出了一些可参考性的建议,只有对大数据时代的大数据管理形式,进行不断的创新,对大数据时代的大数据管理框架,进行不断的构建,也只有这样的才能在最大程度上促进了我国信息技术的发展,也为我国各行各业的发展,提供了重要的发展方向,对我国经济的发展,也起到了推动性的作用。

【本文地址:http://www.xuefen.com.cn/zuowen/8668220.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档