总结是我们成长路上的里程碑,是值得回忆的重要片段。在写总结时,要注意积累和总结正面的经验和教训,发现问题并思考解决方法。看看以下总结的参考案例,或许能给你提供一些写作思路。
三角函数说课稿篇一
1、教材的地位与作用:《同角三角函数的基本关系》是学习三角函数定义后安排的一节继续深入学习的内容,是求三角函数值,化简三角函数式,证明三角恒等式的基本工具,是整个三角函数的基础,起承上启下的作用,同时,它体现的数学思想方法在整个中学学习中起重要作用。
2、教学目标的确定及依据。
a、知识与技能目标:通过观察猜想出两个公式,运用数形结合的思想让学生掌握公式的推导过程,理解同角三角函数的基本关系式,掌握基本关系式在两个方面的应用:
1)已知一个角的一个三角函数值能求这个角的其他三角函数值;
2)证明简单的三角恒等式。
b、过程与方法:培养学生观察——猜想——证明的科学思维方式;通过公式的推导过程培养学生用旧知识解决新问题的思想;通过求值、证明来培养学生逻辑推理能力;通过例题与练习提高学生动手能力、分析问题解决问题的能力以及其知识迁移能力。
c、情感、态度与价值观:经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣。
3、教学重点和难点。
重点:同角三角函数基本关系式的推导及应用。
难点:同角三角函数函数基本关系在解题中的灵活选取及使用公式时由函数值正、负号的选取而导致的角的范围的讨论。
学生刚开始接触三角函数的内容,学习了任意角的三角函数,对这一方面的内容既感到新鲜又感到陌生,很有好奇心,跃跃欲试,学习热情高涨。
1、教法分析:采取诱思探究性教学方法,在教学中提出问题,创设情景引导学生主动观察、思考、类比、讨论、总结、证明,让学生做学习的主人,在主动探究中汲取知识,提高能力。
2、学法分析:从学生原有的知识和能力出发,在教师的带领下,通过合作交流,共同探索,逐步解决问题.数学学习必须注重概念、原理、公式、法则的形成过程,突出数学本质。
例2、设计意图:
(1)分子、分母是正余弦的一次(或二次)齐次式,注意所求值式的分子、分母均为一次齐次式,把分子、分母同除以,将分子、分母转化为的代数式;还可以利用商数关系解决。
如此设计教学过程,既复习了上一节的内容,又充分利用旧知识带出新知识,让学生明白到数学的知识是相互联系的,所以每一节内容都应该把它牢固掌握;在公式的推导中,教师是用创设问题的形式引导学生去发现关系式,多让学生动手去计算,体现了&qut教师为引导,学生为主体,体验为红线,探索得材料,研究获本质,思维促发展&qut的教学思想。通过两种不同的例题的对比,让学生能够明白到关系式中的开方,是需要考虑正负号,而正负号是与角的象限有关,角的象限题目可以直接给出来,但有时是需要已知条件来推出角可能所在的象限,通过分析,把本节课的教学难点解决了。
由于课堂在完成例题及变式时要给予学生充分的时间思考与尝试,故对学生的检测只能安排在课后的作业中,作业可以检测学生对本节课内容掌握的'情况,能否灵活运用知识进行合理的迁移,可以发现学生在解题中存在的问题,下节课教师再根据学生完成的情况加以评讲,并设计相应的训练题,使学生的认识再上一个台阶。
三角函数说课稿篇二
各位同仁,各位专家:
教学内容:任意角三角函数的定义、定义域,三角函数值的符号。
地位和作用: 任意角的三角函数是本章教学内容的基本概念对三角内容的整体学习至关重要。同时它又为平面向量、解析几何等内容的学习作必要的准备,通过这部分内容的学习,又可以帮助学生更加深入理解函数这一基本概念。所以这个内容要认真探讨教材,精心设计过程。
教学重点:任意角三角函数的定义
学生已经掌握的内容,学生学习能力
1。初中学生已经学习了基本的锐角三角函数的定义,掌握了锐角三角函数的一些常见的知识和求法。
2。我们南山区经过多年的初中课改,学生已经具备较强的自学能力,多数同学对数学的学习有相当的兴趣和积极性。
针对对教材内容重难点的和学生实际情况的分析我们制定教学目标如下
(1)任意角三角函数的定义;三角函数的定义域;三角函数值的符号,
(1)理解并掌握任意角的三角函数的定义;
(2)正确理解三角函数是以实数为自变量的函数;
(3)通过对定义域,三角函数值的符号的推导,提高学生分析探究解决问题的能力。
(1)学习转化的思想,(2)培养学生严谨治学、一丝不苟的科学精神;
针对学生实际情况为达到教学目标须精心设计教学方法
教法学法:温故知新,逐步拓展
(2)通过例题讲解分析,逐步引出新知识,完善三角定义
运用多媒体工具
(1)提高直观性增强趣味性。
教学过程分析
总体来说, 由旧及新,由易及难,
逐步加强,逐步推进
先由初中的直角三角形中锐角三角函数的定义
过度到直角坐标系中锐角三角函数的定义
再发展到直角坐标系中任意角三角函数的定义
给定定义后通过应用定义又逐步发现新知识拓展完善定义。
具体教学过程安排
引入: 复习提问:初中直角三角形中锐角的正弦余弦正切是怎样定义的?
由学生回答
sina=对边/斜边=bc/ab
cosa=对边/斜边=ac/ab
tana=对边/斜边=bc/ac
逐步拓展:在高中我们已经建立了直角坐标系, 把“定义媒介”从直角三角形改为平面直角坐标系。
从而得到
知识点一:任意一个角的三角函数的定义
提醒学生思考:由于相似比相等,对于确定的角a ,这三个比值的大小和p点在角的终边上的位置无关。
精心设计例题,引出新内容深化概念,完善定义
例1已知角a 的终边经过p(2,—3),求角a的三个三角函数值
(此题由学生自己分析独立动手完成)
例题变式1,已知角a 的大小是30度,由定义求角a的三个三角函数值
提出问题:这三个新的定义确实问是函数吗?为什么?
从而引出函数极其定义域
由学生分析讨论,得出结论
知识点二:三个三角函数的定义域
知识点三:三角函数值的正负与角所在象限的关系
由学生推出结论,教师总结符号记忆方法,便于学生记忆
例题2:已知a在第二象限且 sina=0。2 求cosa,tana
求cosa,tana
综合练习巩固提高,更为下节的同角关系式打下基础
拓展,如果不限制a的象限呢,可以留作课外探讨
小结回顾课堂内容
课堂作业和课外作业以加强知识的记忆和理解
课堂作业p16 1,2,4
(学生演板,后集体讨论修订答案同桌讨论,由学生回答答案)
课后分层作业(有利于全体学生的发展)
必作p23 1(2),5(2),6(2)(4) 选作p23 3,4
板书设计(见ppt)
三角函数说课稿篇三
各位评委、老师们:
大家好!
今天能有这个展示的机会,得到各位评委、老师的指导,感到非常荣幸、
基于以上对教学内容的理解,结合我所教学生的特点,我确定本节课教学目标为:
1.理解一次函数与二元一次方程(组)的关系、
3.通过现实化的实际问题背景,反映祖国科技和经济的发展、
本课的教学过程分为五个环节完成、首先请看“创设情境,提出问题”的教学过程、(插入录像1)。
设计意图:因为学生对刚学过的一次函数理解得还不够透彻,有一定的畏难情绪,并且他们对一元一次方程、二元一次方程(组)和一元一次不等式都很熟悉,因而缺乏学习这部分内容的热情,或者只是机械地背记结论,所以我从本课引入部分,就力求能马上吸引住学生。通过对一道七年级课本中曾经解决过的问题的再认识,使学生在认知上形成冲突,从而产生学习新知的需要;接着我设计了一个师生互动的游戏,使学生对老师是怎么迅速判断出方程组解的情况产生了强烈的好奇心,从而有了学习新知的强烈愿望、(插入录像2)。
1、进入新知的学习,我首先通过一段视频为学生创设了一个贯穿整节课的问题情境,使学生始终在倍感新鲜的环境中进行学习、本课新知由两部分构成,一是研究一次函数与二元一次方程的关系,二是研究一次函数与二元一次方程组的关系,下面请看第一部分的教学过程、(插入录像3)。
2、下面请看学生如何“研究一次函数与二元一次方程组的关系”、(插入录像4)。
为了帮助学生加深对所学内容的理解,我设计了下面的例题、(插入录像5)。
下面请看第四个环节“解决问题,加深认识”的教学过程、(插入录像6)。
这就是我对这节课的教学设计,其中难免有很多不足之处,真诚的希望得到各位老师的批评指正,以使我在今后的教学中加以改进、谢谢!
三角函数说课稿篇四
地位和作用:任意角的三角函数是本章教学内容的基本概念对三角内容的整体学习至关重要。同时它又为平面向量、解析几何等内容的学习作必要的准备,通过这部分内容的学习,又可以帮助学生更加深入理解函数这一基本概念。所以这个内容要认真探讨教材,精心设计过程。
1、初中学生已经学习了基本的锐角三角函数的定义,掌握了锐角三角函数的一些常见的知识和求法。
2、我们南山区经过多年的初中课改,学生已经具备较强的自学能力,多数同学对数学的学习有相当的兴趣和积极性。
针对对教材内容重难点的和学生实际情况的分析我们制定教学目标如下。
(1)任意角三角函数的定义;三角函数的.定义域;三角函数值的符号,
(2)正确理解三角函数是以实数为自变量的函数;
(3)通过对定义域,三角函数值的符号的推导,提高学生分析探究解决问题的能力。
(1)学习转化的思想,(2)培养学生严谨治学、一丝不苟的科学精神;
针对学生实际情况为达到教学目标须精心设计教学方法。
教法学法:温故知新,逐步拓展。
(2)通过例题讲解分析,逐步引出新知识,完善三角定义。
运用多媒体工具。
(1)提高直观性增强趣味性。
总体来说,由旧及新,由易及难,
逐步加强,逐步推进。
先由初中的直角三角形中锐角三角函数的定义。
过度到直角坐标系中锐角三角函数的定义。
给定定义后通过应用定义又逐步发现新知识拓展完善定义。
引入:复习提问:初中直角三角形中锐角的正弦余弦正切是怎样定义的?
sina=对边/斜边=bc/ab。
cosa=对边/斜边=ac/ab。
tana=对边/斜边=bc/ac。
逐步拓展:在高中我们已经建立了直角坐标系,把“定义媒介”从直角三角形改为平面直角坐标系。
提醒学生思考:由于相似比相等,对于确定的角a,这三个比值的大小和p点在角的终边上的位置无关。
精心设计例题,引出新内容深化概念,完善定义。
例1已知角a的终边经过p(2,—3),求角a的三个三角函数值。
(此题由学生自己分析独立动手完成)。
例题变式1,已知角a的大小是30度,由定义求角a的三个三角函数值。
提出问题:这三个新的定义确实问是函数吗?为什么?
从而引出函数极其定义域。
由学生分析讨论,得出结论。
由学生推出结论,教师总结符号记忆方法,便于学生记忆。
例题2:已知a在第二象限且sina=0。2求cosa,tana。
求cosa,tana。
综合练习巩固提高,更为下节的同角关系式打下基础。
拓展,如果不限制a的象限呢,可以留作课外探讨。
课堂作业和课外作业以加强知识的记忆和理解。
课堂作业p161,2,4。
(学生演板,后集体讨论修订答案同桌讨论,由学生回答答案)。
课后分层作业(有利于全体学生的发展)。
必作p231(2),5(2),6(2)(4)选作p233,4。
三角函数说课稿篇五
本节主要内容为:经历探索30°、45°、60°角的三角函数值的过程,能够进行含有30°、45°、60°角的三角函数值的计算。
1、经历探索30°、45°、60°角的三角函数值的过程,能够进行有关推理,进一步体会三角函数的意义。
2、能够进行含有30°、45°、60°角的三角函数值的计算。
3、能够根据30°、45°、60°角的三角函数值,说出相应的锐角的大小。
重点:进行含有30°、45°、60°角的三角函数值的计算。
难点:记住30°、45°、60°角的三角函数值。
教师准备。
预先准备教材、教参以及多媒体课件。
学生准备。
教材、同步练习册、作业本、草稿纸、作图工具等。
教学流程设计。
教师指导学生活动。
1.新章节开场白.1.进入学习状态.
2.进行教学.2.配合学习.
3.总结和指导学生练习.3记录相关内容,完成练习.
教学过程设计。
1、从学生原有的认知结构提出问题。
2、师生共同研究形成概念。
3、随堂练习。
4、小结。
5、作业。
板书设计。
3、例题。
本节课基本上能够突出重点、弱化难点,在时间上也能掌控得比较合理,学生也比较积极投入学习中,但是学生好像并不是掌握得很好,在今后的教学中应该再加强关于这方面的学习。
三角函数说课稿篇六
教学内容:任意角三角函数的定义、定义域,三角函数值的符号。
地位和作用:任意角的三角函数是本章教学内容的基本概念对三角内容的整体学习至关重要。同时它又为平面向量、解析几何等内容的学习作必要的准备,通过这部分内容的学习,又可以帮助学生更加深入理解函数这一基本概念。所以这个内容要认真探讨教材,精心设计过程。
学情分析:
学生已经掌握的内容,学生学习能力。
1、初中学生已经学习了基本的锐角三角函数的定义,掌握了锐角三角函数的一些常见的知识和求法。
2、我们南山区经过多年的初中课改,学生已经具备较强的自学能力,多数同学对数学的学习有相当的兴趣和积极性。
针对对教材内容重难点的和学生实际情况的分析我们制定教学目标如下。
知识目标:
(1)任意角三角函数的定义;三角函数的.定义域;三角函数值的符号,
能力目标:
(2)正确理解三角函数是以实数为自变量的函数;
(3)通过对定义域,三角函数值的符号的推导,提高学生分析探究解决问题的能力。
德育目标:
(1)学习转化的思想,(2)培养学生严谨治学、一丝不苟的科学精神;
针对学生实际情况为达到教学目标须精心设计教学方法。
教法学法:温故知新,逐步拓展。
(2)通过例题讲解分析,逐步引出新知识,完善三角定义。
运用多媒体工具。
(1)提高直观性增强趣味性。
教学过程分析。
总体来说,由旧及新,由易及难,
逐步加强,逐步推进。
先由初中的直角三角形中锐角三角函数的定义。
过度到直角坐标系中锐角三角函数的定义。
给定定义后通过应用定义又逐步发现新知识拓展完善定义。
具体教学过程安排。
引入:复习提问:初中直角三角形中锐角的正弦余弦正切是怎样定义的?
由学生回答。
sina=对边/斜边=bc/ab。
cosa=对边/斜边=ac/ab。
tana=对边/斜边=bc/ac。
逐步拓展:在高中我们已经建立了直角坐标系,把“定义媒介”从直角三角形改为平面直角坐标系。
从而得到。
提醒学生思考:由于相似比相等,对于确定的角a,这三个比值的大小和p点在角的终边上的位置无关。
精心设计例题,引出新内容深化概念,完善定义。
例1已知角a的终边经过p(2,—3),求角a的三个三角函数值。
(此题由学生自己分析独立动手完成)。
例题变式1,已知角a的大小是30度,由定义求角a的三个三角函数值。
提出问题:这三个新的定义确实问是函数吗?为什么?
从而引出函数极其定义域。
由学生分析讨论,得出结论。
知识点二:三个三角函数的定义域。
知识点三:三角函数值的正负与角所在象限的关系。
由学生推出结论,教师总结符号记忆方法,便于学生记忆。
例题2:已知a在第二象限且sina=0。2求cosa,tana。
求cosa,tana。
综合练习巩固提高,更为下节的同角关系式打下基础。
拓展,如果不限制a的象限呢,可以留作课外探讨。
小结回顾课堂内容。
课堂作业和课外作业以加强知识的记忆和理解。
课堂作业p161,2,4。
(学生演板,后集体讨论修订答案同桌讨论,由学生回答答案)。
课后分层作业(有利于全体学生的发展)。
必作p231(2),5(2),6(2)(4)选作p233,4。
板书设计(见ppt)。
三角函数说课稿篇七
函数f(x)与它的反函数f-1(x)图象关于直线y=x对称;函数及其反函数的图形关于直线y=x对称;函数存在反函数的充要条件是,函数的定义域与值域是一一映射等。反函数性质:函数f(x)与它的反函数f-1(x)图象关于直线y=x对称;函数及其反函数的`图形关于直线y=x对称;函数存在反函数的充要条件是,函数的定义域与值域是一一映射的。
三角函数说课稿篇八
本次说课主要从五个部分进行,分别是教材分析、学情分析、教学目标分析、教学重难点分析和教学设计。
我所使用的教材选自人教20xx年版的《全日制普通高级中学教科书数学第一册(上)》,《反函数》函数部分的一个重难点,也是研究两个函数相互关系的重要内容,而反函数的概念又是其中的抽象难理解部分,因此反函数概念的学习有助于学生进一步加深对函数的认识和理解。
高一的学生在学习反函数之前,已经对函数的概念、表示法,映射等内容有了一定的认识和了解,那么有了这些储备知识,学生在本节课的学习中可以在教师的引导下进行思考和理解,从而能较好地完成对本节课的学习。
知识与技能:让学生学生了解反函数的概念;通过本节课的学习会求一些简单函数的反函数过程与方法:教学上使用引导、发现法,这主要通过从具体到抽象、从特殊到一般的过渡方式来实现。
情感与态度(也就是德育目标):通过本节课的学习,能使学生发现函数内部因素相互联系,从而培养他们善于发现分析的能力,使他们学会以发现分析的目光去关注数学,以联系发展的态度去学习数学。
本节课的教学重点放在反函数的概念、反函数的求法上,而由于反函数的概念相对抽象难理解,所以教学难点自然落在了反函数的概念理解。
下面我对第五部分的教学设计进行详细展开:我的整个教学过程分成五个环节。
一、新课引入。
由于反函数的概念比较抽象难理解,在概念讲解前先以具体例子入手逐步引导,这样比较符合学生的接受规律。
联系函数的三要素,通过给出的两对函数之间三要素变化的比较,让学生对反函数首先有了一个大概的认识,然后再对反函数下严格的定义并进行详细的讲解。
二、概念讲解。
由于教材中给出的反函数的概念较长且较抽象,会给学生在理解上产生一定的难度,故引导学生从另外的角度分三步完成对反函数概念的理解,这样较易于学生接受和理解。
1.由函数式yf(x)xayc,得到式子x(y)。
2.根据函数的概念去说明x(y)是一个函数,其中定义域为c,值域为a.
3.下结论说明函数x(y)是函数yf(x)的反函数,并记作xf1(y),一般互换x和y,写作yf1(x).
三、通过问题的讨论加深学生对反函数的认识和理解。
1.所有函数都有反函数吗?
通过两个具体的函数(在讲课的课件中有详细给出)的异同,引导分析发现并不是所有的函数都有反函数。
2.互为反函数的函数有什么关系?
通过引入部分例子分析,结合反函数的概念,引导学生从从函数的三要素出发去描述互为反函数的两函数之间的'关系:
(1)对应法则互逆(2)1(x)的反函数是什么?
1在回答了第二个问题的基础上,引导学生利用以上结论发现yf(x)的反函数恰好是yf(x),即有yf(x)与yf1(x)互为反函数。
四、例题、联系相结合,归纳求反函数的方法。
首先分析讲解例题中的(1)、(2),再让学生结合反函数概念的分步理解思考归纳,尝试从解题过程中总结出求已知函数反函数的一般方法。
1.找原函数的值域;
2.由原函数式解出x(y);
3.互换x和y的位置;
4.标注反函数的定义域。
简化为一句话:一找、二解、三换、四标。
本次课堂不再安排别的练习题,而让学生对照求法步骤,自行完成(3)、(4)的求解作为课堂练习。
五、课堂小结、布置作业。
本节课所布置的作业是求已知函数的反函数,主要为了巩固学生对本节课知识的学习并加强对反函数求法的使用。
本节课的整个课堂设计,希望能从从新课引入到概念讲解、从概念学习到深入学习理解,实现从从具体到抽象、从特殊到一般的过渡方式。我觉得这样的设计,符合学生学习的循序渐进的接受规律,在教学过程中可以贯穿着教师引导学生讨论学习的主线,体现了教师教学的辅助作用与学生学习的主体地位。
三角函数说课稿篇九
今天我说课的内容是:一元一次不等式与一次函数。它是北师大版八年级下册第一章“一元一次不等式与一元一次不等式组”中的第五节内容。下面,我从教材理解、学情分析、设计思路、教学流程四个方面谈谈自己对这节课的思考和设计。
一元一次不等式与一次函数是在前面学生学习了一元一次方程、一元一次不等式、一次函数的基础上安排的。本节内容的重点是利用一次函数的图象解一元一次不等式,它既是对一元一次方程、一元一次不等式、一次函数的进一步巩固与深化,又是后续学二次函数等知识的基础和铺垫,起着承前启后的重要作用。同时本节教材承担着“引导学生初步体会不等式、方程、函数之间联系和区别”的章节目标,它是本章中的一个难点,渗透着数形结合的数学思想,反映了“事物是普遍联系”的哲学规律。本节内容的学习,对于启发学生数学思维,开拓学生的数学视野,提高学生的数学能力有着十分重要的意义。
依据课标要求和教材内容,我确定本节的教学目标是。
1、通过观察图象,使学生初步掌握利用一次函数图象来解一元一次不等式的方法。
2、通过学生合作探究,初步体会一元一次不等式、一元一次方程、一次函数之间的内在联系。
3、培养学生数形结合的意识和解决实际问题的能力,使学生充分感受数学的价值,进一步激发学习数学的热情。
我校是一所山区乡镇初中,办公条件相对较差,为了适应课堂教学改革的需求,近期学校在每个教室三面墙体装上黑板,并用竖线分成30小块,每块黑板都是学生课堂交流展示的平台,为学生创造了极大的展示空间。
教室内学生的座位分布以小组为单位,6人课桌相并,相对而坐,好、中、差不同层次学生相互搭配,组成6人学习小组,便于课堂上合作交流,互帮互学,互相促进。经过近段来的实践引导,学生的积极性大为提高,主动性明显增强,良好的学习习惯正在逐步养成。小组内部及小组之间讨论热烈,学生思维活跃,敢想敢说,课堂氛围浓,教学效果好。
在学习本节内容之前,学生已经能够熟练运用代数方法解出一元一次方程和一元一次不等式;能准确根据函数关系式画出图象,并能从图象中分析出变量之间的关系;能找出简单实际情境中的变量及相互关系。这些已有的知识和经验对于完成本课时目标十分重要,但由于本节内容综合性强,并且比较抽象,再加上学生基础、能力有限,所以学生对本节内容的掌握估计有一定的困难。
根据教材特点和学生实际,以及数学课程标准中提出的三个方面的教学实施建议:1、让学生经历数学知识的形成与应用过程;2、鼓励学生自主探索与合作交流;3、注重数学知识之间的联系,提高解决问题的能力等要求,同时结合初中生好奇心、求知欲强等特点,为了充分体现学生的主体作用,培养学生自主学习的精神,首先在新课导入时用简明的引言,点明课题,激发学生学习本节知识的兴趣,调动学生参与学习的积极性;其次在课堂学习中,运用新课程提倡的“自主探究、合作交流”的学习方式,引导学生主动地从事观察、猜测、推理、交流等教学活动,从而使学生形成自己对数学知识的理解和有效的学习策略。为此,本节课的教学,我将采用“提纲导学——交流展示——训练提升——学习评价”四环节主体参与式教学方法。
本节课的教学流程分为提纲导学、交流展示、训练提升、学习评价四个部分。
一、提纲导学。
教师用简练的引言,设置疑问,创设情境,导入新课。然后向学生发放提纲导学活页,其内容包括两个部分:一是学习目标,二是导学习题。出示教学目标的目的是为了让每个学生都明确本节课的学习任务,增强学习的目的性和方向性;导学习题是对教材内容的深度设计和处理,它紧扣课时目标,体现了知识由浅入深的层次性,符合学生的认知规律。同时问题以填空的形式呈现,更加具体,便于学生操作。
学生明确目标后,结合课本20页上方的函数图象,自学完成导学习题。时间预设为8分钟。自学中遇到的疑难问题在小组中合作探究解决,教师深入小组指导自学。
二、交流展示。
这个环节是在自学的基础上,让学生充分交流展示个人或小组的自学成果。时间预设为15分钟。具体过程为:每个小组至少两人在黑板上展示导学习题的自学成果,教师要引导学生主动参与,鼓励学生积极参与,保障全班三分之二以上的学生参与展示,力争黑板不留空白,让学生在参与中彰显自我,在展示中提高自我。没有在黑板上展示的同学,也要积极融入展示活动,可以随时上前标出展示中的“错误”,并写出自己的意见。书面展示结束后,教师根据学生的作答情况,有策略地请出多名学生向全班同学讲解自己解题的思路和过程,在讲解中,全体同学参与互动,有疑则问,有问则答,同时从思路、表达等方面对学生进行评价。
前4个问题的设计主要是为了完成“用一次函数图象解一元一次方程和一元一次不等式”的课时目标,它是课时重点,所以,自学时间要充裕,展示活动要充分,交流讲解要全面。第5个问题是本节的教学难点,学生很难独立完成,教师要组织学生互动探究,鼓励学生迎难而上,同时点拨释疑,引导思路,帮助学生自己逐步得出结论,并展示在黑板上。教师强调后,根据学生的学情分层提出要求。
三、训练提升。
完成的学生由教师检查评价后,做课后作业,同时承担帮助组内学困生完成训练题的任务。待全班学生基本完成后,抽查3名以上学生到黑板上讲解。问题二有多种解题思路,教师要引导学生发散思维,用不同的方法解决问题,体会一次函数、一元一次不等式、一元一次方程之间的联系和作用,为下一课时的学习做好铺垫。
四、学习评价。
教师对课堂目标的完成情况以及学生的学习情况、学习状态、参与程度、知识掌握程度进行课堂学习综合评价。这一个环节不是孤立存在的,它贯穿于课堂教学的全过程,教师在每个环节,都要对学生学习活动进行适时评价,对表现积极、学习自主的学生进行表扬,对稍差的学生提出改进的办法,促使他们进一步掌握学习数学的方法,激励全体同学高效率地参与课堂学习,生成知识,提高能力,从而有效地完成课时目标和任务。
三角函数说课稿篇十
2、教学目标的确定及依据。
根据教学大纲要求,结合教材,考虑到学生已有的认知结构心理特征,我制定了如下的教学目标:
(1)知识目标:理解对数函数的意义;掌握对数函数的图像与性质;初步学会用。
(2)能力目标:渗透类比、数形结合、分类讨论等数学思想方法,培养学生观察、
分析、归纳等逻辑思维能力.。
(3)情感目标:通过指数函数和对数函数在图像与性质上的对比,使学生欣赏数。
学的精确和美妙之处,调动学生学习数学的积极性.。
3、教学重点与难点。
重点:对数函数的意义、图像与性质.。
难点:对数函数性质中对于在与两种情况函数值的不同变化.。
学生在整个教学过程中始终是认知的主体和发展的主体,教师作为学生学习的指导者,应充分地调动学生学习的积极性和主动性,有效地渗透数学思想方法.根据这样的原则和所要完成的教学目标,对于本节课我主要考虑了以下两个方面:
1、教学方法:
(1)启发引导学生实验、观察、联想、思考、分析、归纳;
(2)采用“从特殊到一般”、“从具体到抽象”的方法;
(3)渗透类比、数形结合、分类讨论等数学思想方法.。
2、教学手段:
计算机多媒体辅助教学.。
“授之以鱼,不如授之以渔”,方法的掌握,思想的形成,才能使学生受益终身.本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:
(1)类比学习:与指数函数类比学习对数函数的图像与性质.。
(2)探究定向性学习:学生在教师建立的情境下,通过思考、分析、操作、探索,
(3)主动合作式学习:学生在归纳得出对数函数的图像与性质时,通过小组讨论,
使问题得以圆满解决.。
1、温故知新。
设计意图:既复习了指数函数和反函数的有关知识,又与本节内容有密切关系,
有利于引出新课.为学生理解新知清除了障碍,有意识地培养学生。
分析问题的能力.。
2、探求新知。
设计意图:教师建立了一个有助于学生进行独立探究的情境,学生通过动手操作、
观察、联想、类比、思考、分析、探索,在此过程中,通过小组讨论,
协作构建起新的知识.这充分体现了基于建构主义学习理论的探究定。
向性学习和主动合作式学习.。
3、课堂研究,巩固应用。
设计意图:通过这个环节学生可以加深对本节知识的理解和运用,在此过程中充。
分体现了数形结合和分类讨论的数学思想方法.同时为课外研究题的。
解决提供了必要条件,为学生今后进一步学习对数不等式埋下伏笔.。
4、课外研究。
5、课堂小结。
引导学生进行知识回顾,使学生对本节课有一个整体把握.从三方面进行小结:
(2)掌握对数函数的图像与性质,体会类比、数形结合的思想方法;
(3)会利用对数函数的性质比较两个同底对数值的大小,初步学会对数不等式的。
解法,体会分类讨论的思想方法.。
6、课外作业。
公式无法显示,完整word文档点击下载此文件。
三角函数说课稿篇十一
各位老师,你们好!我今天说课的内容是《一次函数》,现在给大家说一说当初我是如何跟学生一起学习这节内容的,希望各位多加指导!我将从以下几个方面给大家做一详细介绍:
(一)本节内容在教材中的地位和作用。
本课的内容是人教版八年级上册第14章第2节第2课时,就是课本115到116页的内容。在许多方面与正比例函数的图象和性质有着紧密联系,是本章中的重点。本节课安排在正比例函数的图象与一次函数的概念之后。通过这一节课的学习使学生掌握一次函数图象的画法和一次函数的性质。它既是正比例函数的图象和性质的拓展,又是今后继续学习“用函数观点看方程(组)与不等式”的基础,在本章中起着承上启下的作用。本节教学内容还是学生进一步学习“数形结合”这一数学思想方法的很好素材。作为一种数学模型,一次函数在日常生活中也有着极其广泛的应用。
(二)说教学目标。
基于以上的教材分析,结合新课程标准的新理念,确立如下教学目标:
知识技能:
1、理解直线y=kx+b与y=kx之间的位置关系;
2、会利用两个合适的点画出一次函数的图象;
数学思考:
2、通过一次函数的图象总结函数的性质,体验数形结合法的应用,培养推理及抽象思维能力。
情感态度:
2、在探究一次函数的图象和性质的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神。
(三)说教学重点难点。
教学难点:由一次函数的图象归纳得出一次函数的性质及对性质的理解。
1、教学方法。
依据当前素质教育的要求:以人为本,以学生为主体,让教最大限度的服务与学。因此我选用了以下教学方法:
1、自学体验法——利用学生描点作图经历体验并发现问题,分析问题进一步归纳总结。
目的:通过这种教学方式来激发学生学习的积极主动性,培养学生独立思考能力和创新意识。
2、直观教学法——利用多媒体现代教学手段。
目的:通过图片和材料的展示来激发学生学习兴趣,把抽象的知识直观的展现在学生面前,逐步将他们的感性认识引领到理性的思考。
2、学法指导。
做为一名合格的老师,不止局限于知识的传授,更重要的是使学生学会如何去学。本着这样的原则,课上指导学生采用以下学习方法。
1、应用自主探究。培养学生独立思考能力,阅读能力和自主探究的学习习惯。
2、指导学生观察图象,分析材料。培养观察总结能力。
(一)、创设情境,导入新课。
活动1:观察:
展示学生作图作品(书p28例2),强调列表及图象上的点的对应关系。
课前一两分钟对学生上交的作图作品进行快速筛选,进量多选出一部分,课上多肯定多表扬多鼓励。再从中选取一两幅优秀的作品上课为示例。
目的有四:
2、课上展示学生作品本身就是对学生完成作业情况的肯定,这又恰好给予了学生足够的成功感和荣誉感,这便增加了学生学习数学的信心,乐意学习数学,激发了学习热情,听课更加专心。
3、学生经历画图象进而感悟它的形状及与正比例函数图象的异同,为后面的发现规律作了准备。
4、令教师对学生有了更深层次的了解,能更好地把握课堂。
(二)尝试探索、体验新知:
活动1、观察探索:
比较两个函数图象的相同点与不同点?
第一步;根据你的观察结果回答问题。(书中原问题1、2、3)。
目的:这样在学生已经知道正比例函数的图象是一条直线的基础上,通过对应描点法来画出了图象,让学生通过操作体验感悟两者之间的关系,问题变得直观形象,学生们非常容易地完成平移。
目的:这样通过启发学生视觉见到的两点,即与坐标轴的交点{(0,b),和(—b/k,0)两点};此交点的求法(学生易从填表中的数据发现),再反之引导学生抓住这两点画图象。就此题体验一次函数图象的两点确定;同时也教会了学生用两点法画一次函数图象。
活动2:知识再体验:在同一直角坐标系中画出四个k值不同的一次函数图象,并观察分析。
目的:进一步巩固两点作图法,为探究一次函数的性质作准备。
活动3:展示“上下坡”材料,解决象限问题。(多媒体展示)。
目的:让学生触发漫画中“上下坡”的情景,引导思考k、b对图象的影响——设置化抽象为形象,化枯燥为生动,同时学生对这种直观的知识易接受,易理解,记忆深刻。从而突出了重点,攻破了难点。
活动4:师生互动(师生角色互换),提高拓展。(多媒体展出内容)。
目的:通过这种师生互动角色转换形式,不但能尽快烘起课堂气愤,而且复习了本课的重点内容,对一次函数的性质理解的更透彻。
(三)课堂小结。
引导学生回忆所学知识。通过这节课的学习你得到什么启示和收获?谈谈你的感受。
目的:总结回顾学习内容,有助于学生养成整理知识的习惯;有助于学生在刚刚理解了新知识的基础上,及时把知识系统化、条理化。
(四)作业布置。
加强“教、学”反思,进一步提高“教与学”效果。
采用了如下板书,要点突出,简明清晰。
一次函数。
正比例函数图像的画法:确定两点为(0,0)和(1,k)一次函数选择的两点为:(0,k)和(—bk,0)。
三角函数说课稿篇十二
各位老师,大家好!
我是张苗,来自河北师范大学xxx级数信c班。今天我要说课的内容是正弦函数的图像与性质的第一课时的内容,此节内容是人教b版高中数学必修四《基本初等函数二》当中的第一章第三节第一小节的内容。下面我将从教学材料的分析、学生学情的分析、教学方法的选择、教学过程的设计、教学结果的反思五各方面来做教学说明。
在分析教学材料的时候我吧他们分为三个方面来讨论:。
(1)教材的地位及作用。初中的时候我们已经学习了一次函数、二次函数等一些简单的初等函数,今天学习的这个正弦函数是我们高中阶段最后的一类初等函数,它是刻画生活中周期现象问题的典型的函数模型,与教学大纲中的从实际出发相吻合。在初中的时候我们也学习了一些三角形及其诱导公式的知识,这些知识为我们的正弦函数的学习提供了良好的基础。今天我们要正式的学习正弦函数的图像及其性质。为以后学习余弦函数的图像及其性质打下坚实的基础。
(2)教学目标。数学课程标准在总体上把教学目标分解为“知识与技能”、“过程与方法”、“情感态度价值观”三个不可分割、相互交融、相互渗透的维度。接下来我将从这三个角度来说明我的教学目标。:我将会用正弦线画出正弦函数图像、用“五点法”画正弦函数简图作为知识与技能的目标,提升学生的观察能力与作图能力、渗透数形结合与转化划归的数学思想方法、培养学生自主探索和和合作的能力作为我们讲课时的过程与方法,最后通过作图,使学生感受波形曲线的流畅美、对称美。使学生体会事物周期变化的奥秘。
(3)教学的重点与难点。本节课是在教学生如何画正弦函数的图像,所以用五点作图法画函数的图像时本节课的重点。而引入正弦函数的图像时所用的正弦线对于学生来说,有些遗忘。吧正弦线重拾起来,并且将它引入正弦函数图像是本节课的难点。
作为教师,我们面对的是活生生的个体,个体存在着不确定性。所以面对这各种各样的不同层次的学生的时候,我们硬度他们进行全面的分析,并且准确的理解他们。(1)从学生知识层面看:通过初中正弦函数值相关知识的学习,学生具备了一定的知识经验和基础;通过必修一函数图像的学习,对作图也有了一定的认识。(2)从学生能力层面看:学生已有一定的分析、推理、概括能力,以及了解了一些抽象的理论知识,具备了运用数形结合思想解决问题的能力,但数形结合的意识和思维的深刻性还待进一步加强。(3)从学生情感培养方面看:思维较活跃,对具体形象的实例比较感兴趣,具有一定的数学基础及解决问题的能力。但对学习抽象知识具有抵触情绪,缺乏主动性。
本课内容蕴含着数形结合等丰富的数学思想,是培养学生观察能力、概括能力、探究能力和创新意识的重要素材。所以我决定采用启发式教学与情景教学相结合的方式来进行我的教学活动,并使用多媒体辅助。
基于以上的种种,我决定设计以下的教学过程,将教学分成以下几个层次:1,创设情境、提出问题,2,问题驱动、探索新知,3,实战演练、巩固新知,4,总结反思、提高认识,5,任务延后、自主探究。
在创设情境、提出问题中,我通过给同学展示一个生活中见过的例子,让学生观察了解日常生活中的实际问题转化为数学问题,提高学生对数学的学习兴趣。问题驱动、探索新知,在这一方面我通过旧知识来引导学生学习新知识,了解新技能,从中发现问题并学会怎么解决新问题,通过学生的实践来获得新知识使他们印象深刻。并有我讲出本节课的重点“五点作图法”实战演练、巩固新知,学习了新知识后我们得通过实际演练,归纳总结,让学生迅速熟悉“五点作图法”在给与一些变式让同学自己动手去实践。接着总结反思、提高认识,在这部分内容中,我决定让学生自己去总结然后我去补充他们遗漏的那些内容,再次使学生明确教学内容以及教学的重点难点。任务延后、自主探究。在这块设计中就是给学生留一些课后习题,以及对于不同个程度的学生来说,不同难度的思考题,让他们依据自己自身的实际情况自主的增减练习。
本节课操作性较强,学生活动量较大新课从试验演示入手,形成图像的感知后,升级问题,探索正弦曲线的准确做法,形成理性认识,问题设置层层深入,引导学生发现问题,解决问题,并对方法进行归纳总结,体现了新课标以学生为主体,教师为主导的课堂教学理念,用多媒体课件可生动的表现出图像的变化过程,更好的突破难点。
本节课所画图像较多,能迅速准确的画出函数图像对学生来说是一个较高的要求,重在学生动手操作,不要怕学生出错,通过画图可以培养学生的动手能力,模仿能力。开始比较慢,尤其是五点法每个点都要准确的找到,然后画出图像。通过后面知识的学习实践证明,本教学设计科学、高效,教学目标达成度良好。
这位老师,以上所说只是我预设的一种方案,但课堂是千变万化的,应随着学生与教师的灵性发挥随机应变。预设效果如何,最终还有待于课堂教学实践的检验。不足之处希望各位老师给与批评指正,谢谢。
三角函数说课稿篇十三
各位评委、老师们:
大家好!
今天能有这个展示的机会,得到各位评委、老师的指导,感到非常荣幸、
基于以上对教学内容的理解,结合我所教学生的特点,我确定本节课教学目标为:
1.理解一次函数与二元一次方程(组)的关系、
3.通过现实化的实际问题背景,反映祖国科技和经济的发展、
一、创设情境,提出问题。
本课的教学过程分为五个环节完成、首先请看“创设情境,提出问题”的教学过程、(插入录像1)。
设计意图:因为学生对刚学过的一次函数理解得还不够透彻,有一定的畏难情绪,并且他们对一元一次方程、二元一次方程(组)和一元一次不等式都很熟悉,因而缺乏学习这部分内容的热情,或者只是机械地背记结论,所以我从本课引入部分,就力求能马上吸引住学生。通过对一道七年级课本中曾经解决过的问题的再认识,使学生在认知上形成冲突,从而产生学习新知的需要;接着我设计了一个师生互动的游戏,使学生对老师是怎么迅速判断出方程组解的情况产生了强烈的好奇心,从而有了学习新知的强烈愿望、(插入录像2)。
二、循序渐进,学习新知。
1、进入新知的学习,我首先通过一段视频为学生创设了一个贯穿整节课的问题情境,使学生始终在倍感新鲜的环境中进行学习、本课新知由两部分构成,一是研究一次函数与二元一次方程的关系,二是研究一次函数与二元一次方程组的关系,下面请看第一部分的教学过程、(插入录像3)。
2、下面请看学生如何“研究一次函数与二元一次方程组的关系”、(插入录像4)。
三、剖析例题,巩固新知。
为了帮助学生加深对所学内容的理解,我设计了下面的例题、(插入录像5)。
四、解决问题,加深认识。
下面请看第四个环节“解决问题,加深认识”的教学过程、(插入录像6)。
五、归纳小结,布置作业。
这就是我对这节课的教学设计,其中难免有很多不足之处,真诚的希望得到各位老师的批评指正,以使我在今后的教学中加以改进、谢谢!
三角函数说课稿篇十四
各位专家,各位老师,大家好!
今天我说课的课题是“义务教育课程标准实验教科书”八年级上册第六章第五节《一次函数图象的应用》第二课时,我将分以下几个方面进行分析:
一,教材分析。
新的课程标准将初中学段的数学知识分为四个领域,“数与代数”“空间与图形”“统计与概率”“实践与综和”,每个领域在三个年级里都是螺旋上升的,由于学生在七年级下册学习了变量之间的关系,学生对函数——研究世界变化规律的一个重要模型,已经有了一定的感性认识。而且通过“一次函数图象的应用”第一节的学习,学生的识图能力增强了,通过识图解决实际问题的求知欲望更迫切了,同时本节也渗透了数形结合,形象思维能力的培养,为以后学习其他函数奠定了兴趣基础和能力基础,因此,本节课在整个教材中起到了承上启下的作用,由于本节内容针对的学习者是八年级上的学生,已经具备了一定的生活经验和初步教学活动体验,乐意并能够与同伴进行合作交流共享,为此确定目标如下:
二,教学目标。
(一)知识与技能目标。
1,经历利用一次函数及其图象解决实际问题的过程,发展学生的数学应用能力。
2,经历函数图象信息的识别与应用过程,发展学生的形象思维能力。
3,更进一步培养学生的识图能力,即从“形”的方面解决问题。
(二)情感与态度目标。
1,进一步形成利用函数的观点认识现实世界的意识和能力。
2,通过学生自主探索研究生活中的事例,如“台风麦莎”对岛城的影响,促进学生的思考认知能力,激发学数学用数学的兴趣,培养团队协作意识和关心时事的意识。
3,丰富学生数学学习的成功体验。
三,教学重点和难点及关键。
本节课的教学重点是进一步培养学生良好的识图能力,更深层的体会数形结合,
难点是富有挑战性的数学史料。
四,教学理念和教学方式。
本节课将采用“教师为主导,学生为主体,训练为主线,思维为核心”的教学理念,以人的“兴趣学习”和“可持续发展”为关注目标,来体现教学方式中的“新意”。
教学中将采用合作交流和自主探究的教学策略,重视培养学生的独立思考能力,“数形结合”分析问题的能力,鼓励学生大胆里利用图形解决问题,培养创新精神。
评价方式体现多元化和人性化,关注思维,即解决问题的过程,淡化对知识的机械记忆,针对个人和小组进行及时的赞赏和肯定。
五,教学媒体和教学技术选用。
为使教学活动更有效,符合八年级上学生的年龄特点,需要教学媒体技术的支持,丰富学生的认知资源,拓展学生的思维空间。
六,教学和活动过程。
(一)教学准备:1,提前一天了解“麦莎”的有关内容。
(二)教学过程。
全课分为五个教学环节。
1,情景引入学习新知。2分钟。
2,议一议探索新知。8分钟。
3,练一练巩固新知。10分钟。
4,试一试开阔思路。5分钟。
5,读一读培养兴趣。7分钟。
6,练一练巩固新知。8分钟。
7,想一想感悟收获。4分钟。
8,布置作业。1分钟。
具体过程如下:(多媒体课件)。
将本文的word文档下载到电脑,方便收藏和打印。
三角函数说课稿篇十五
合作探究2:当函数与的图象之间有什么关系?(在这儿体现"从特殊到一般"、"从具体到抽象"的方法)。
合作探究3:分析你所画的两组函数的图象,对照指数函数的性质,总结归纳对数函数的性质。
(学生讨论并交流各自的发现成果,教师结合学生的交流,适时归纳总结,并板书对数函数的性质)。
问题1:对数函数()是否具有奇偶性,为什么?
问题2:对数函数(),当时,x取何值,y0,x取何值,y,当呢?
问题3:对数式的.值的符号与a,b的取值之间有何关系?请用一句简洁的话语叙述。
1.例题。
例1:求下列函数的定义域。
(2)()。
(该题主要考查对数函数的定义域这一限制条件根据函数的解析式求得不等式,解对应的不等式。同时通过本题也可让学生总结求函数的定义域应从哪些方面入手)。
例2:利用对数函数的性质,比较下列各组数中两个数的大小:
(1),。
(2),。
(3),。
(4),,。
(在这儿要求学生通过回顾指数函数的有关性质比较大小的步骤和方法,完成前3小题,第四题可通过教师的适当点拨完成解答,最后进行归纳总结比较数的大小常用的方法)。
合作探究4:已知,比较m,n的大小(该题不仅运用了对数函数的图象和性质,还培养了学生数形结合、分类讨论等数学思想。)。
本题可以从以下几方面加以引导点拨。
1.本题的难点在哪儿?
2.你希望不等式的两边的对数式变成怎样的形式,你能否找到它们之间的联系。
本题也可以从形的角度来思考。
p691,2,3。
由学生小结(对数函数的概念,对数函数的图象和性质,利用对数函数的性质比较大小的一般方法和步骤,求定义域应从几方面考虑等)。
【本文地址:http://www.xuefen.com.cn/zuowen/8391699.html】