数据思维栋心得体会报告(专业18篇)

格式:DOC 上传日期:2023-11-06 11:24:11
数据思维栋心得体会报告(专业18篇)
时间:2023-11-06 11:24:11     小编:字海

我通过这次的实践与尝试,加深了对……的认识。写心得体会要注意语气坦诚自然,既表达出个人真实感受,又兼顾客观客体。通过阅读他人的心得体会,我们可以学到不同的思维方法和总结技巧。

数据思维栋心得体会报告篇一

数据通信是现代社会中不可或缺的一环,随着科技的不断发展,数据通信的重要性在个人和企业生活中变得越来越显著。我有幸参加了一次关于数据通信报告的学习会议,通过听取专家的讲解和参与交流,我对数据通信有了更深入的理解。本篇文章将从数据通信的定义和发展、数据通信的应用、数据通信的优势和劣势、数据通信的风险以及数据通信的未来发展五个方面,对我在这次学习会议中的心得体会进行总结。

首先,在专家的讲解下,我对数据通信有了更加准确的理解。数据通信是指通过传输媒介,将数据从一个地方发送到另一个地方的过程。随着计算机技术的发展,数据通信已经成为信息技术的一大重要组成部分。在现代社会中,我们无论是通过手机进行通话,还是通过电脑上网,都是在进行数据通信。而随着5G技术的成熟和应用,数据通信将变得更加快速和高效。

其次,数据通信在各个领域的应用广泛。在学习会议中,专家通过案例分析和实际应用场景向我们展示了数据通信在企业生产、物联网、医疗健康、智慧城市等方面的应用。例如,在企业生产中,数据通信可以通过物联网技术实现设备的自动化控制和生产过程的监控,提高生产效率和产品质量。在医疗健康领域,数据通信可以实现医疗数据的远程传输和医疗服务的远程监护,为人们提供更加便捷和高效的医疗服务。数据通信的应用已经渗透到各个领域,给我们的生活带来了极大的便利。

然而,数据通信虽然有许多优势,但也存在一些劣势和风险。在学习会议中,专家向我们指出了数据通信的安全问题和隐私问题。随着信息技术的发展,网络攻击和数据泄露等问题也随之增加。在现实生活中,我们经常听到各类网络犯罪案件,这些都直接关系到数据通信的安全问题。因此,我们在使用数据通信的同时,要加强个人信息的保护,提高安全意识。

最后,数据通信的未来发展令人充满期待。在学习会议中,专家向我们展示了许多前沿的数据通信技术和应用,如5G、物联网、边缘计算等。这些技术的成熟和应用将为数据通信带来更加广阔的发展前景。特别是在智慧城市和工业互联网等领域,数据通信将发挥越来越重要的作用。我们作为参与者和见证者,应该不断学习和了解最新的技术动态,为数据通信的发展贡献自己的力量。

综上所述,通过这次学习会议,我对数据通信的定义和应用有了更加准确的理解,同时也了解到了数据通信的优势和劣势以及风险。数据通信的未来发展令人期待,我们应该积极学习新知识,为数据通信的发展做出贡献。数据通信作为现代社会中不可或缺的一环,将为我们的生活带来更多的便利和机遇。

数据思维栋心得体会报告篇二

随着信息时代的到来和科技的进步,数据分析和数据报告已经成为了各行各业中不可或缺的一部分。数据报告作为一种将大量数据经过整理、分析和解读后呈现出来的形式,能够帮助人们更好地理解问题、做出决策。下面,我将结合自己的经验和感悟,谈谈对数据报告的体会和感受。

首先,数据报告的准确性和可靠性是十分重要的。在编写数据报告时,我们需要确保所使用的数据是准确和可靠的,尽可能地避免数据的错误或偏差。只有准确和可靠的数据才能为我们提供准确的信息和可信的结论,从而帮助我们做出正确的决策。因此,对于数据的来源、采集方法和处理过程都需要进行严格的把控和验证,以确保数据的准确性和可靠性。

其次,数据报告需要具备清晰和简洁的表达方式。数据报告中的图表、图像和文字应该清晰明了,能够让读者快速地了解到所要传达的信息。同时,数据报告的内容也要精简,避免冗余和重复的信息。毕竟,在快节奏的社会中,人们往往没有太多的时间和精力去阅读冗长和复杂的报告。因此,一个简洁而又有条理的数据报告更容易被人们接受和理解。

第三,数据报告应该能够提供全面的信息。数据报告应该从多个角度、多个维度对数据进行分析,以便提供全面的信息。不同的人在不同的角度上对数据有着不同的需求和关注点,因此,给出尽可能全面的信息,能够满足不同人的需求,使得数据报告更具有包容性和适应性。通过在报告中加入不同的分析指标和视角,能够更好地满足读者的需求,使得数据报告更具有实际应用的价值。

第四,数据报告需要具备一定的解读和分析能力。数据本身是客观的,但是要将数据变为有用的信息,需要进行解读和分析。数据报告应该通过对数据的解读和分析,帮助读者更好地理解数据,挖掘数据背后的价值,为读者提供参考和建议。因此,在编写数据报告时,我们需要具备一定的专业知识和分析能力,以便对数据进行深入的解读和分析,提供有针对性的建议和决策支持。

最后,数据报告需要与读者的需求相匹配。数据报告编写的目的是为了向读者传递信息和提供决策支持。因此,在编写数据报告之前,我们需要对读者的需求和关注点进行调研,了解他们对数据的期望和需求。只有在了解读者需求的基础上,才能编写出符合读者期望的数据报告,使其更具有实际应用的价值。

综上所述,数据报告在如今的社会中扮演着举足轻重的角色。准确性和可靠性、清晰和简洁、全面和多角度、解读和分析能力、与读者需求相匹配,这些都是一个好的数据报告应该具备的特点。通过不断地学习和实践,我们可以提高自己对数据报告的编写和分析能力,更好地应对信息时代的挑战和需求。相信在不久的将来,数据报告将会在各个领域中发挥出更大的作用,为人们的工作和生活带来更多的便利和效益。

数据思维栋心得体会报告篇三

数据报告作为一种重要的信息呈现形式,在现代社会中发挥着越来越重要的作用。通过对数据的收集和分析,人们可以更加全面地了解现实情况,为决策提供有力的支持。近日,在参加一个关于经济发展的研讨会上,我有幸聆听了一位专家的数据报告,并对其进行了深入的思考和体悟。在这篇文章中,我将结合自己的观察和佐证,从报告内容、数据可靠性、图表呈现和报告结构四个方面谈一谈我对数据报告的心得体会。

首先,在数据报告中,报告内容的准确与否至关重要。我曾在一个研究项目中参与数据收集和整理的工作,深切体会到数据的获取并非易事。因此,我对这位专家在研讨会中呈现的数据报告给予了高度的关注。令我印象深刻的是,报告中所涉及的数据源十分齐全和全面,分析角度独到。通过对历史数据和现状的比较,专家成功地描绘出了经济形势的演变和发展趋势。这让我深深地体会到,一个好的数据报告不仅要有足够的数据支持,更要有辨别和分析的能力,将数据与相关背景相结合,形成有价值的信息。

其次,数据的可靠性是评判一个数据报告优劣的重要指标。在实验科研方面,很多研究者都十分注重数据的准确性和可信度。这次研讨会的数据报告采用了多个权威机构和独立调查的数据,有效地降低了数据误差,增加了报告的可靠性。此外,专家还通过详实的数据披露和分析方法的明确说明,让听众对数据的来源和处理过程有了更全面的认识。在今天信息泛滥的大环境下,真实可靠的数据具有不可估量的价值,数据报告必须充分考虑数据的可靠性,才能够在各个领域起到支持和引导作用。

第三,图表在数据报告中的应用十分重要。以往的数据报告常常沉浸在无尽的数字中,给人枯燥的感觉。然而,图表的出现改变了这种状况,使数据得以更加直观地表达。在专家的报告中,图表被广泛运用,通过各类直观的图表展示,使听众能够一目了然地把握到数据走势和相关信息之间的联系。尤其是对于那些不擅长数据分析的人来说,图表是非常好的辅助工具。因此,在数据报告中运用图表是十分必要和有效的,它可以提高信息的传递效果,使数据更加具有说服力和可读性。

最后,一个好的数据报告需要具有清晰的结构。在这次研讨会上,专家的报告采用了逻辑清晰和层次鲜明的结构,使听众能够循序渐进地理解报告中所涉及的内容。首先,专家引用了最新的数据和相关背景介绍,给听众提供了一个整体的情景认知;接下来,通过比较和分析的手法,将数据一一呈现并进行解读,让听众逐渐把握到重点和要领;最后,专家总结了报告的核心观点和问题,并提出了自己的建议和展望。这种严谨的结构让听众不会在报告中迷失,而能够系统地接收并理解所呈现的内容。

综上所述,数据报告作为一种重要的信息呈现形式,具有非常重要的作用。一个好的数据报告需要有准确全面的内容,数据的可信度,恰当的图表呈现以及清晰的结构。在今后的工作中,我们应该更加重视数据报告的质量,并不断提高自身的分析能力和创新思维,在利用数据报告的同时,也要注意数据的可靠性和透明度,以提高工作的效果和质量。

数据思维栋心得体会报告篇四

大数据的初衷就是将一个公开、高效的政府呈现在人民眼前。你知道数据报告

心得体会

是什么吗?接下来就是本站小编为大家整理的关于数据报告心得体会,供大家阅读!

现在先谈谈我个人在数据分析的经历,最后我将会做个总结。

大学开设了两门专门讲授数据分析基础知识的课程:“概率统计”和“高等多元数据分析”。这两门选用的教材是有中国特色的国货,不仅体系完整而且重点突出,美中不足的是前后内在的逻辑性欠缺,即各知识点之间的关联性没有被阐述明白,而且在应用方面缺少系统地训练。当时,我靠着题海战术把这两门课给混过去了,现在看来是纯忽悠而已。(不过,如果当时去应聘数据分析职位肯定有戏,至少笔试可以过关)。

抱着瞻仰中国的最高科研圣地的想法,大学毕业后我奋不顾身的考取了中科院的研究生。不幸的是,虽然顶着号称是高级生物统计学的专业,我再也没有受到专业的训练,一切全凭自己摸索和研究(不过,我认为这样反而挺好,至少咱底子还是不错的,一直敏而好学)。首先,我尽全力搜集一切资料(从大学带过来的习惯),神勇地看了一段时间,某一天我突然“顿悟”,这样的学习方式是不行的,要以应用为依托才能真正学会。然后呢,好在咱的环境的研究氛围(主要是学生)还是不错滴,我又轰轰烈烈地跳入了paper的海洋,看到无数牛人用到很多牛方法,这些方法又号称解决了很多牛问题,当时那个自卑呀,无法理解这些papers。某一天,我又“顿悟”到想从papers中找到应用是不行的,你得先找到科学研究的思路才行,打个比方,这些papers其实是上锁的,你要先找到钥匙才成。幸运的是,我得到了笛卡尔先生的指导,尽管他已经仙游多年,他的“谈谈方法”为后世科研界中的被“放羊”的孤儿们指条不错的道路(虽然可能不是最好地,the better or best way要到国外去寻找,现在特别佩服毅然出国的童鞋们,你们的智商至少领先俺三年)。好了,在咱不错的底子的作用下,我掌握了科研方法(其实很简单,日后我可能会为“谈谈方法”专门写篇日志)。可惜,这时留给咱的时间不多了,中科院的硕博连读是5年,这对很多童鞋们绰绰有余的,但是因本人的情商较低,被小人“陷害”,被耽搁了差不多一年。这时,我发挥了“虎”(东北话)的精神,选择了一个应用方向,终于开始了把数据分析和应用结合的旅程了。具体过程按下不表,我先是把自己掌握的数据分析方法顺次应用了,或者现成的方法不适合,或者不能很好的解决问题,当时相当的迷茫呀,难道是咱的底子出了问题。某一天,我又“顿悟”了,毛主席早就教育我们要“具体问题具体分析”,“教条主义”要不得,我应该从问题的本质入手,从本质找方法,而不是妄想从繁多的方法去套住问题的本质。好了,我辛苦了一段时间,终于解决了问题,不过,我却有些纠结了。对于数据发分析,现在我的观点就是“具体问题具体分析”,你首先要深入理解被分析的问题(领域),尽力去寻找问题的本质,然后你只需要使用些基本的方法就可以很好的解决问题了,看来“20/80法则”的幽灵无处不在呀。于是乎,咱又回到了原点,赶紧去学那些基础知识方法吧,它们是很重要滴。

这里,说了一大堆,我做过总结:首先,你要掌握扎实的基础知识,并且一定要深入理解,在自己的思维里搭建起一桥,它连接着抽象的数据分析方法和现实的应用问题;其次,你要有意识的去训练分析问题的能力;最后,你要不断的积累各方面的知识,记住没有“无源之水”、“无根之木”,良好的数据分析能力是建立在丰富的知识储备上的。

有人说生活像一团乱麻,剪不断理还乱;我说生活像一团乱码,尽管云山雾罩惝恍迷离,最后却总会拨云见日雨过天晴。维克托迈尔舍恩伯格就把这团乱码叫做大数据,在他的这本书里,试图给出的就是拨开云雾见青天的玄机。

这玄机说来也简单,就是放弃千百年来人们孜孜追求的因果关系转而投奔相关关系。说来简单,其实却颠覆了多少代人对真理探求的梦想。我觉得作者是个典型的实用主义者,在美帝国主义万恶的压迫和洗脑下,始终追逐性价比和利益最大化,居然放弃了追求共产主义真理最基本的要求!不像我们在天朝光芒的笼罩下,从小就开始学习和追求纯粹的共产主义唯心科学历史文化知识啦!这或许就是我们永远无法获得诺贝尔奖、永远无法站在科技最前沿的根本原因吧。其实小学时候,我就想过这个问题,相信所有的人都问过类似的问题,例如现在仍然很多人在问,妈的从来没人知道我每天摆摊赚多少钱,你们他妈的那人均收入四五千是怎么算出来的。中国是抽样的代表,因为中国人最喜欢用代表来表现整体,最典型的例子莫过于公布的幸福指数满意指数各种指数永远都高于你的预期,你完全不清楚他是怎么来的,一直到最后汇总成三个代表,真心不清楚它到底能代表了啥。说这么多显得自己是个愤青,其实只是想表达“样本=总体”这个概念在科技飞速发展的今天,在世界的不同角落,还是会体现出不同的价值,受到不同程度的对待及关注。在大数据观念的冲击下,我们是不是真的需要将平时关注的重点从事物内在的发展规律转移到事物客观的发生情况上。

大数据的出现,必然对诸多领域产生极大的冲击,某些行业在未来十年必将会得到突飞猛进的发展,而其他一些行业则可能会消失。这是废话,典型的三十年河东三十年河西的道理,就像三十年前的数理化王子们,现在可能蜷缩在某工厂的小角落里颤颤巍巍的修理机器;就像三十年前职业高中的学生才学财会学银行,如今这帮孙子一个个都开大奔养小三攒的楼房够给自己做墓群的了;当然也不乏像生物这种专业,三十年前人们不知道是干啥的,三十年后人们都知道没事别去干,唯一可惜的是我在这三十年之间的历史长河中却恰恰选了这么一个专业,这也是为什么我现在在这写

读后感

而没有跟姑娘去玩耍的原因。其实乍一看这个题目,我首先想到的是精益生产的过程控制,比如六西格玛,这其实就是通过对所有数据的分析来预测产品品质的变化,就已经是大数据的具体应用了。

而任何事物都会有偏差,会有错误,也就是说,这全部的数据中,肯定是要出现很多与总体反应出的规律相违背的个体,但是无论如何这也是该事件中一般规律的客观体现的一种形式,要远远好过从选定的样本中剔除异常值然后得到的结论。换句话说,也大大减少了排除异己对表达事物客观规律的影响。就好比是统计局统计中国人民的平均收入一样,这些数怎么这么低啊,这不是给我们国家在国际社会上的形象抹黑么,删掉删掉;这些数怎么这么高啊,这还不引起社会不满国家动荡啊,删掉删掉。所以说,大数据至少对反应客观事实和对客观事实做预测这两个方面是有非常积极地意义的。而这个新兴行业所体现的商机,既在如何利用数据上,又在如何取得数据上。

先说数据的利用,这里面表达的就是作者在通书中强调的对“相关关系”的挖掘利用。相关关系与因果关系便不再赘述,而能够对相关关系进行挖掘利用的企业其实缺不多,因为可以相信未来的大数据库就像现在的自然资源一样,必将因为对利益的追逐成为稀缺资源,而最终落在个别人或企业或部门的手中。想想无论当你想要做什么事情的时候,都有人已经提前知道并且为你做好了计划,还真是一件甜蜜而又令人不寒而栗的事情。

而对于数据的获取,我觉得必然是未来中小型企业甚至个人发挥极致的创造力的领域。如何在尽可能降低成本的情况下采集到越多越准确的数据是必然的发展趋势,鉴于这三个维度事实上都无法做到极致,那么对于数据获取方式的争夺肯定将成就更多的英雄人物。

现在回头从说说作者书中的观点中想到的,p87中关于巴斯德的疫苗的事件,描述了一个被疯狗咬伤的小孩,在接种了巴斯德的狂犬疫苗后成功幸存,巴斯德成了英雄的故事。这是个非常有意思的案例,因为小孩被狗咬伤而患病的概率仅为七分之一,也就是说,本事件有85%的概率是小孩根本就不会患病。那么小孩的生命到底是不是巴斯德救的,而这疫苗到底是有效没效,通过这个事件似乎根本就没有办法得到验证。这就好比某人推出个四万亿计划,但实际上国际经济形势就是好转,哪怕你只推出个二百五计划,gdp都会蹭蹭的往上涨,而且又不会带来四万亿导致的严重通胀、产能过剩、房价泡沫等问题。那你说这四万亿到底是救了国还是误了国?回到我自己的工作领域上来,安全工作,我们一直遵循的方向都是寻找因果关系,典型的从工作前的风险评估,到调查事故的taproot或者五个为什么,无一不是逻辑推理得到结果的产物。而事实上,如果能做到信息的丰富采集和汇总的话,找出事物之间的相关性,对提高工作环境的安全系数是极为有利的。这个点留着,看看可不可以在未来继续做进一步研究。

关于软件

分析前期可以使用excel进行数据清洗、数据结构调整、复杂的新变量计算(包括逻辑计算);在后期呈现美观的图表时,它的制图制表功能更是无可取代的利器;但需要说明的是,excel毕竟只是办公软件,它的作用大多局限在对数据本身进行的操作,而非复杂的统计和计量分析,而且,当样本量达到“万”以上级别时,excel的运行速度有时会让人抓狂。

spss是擅长于处理截面数据的傻瓜统计软件。首先,它是专业的统计软件,对“万”甚至“十万”样本量级别的数据集都能应付自如;其次,它是统计软件而非专业的计量软件,因此它的强项在于数据清洗、描述统计、假设检验(t、f、卡方、方差齐性、正态性、信效度等检验)、多元统计分析(因子、聚类、判别、偏相关等)和一些常用的计量分析(初、中级计量教科书里提到的计量分析基本都能实现),对于复杂的、前沿的计量分析无能为力;第三,spss主要用于分析截面数据,在时序和面板数据处理方面功能了了;最后,spss兼容菜单化和编程化操作,是名副其实的傻瓜软件。

stata与eviews都是我偏好的计量软件。前者完全编程化操作,后者兼容菜单化和编程化操作;虽然两款软件都能做简单的描述统计,但是较之spss差了许多;stata与eviews都是计量软件,高级的计量分析能够在这两个软件里得到实现;stata的扩展性较好,我们可以上网找自己需要的命令文件(.ado文件),不断扩展其应用,但eviews就只能等着软件升级了;另外,对于时序数据的处理,eviews较强。

综上,各款软件有自己的强项和弱项,用什么软件取决于数据本身的属性及分析方法。excel适用于处理小样本数据,spss、stata、eviews可以处理较大的样本;excel、spss适合做数据清洗、新变量计算等分析前准备性工作,而stata、eviews在这方面较差;制图制表用excel;对截面数据进行统计分析用spss,简单的计量分析spss、stata、eviews可以实现,高级的计量分析用stata、eviews,时序分析用eviews。

关于因果性

早期,人们通过观察原因和结果之间的表面联系进行因果推论,比如恒常会合、时间顺序。但是,人们渐渐认识到多次的共同出现和共同缺失可能是因果关系,也可能是由共同的原因或其他因素造成的。从归纳法的角度来说,如果在有a的情形下出现b,没有a的情形下就没有b,那么a很可能是b的原因,但也可能是其他未能预料到的因素在起作用,所以,在进行因果判断时应对大量的事例进行比较,以便提高判断的可靠性。

有两种解决因果问题的方案:统计的解决方案和科学的解决方案。统计的解决方案主要指运用统计和计量回归的方法对微观数据进行分析,比较受干预样本与未接受干预样本在效果指标(因变量)上的差异。需要强调的是,利用截面数据进行统计分析,不论是进行均值比较、频数分析,还是方差分析、相关分析,其结果只是干预与影响效果之间因果关系成立的必要条件而非充分条件。类似的,利用截面数据进行计量回归,所能得到的最多也只是变量间的数量关系;计量模型中哪个变量为因变量哪个变量为自变量,完全出于分析者根据其他考虑进行的预设,与计量分析结果没有关系。总之,回归并不意味着因果关系的成立,因果关系的判定或推断必须依据经过实践检验的相关理论。虽然利用截面数据进行因果判断显得勉强,但如果研究者掌握了时间序列数据,因果判断仍有可为,其中最经典的方法就是进行“格兰杰因果关系检验”。但格兰杰因果关系检验的结论也只是统计意义上的因果性,而不一定是真正的因果关系,况且格兰杰因果关系检验对数据的要求较高(多期时序数据),因此该方法对截面数据无能为力。综上所述,统计、计量分析的结果可以作为真正的因果关系的一种支持,但不能作为肯定或否定因果关系的最终根据。

科学的解决方案主要指实验法,包括随机分组实验和准实验。以实验的方法对干预的效果进行评估,可以对除干预外的其他影响因素加以控制,从而将干预实施后的效果归因为干预本身,这就解决了因果性的确认问题。

关于实验

在随机实验中,样本被随机分成两组,一组经历处理条件(进入干预组),另一组接受控制条件(进入对照组),然后比较两组样本的效果指标均值是否有差异。随机分组使得两组样本“同质”,即“分组”、“干预”与样本的所有自身属性相互独立,从而可以通过干预结束时两个群体在效果指标上的差异来考察实验处理的净效应。随机实验设计方法能够在最大程度上保证干预组与对照组的相似性,得出的研究结论更具可靠性,更具说服力。但是这种方法也是备受争议的,一是因为它实施难度较大、成本较高;二是因为在干预的影响评估中,接受干预与否通常并不是随机发生的;第三,在社会科学研究领域,完全随机分配实验对象的做法会涉及到研究伦理和道德问题。鉴于上述原因,利用非随机数据进行的准试验设计是一个可供选择的替代方法。准实验与随机实验区分的标准是前者没有随机分配样本。

通过准实验对干预的影响效果进行评估,由于样本接受干预与否并不是随机发生的,而是人为选择的,因此对于非随机数据,不能简单的认为效果指标的差异来源于干预。在剔除干预因素后,干预组和对照组的本身还可能存在着一些影响效果指标的因素,这些因素对效果指标的作用有可能同干预对效果指标的作用相混淆。为了解决这个问题,可以运用统计或计量的方法对除干预因素外的其他可能的影响因素进行控制,或运用匹配的方法调整样本属性的不平衡性——在对照组中寻找一个除了干预因素不同之外,其他因素与干预组样本相同的对照样本与之配对——这可以保证这些影响因素和分组安排独立。

转眼间实习已去一月,之前因为工作原因需要恶补大量的专业知识并加以练习,所以一直抽不开身静下心来好好整理一下学习的成果。如今,模型的建立已经完成,剩下的就是枯燥的参数调整工作。在这之前就先对这段时间的数据处理工作得到的经验做个小总结吧。

从我个人的理解来看,数据分析工作,在绝大部分情况下的目的在于用统计学的手段揭示数据所呈现的一些有用的信息,比如事物的发展趋势和规律;又或者是去定位某种或某些现象的原因;也可以是检验某种假设是否正确(心智模型的验证)。因此,数据分析工作常常用来支持决策的制定。

现代统计学已经提供了相当丰富的数据处理手段,但统计学的局限性在于,它只是在统计的层面上解释数据所包含的信息,并不能从数据上得到原理上的结果。也就是说统计学并不能解释为什么数据是个样子,只能告诉我们数据展示给了我们什么。因此,统计学无法揭示系统性风险,这也是我们在利用统计学作为数据处理工具的时候需要注意的一点。数据挖掘也是这个道理。因为数据挖掘的原理大多也是基于统计学的理论,因此所挖掘出的信息并不一定具有普适性。所以,在决策制定上,利用统计结果+专业知识解释才是最保险的办法。然而,在很多时候,统计结果并不能用已有的知识解释其原理,而统计结果又确实展示出某种或某些稳定的趋势。为了抓住宝贵的机会,信任统计结果,仅仅依据统计分析结果来进行决策也是很普遍的事情,只不过要付出的代价便是承受系统环境的变化所带来的风险。

用于数据分析的工具很多,从最简单的office组件中的excel到专业软件r、matlab,功能从简单到复杂,可以满足各种需求。在这里只能是对我自己实际使用的感受做一个总结。

excel:这个软件大多数人应该都是比较熟悉的。excel满足了绝大部分办公制表的需求,同时也拥有相当优秀的数据处理能力。其自带的toolpak(分析工具库)和solver(规划求解加载项)可以完成基本描述统计、方差分析、统计检验、傅立叶分析、线性回归分析和线性规划求解工作。这些功能在excel中没有默认打开,需要在excel选项中手动开启。除此以外,excel也提供较为常用的统计图形绘制功能。这些功能涵盖了基本的统计分析手段,已经能够满足绝大部分数据分析工作的需求,同时也提供相当友好的操作界面,对于具备基本统计学理论的用户来说是十分容易上手的。

spss:原名statistical package for the social science,现在已被ibm收购,改名后仍然是叫spss,不过全称变更为statistical product and service solution。spss是一个专业的统计分析软件。除了基本的统计分析功能之外,还提供非线性回归、聚类分析(clustering)、主成份分析(pca)和基本的时序分析。spss在某种程度上可以进行简单的数据挖掘工作,比如k-means聚类,不过数据挖掘的主要工作一般都是使用其自家的clementine(现已改名为spss modeler)完成。需要提一点的是spss modeler的建模功能非常强大且智能化,同时还可以通过其自身的clef(clementine extension framework)框架和java开发新的建模插件,扩展性相当好,是一个不错的商业bi方案。

r:r是一个开源的分析软件,也是分析能力不亚于spss和matlab等商业软件的轻量级(仅指其占用空间极小,功能却是重量级的)分析工具。官网地址:支持windows、linux和mac os系统,对于用户来说非常方便。r和matlab都是通过命令行来进行操作,这一点和适合有编程背景或喜好的数据分析人员。r的官方包中已经自带有相当丰富的分析命令和函数以及主要的作图工具。但r最大的优点在于其超强的扩展性,可以通过下载扩展包来扩展其分析功能,并且这些扩展包也是开源的。r社区拥有一群非常热心的贡献者,这使得r的分析功能一直都很丰富。r也是我目前在工作中分析数据使用的主力工具。虽然工作中要求用matlab编程生成结果,但是实际分析的时候我基本都是用r来做的。因为在语法方面,r比matlab要更加自然一些。但是r的循环效率似乎并不是太高。

matlab:也是一个商业软件,从名称上就可以看出是为数学服务的。matlab的计算主要基于矩阵。功能上是没话说,涵盖了生物统计、信号处理、金融数据分析等一系列领域,是一个功能很强大的数学计算工具。是的,是数学计算工具,这东西的统计功能只不过是它的一部分,这东西体积也不小,吃掉我近3个g的空间。对于我来说,matlab是一个过于强大的工具,很多功能是用不上的。当然,我也才刚刚上手而已,才刚刚搞明白怎么用这个怪物做最简单的garch(1,1)模型。但毫无疑问,matlab基本上能满足各领域计算方面的需求。

数据思维栋心得体会报告篇五

随着信息时代的到来,大数据已经成为了我们生活和工作中不可忽视的一部分。在这个信息爆炸的时代,如何处理和处理大量的数据成为了一个迫切需要解决的问题。大数据思维作为一个新兴的概念已经开始被广泛运用,它不仅仅是一种对大数据的分析和处理技术,更是一种思维方式和方法论。在这篇文章中,我将分享我在大数据思维和技术上的体会和心得。

首先,大数据思维需要从整体的角度看问题。在处理大数据时,我们需要考虑到所有的数据源和相关因素。我们不能只关注一个特定的数据点,而是要从整体的角度来分析和解决问题。在实际应用中,我们需要使用多种技术和工具来处理大数据,例如数据挖掘、机器学习和统计分析等。通过将不同的技术和工具结合起来,我们能够更全面地了解数据背后的真相,提取有价值的信息。

其次,大数据思维需要注重数据质量和数据管理。在处理大量的数据时,数据的质量对分析结果的准确性和可靠性起着至关重要的作用。我们需要保证数据的完整性和一致性,以及正确地处理数据的缺失和异常值。此外,数据管理也是大数据思维的一个重要方面。我们需要建立完善的数据管理系统,保证数据的安全性和可用性,并合理利用数据的价值。

第三,大数据思维需要灵活适应不断变化的数据环境。随着技术的发展和社会的变化,我们所面临的数据环境也在不断变化。作为从业者,我们需要保持对最新技术和趋势的敏感度,并及时调整和改进我们的思维和技术。同时,我们也需要不断学习和更新知识,以适应不断变化的数据环境。

第四,大数据思维需要结合业务需求和实际应用。在处理大数据时,我们不能仅仅停留在技术和工具的层面,而是要将其应用到实际的业务场景中。我们需要理解业务需求并对其进行分析,然后根据分析结果来制定相应的数据处理和分析策略。在实际应用中,我们还需要和业务团队紧密合作,共同制定和实施解决方案。

最后,大数据思维需要注重数据的可视化和传播。大数据的处理和分析结果往往很复杂,不容易理解。因此,我们需要使用可视化的方法来呈现数据的分析和结果,提高用户的理解和接受度。同时,我们还需要将数据的分析和结果传播给相关的人员和团队,以便他们能够更好地理解和应用数据。

综上所述,大数据思维是一种思维方式和方法论,它不仅仅是一种对大数据的分析和处理技术。大数据思维需要从整体的角度看问题,注重数据质量和数据管理,灵活适应不断变化的数据环境,结合业务需求和实际应用,并注重数据的可视化和传播。通过不断学习和实践,我们可以更好地运用大数据思维和技术,为我们的生活和工作带来更多的便利和创新。

数据思维栋心得体会报告篇六

数据思维是指通过分析、解释和利用数据来解决问题和做出决策的能力。在当今数字化时代,数据思维已经成为一种重要的能力。我在学习和工作中也深深体会到了数据思维的重要性和影响力。在本文中,我将分享我的一些心得体会,希望能够给大家带来一些启发和思考。

第二段:注重数据收集和处理

要想发展良好的数据思维能力,首先要注重数据的收集和处理。在现实生活中,我们常常会遇到大量的数据,但如何从中提取有价值的信息并进行分析是一门难题。因此,我们需要学会运用科学的手段收集和处理数据。例如,我们可以通过搜集相关的统计数据,运用数据挖掘和分析工具对其中的规律和潜在关系进行挖掘,并将其转化为可理解和可操作的信息。只有掌握了数据收集和处理的基本技巧,我们才能更好地进行数据思维和决策。

第三段:培养统计思维和创新思维

数据思维不仅仅是运用数据工具和方法,还需要有一种统计思维和创新思维的驱动。统计思维是指通过梳理和分析数据,挖掘其中的规律和趋势,以及进行数据推理和预测的能力。创新思维则是指运用数据思维来发现问题、解决问题以及寻找新的机会和可能性的能力。通过培养统计思维和创新思维,我们可以更加深入地理解数据背后的含义,并能够从中发现新的洞察力和见解。这种思维模式能够帮助我们在复杂的环境下做出正确的决策,并具备创造性的工作能力。

第四段:注重合理解读和应用数据

数据思维不仅仅是数据的收集和处理,更重要的是能够合理解读和应用数据。在数据领域,我们常常会遇到数据之间的冲突和矛盾,也会遇到数据的误导和误解。因此,我们要学会从多个角度去看待数据,辨别数据的真伪,并能够将数据应用到实际问题中去。这需要我们具备批判性思维和逻辑思维的能力,能够从数据中提炼出关键信息,并根据实际情况进行合理的应用。

第五段:持续学习和实践的重要性

数据思维是一种需要持续学习和实践的能力。随着技术的快速发展,数据产生和应用的方式也在不断变化。因此,我们不能止步于学习了一些基本的数据工具和方法,而是要不断学习和掌握新的数据科学知识和技能,了解最新的研究和实践进展。同时,我们也要尽可能地将数据思维应用到实际工作中去,通过实践来检验和提高自己的数据思维能力。只有持续学习和实践,我们才能不断提升自己的数据思维水平。

总结:

数据思维是一种重要的能力,在当今社会发展中起着重要的作用。通过注重数据收集和处理、培养统计思维和创新思维、合理解读和应用数据,以及持续学习和实践,我们可以发展出优秀的数据思维能力,并进一步提高自己的决策力和创新能力。在不断学习和实践的过程中,我们将发现数据思维的魅力和无限潜力,从而在工作和生活中获得更大的成功和满足感。

数据思维栋心得体会报告篇七

随着大数据时代的到来,数据分析已经变成了企业和个人必备的技能。作为数据分析领域的一位专家,樊登在他的书《数据思维》中阐述了他的看法和经验,让我们更深入地了解了数据分析的本质和技巧。在本文中,我将分享我在阅读樊登的《数据思维》后的心得体会。

第二段:数据的重要性

首先,樊登在书中强调了数据在决策过程中的重要性。以前,管理者们可能仅凭个人经验和直觉做出决策,现在,随着大数据的出现,数据分析已成为企业决策的重要工具之一。数据收集、清洗、分析和模型等应用是现代决策分析不可或缺的部分,有了数据的指导,企业和个人可以在追求效率,增加利润等方面做出更理性和科学的决策。

第三段:如何进行数据分析

其次,樊登在书中讲述了如何进行数据分析。他强调了数据的来源和准确性,并讲解了如何对数据进行可视化和应用。他提到,收集数据包括线上购买数据、线下购买数据、网络行为数据、用户搜索数据等,这些数据都是有价值的,通过对这些数据进行收集和分析,可以帮助企业做出更好的市场推广决策。此外,在数据分析过程中,模型的选择和应用也是非常关键的步骤。正确地选择和应用模型,可以帮助企业或个人做出更精确的预测,从而做出更合理的决策。

第四段:数据思维的传递

除此之外,樊登还提到了数据的“传染性”。他强调了分享数据和应用数据的好处,因为与其他人分享数据可以帮助提高数据的科学价值。通过数据的传递,更多的人能够了解和使用数据,从而提高自身的数据分析技能。樊登还指出,人们应该积极地与其他行业的专家或工作者合作,分享数据和分析的经验,以实现更加精准的分析结果。

第五段:结尾

总之,樊登的《数据思维》向我们展示了数据分析在现代社会中的重要性和应用价值,激发了我们学习数据分析的兴趣和热情。在一个数据驱动的时代中,数据思维的培养不仅需要领导者的支持,还需要个人的自我培养。我们应该不断学习和实践,提高自己的数据分析水平,为个人和企业的发展做出贡献。

数据思维栋心得体会报告篇八

2.根据客户需求,结合公司数据挖掘工具对数据进行分析、挖掘,并输出相关分析报告;

3.深入业务,理解业务运作逻辑,利用数据分析手段,发现业务问题并提出行动建议;

4.对业务运作进行数据监测、分析、统计,持续改进产品与运营策略;

6.对文本数据进行分析,建立标签,对标签处理及持续优化;

7.部门领导交代的其他事项。

任职要求:

4.熟练使用至少3种数据分析工具(excel、r、spss、python等);

8.自我驱动,能够独立推动问题解决。

数据思维栋心得体会报告篇九

樊登是一个著名的公开演讲家、作者和教练,专注于帮助人们提高他们的数据思维能力。他的讲座和书籍已经受到了数百万人的欢迎,并为许多人带来了实际应用价值。本文将从我的个人角度出发,探讨樊登数据思维的心得体会,并以五段式的方式进行呈现。

第一段引言。

樊登是一位极具影响力的人物,他的教诲既实用又深刻。我被他的数据思维理念所吸引并备受启发,我相信他的方法可以提高我们的思考和决策能力,让我们更加高效地处理复杂的信息。下面,我将分享我对樊登数据思维的心得体会。

数据思维是一种能力,能够帮助我们从数据中提取有价值的信息,做出更加明智的决策。这种能力对于现代社会来说非常重要,因为我们正处于一个大数据时代。如果我们不知道如何分析和处理这些数据,我们会受到深重的后果。因此,学习数据思维是一个必要的能力,这不仅需要我们对数学和统计学有深入的了解,也需要我们具备一定的实践经验。

樊登提倡的数据思维能够帮助我们做出更加明智的决策,制定更加准确的预测,并识别出隐藏在数据中的趋势和严重的问题。这对于企业家、投资者、行业领袖以及任何需要处理大量数据的人来说都是至关重要的。通过学习樊登数据思维,我们可以追踪业务绩效并分析市场趋势,发现机会,预测未来,这将使我们在竞争激烈的商业环境中比其他人具有更大的领先优势。

学习数据思维需要积极的思维方式和实践。我们可以通过以下途径获得数据分析的技能:(1)加入培训学习计划或者通过在线视频学习基本并高级的数据分析技能;(2)通过使用数据科学家软件解决实际业务问题;(3)参加相关社区和志愿者团队,与同行进行学习交流。通过这些方式,我们才能更好的理解数据、分析数据以及从数据中提取有价值的信息。

学习数据思维并不是一个孤立的课程,而是一个实践和应用的过程。我们可以将数据思维应用到生活的各个方面,不仅有商业上的,还有私人的。我们可以将其用于自己的工作,家庭管理甚至是个人投资领域。樊登的数据思维教导我们如何正确地解释和使用数据。通过数据思维可以找到各种生意机会,预测新趋势并探索新市场领域。总之,数据思维在各个方面都是非常有价值的,并可以用于实现我们的目标和管理我们的生活。

结论:

在如今充满大数据和信息交流的时代,学习数据思维是至关重要的。樊登的数据思维理念可以帮助我们提高分析和决策能力,并在日常生活和职业领域提供实际应用价值。当我们能够更加快速、有效地处理大量数据时,我们将无处不在地受益。因此,我们应该积极地学习数据思维,掌握这种能力,并将它应用到我们所做的每一件事情中。

数据思维栋心得体会报告篇十

乙方:_________

为了保护甲乙双方在商业和技术合作中涉及的专有信息(如本协议第一款所定义的内容),经友好协商,甲乙双方签订如下协议:

1.定义:

1.1专有信息的定义:

1.1.1本协议所称的“专有信息”是指所有商业秘密、技术秘密、通信或与该产品相关的其他信息,无论是书面的、口头的、图形的、电磁的或其它任何形式的信息,包括(但不限于)数据、模型、样品、草案、技术、方法、仪器设备和其它信息。

1.2“接收方”:本协议所称的“接收方”是指接收专有信息的一方。

1.3“透露方”:本协议所称的“透露方”是指透露专有信息的一方。

2.权利保证:

“透露方”保证其向“接受方”透露的专有信息不侵犯任何第三方的知识产权及其它权益。

3.保密义务:

3.1“接收方”同意严格控制“透露方”所透露的专有信息,保护的程度不能低于“接收方”保护自己的专有信息。但无论如何,“接收方”对该专有信息的保护程度不能低于一个管理良好的技术企业保护自己的专有信息的保护程度。

3.2“接收方”保证采取所有必要的方法对“透露方”提供的专有信息进行保密,包括(但不限于)执行和坚持令人满意的作业程序来避免非授权透露、使用或复制专有信息。

3.3“接收方”保证不向任何第三方透露本协议的存在或本协议的任何内容。

4.例外情况:

4.1“接收方”保密和不使用的义务不适用于下列专有信息:

4.1.1有书面材料证明,“透露方”在未附加保密义务的情况下公开透露的信息;

4.1.3有书面材料证明,该专有信息已经被“接收方”之外的他方公开;

4.1.4有书面材料证明,“接收方”通过合法手段从第三方在未受到任何限制的情况下获得该专有信息。

4.2如果“接收方”的律师通过书面意见证明“接收方”对专有信息的透露是由于法律、法规、判决、裁定(包括按照传票、法院或政府处理程序)的要求而发生的,“接收方”应当事先尽快通知“透露方”,同时,“接收方”应当尽最大的努力帮助“透露方”有效地防止或限制该专有信息的透露。

5.否认许可:

除非“透露方”明确地授权,“接收方”不能认为“透露方”授予其包含该专有信息的任何专利权、专利申请权、商标权、著作权、商业秘密或其它的知识产权。

6.补救方法:

6.1双方承认并同意如下内容:

6.1.1“透露方”透露的专有信息是有价值的商业秘密;

6.1.2遵守本协议的条款和条件对于保护专有信息的秘密是有必要的;

6.1.3所有违约对该专有信息进行未被授权的透露或使用将对“透露方”造成不可挽回的和持续的损害。

6.2如果发生“接收方”违约,双方同意如下内容:

6.2.2“接收方”应当赔偿“透露方”因违约而造成的所有损失,包括(但不限于):法院诉讼的费用、合理的律师酬金和费用、所有损失或损害等等。

7.保密期限:

7.1自本协议生效之日起,双方的合作交流都要符合本协议的条款。

7.2除非“透露方”通过书面通知明确说明本协议所涉及的某项专有信息可以不用保密,接收方必须按照本协议所承担的保密义务对在结束协议前收到的专有信息进行保密,保密期限不受本协议有效期限的限制。

8.适用法律:

本协议受中华人民共和国法律管辖,并在所有方面依其进行解释。

9.争议的解决:

由本协议产生的一切争议由双方友好协商解决。协商不成,双方约定经_________仲裁委员会解决。

10.生效及其它事项:

10.1本协议一式四份,甲乙双方各执两份。

10.2本协议自签订之日起生效,任何于协议签订前经双方协商但未记载于本协议之事项,对双方皆无约束力。

10.3本协议及其附件对双方具有同等法律约束力,但若附件与本协议相抵触时以本协议为准。

10.4未尽事宜由双方友好协商解决。

甲方(签章):_________

乙方(签章):_________

_________年____月____日

_________年____月____日

数据思维栋心得体会报告篇十一

数据可视化是一个非常重要的数据分析手段,能够将大量的数据转化为易于理解和传达的信息呈现形式。因此,数据可视化成为企业决策的一项非常关键的工具。本文将从两个方面入手,分别是数据可视化的含义和使用数据可视化工具的方法,并总结出一些对于数据可视化的心得体会。

二、数据可视化的含义

数据可视化是通过图表、地图、图像等视觉形式来表达数据的一种方式。这种方式强调的是人类视觉系统的优势,即辨认形状和色彩的能力,使数据变得更易于理解。在现代企业中,使用数据可视化工具来展示数据是非常必要的,因为这能帮助人们快速理解数据,为企业策略和决策提供支持。

三、使用数据可视化工具的方法

使用数据可视化工具的方法有很多,本文将重点介绍以下两种方法:

1.选择正确的图表类型

当我们处理数据时,需要选择正确的图表类型来呈现数据信息。例如,我们若要呈现某一时间段的销售数据,可以考虑使用折线图。如果我们想要展示两个或多个变量之间的关系,可以使用散点图或气泡图。如果我们需要显示某一类别的整体占比情况,则可以使用饼图或条形图。选择正确的图表类型能够更好地为数据和信息提供支持,从而支持决策和行动。

2.保持简单明了

在使用数据可视化工具时,我们需要保持简单明了,让数据清晰明了地呈现出来,不要让数据太过复杂,否则会让人难以理解。如果数据量太大,则可以采用切换视图的方式来显示不同的数据信息。如果我们想要突出某一块数据,则可以使用高亮显示或注释等方式来强调该部分数据。

四、数据可视化心得体会

在使用数据可视化工具时,需要注意以下几点:

1.选择正确的视图类型非常重要,要用最简单的方式来表达数据信息。

2.使用多维度的方法来展示数据,如同时使用柱状图和线图。

3.要清楚地标记和解释数据,如单位、时间和空间。

4.尽可能使用动画和交互效果来展示数据信息,并使得数据动态化呈现。

5.最后,不要忘记保持数据的一致性和准确性。

五、结论

数据可视化是一个高效的数据分析手段,在现代企业中得到了广泛的应用。在使用数据可视化工具时,选择正确的图表类型和保持简单明了是非常关键的。此外,在展示数据时需要注意清晰标记和解释数据,并使用动画和交互效果来展示数据信息,最后,不要忘记保持数据的一致性和准确性。

数据思维栋心得体会报告篇十二

第一段:引言(数据思维的重要性)

数据思维已经成为当今社会中不可忽视的一部分,它可以帮助我们更好地理解和解决问题。随着数字时代的到来,大量的数据被生成和积累,仅仅依靠人们的主观判断和经验已经不再可行。在这样的背景下,采用数据思维来分析和处理问题,已经成为必不可少的能力之一。

第二段:数据思维的基本理念和方法

数据思维的基本理念是以数据为基础,用逻辑方式解决问题。首先,需要收集和整理相关数据,对数据进行分析和挖掘,从而得到一些有用的信息。其次,在数据的基础上,使用逻辑推理和统计学原理进行分析,以发现隐藏在数据背后的规律和关联,从而得出有价值的结论。最后,结合个人的经验和背景知识,把这些结论应用到实际问题中,寻找解决方案。

第三段:数据思维的应用范围

数据思维广泛应用于各个领域,如商业、科学、教育等。在商业领域,通过数据分析可以了解市场需求,优化产品设计和推销策略。而在科学研究中,使用数据思维可以帮助科学家发现新的规律和解决复杂的问题。在教育方面,利用数据思维可以根据学生的自身情况和需求来制定个性化的学习计划,提高教学效果。

第四段:培养和发展数据思维的方法

要培养和发展数据思维能力,首先需要学习和掌握相关的数学和统计学知识,以便能够理解和分析数据。其次,需要掌握一些常用的数据分析工具和技术,如Excel、Python等,以便能够对数据进行处理和分析。此外,还需要具备一定的逻辑思维和问题解决能力,能够把数据和问题联系起来,并能够从中得出有用的结论。最重要的是保持对数据的敏感度和好奇心,不断追求数据背后的真相。

第五段:结尾(数据思维对个人的意义)

数据思维不仅仅是一种工具或知识,更是一种思维方式和习惯。通过数据思维,我们可以更加客观地看待问题,并能够基于数据作出明智的决策。在信息爆炸和虚假信息泛滥的时代,数据思维不仅能够帮助我们过滤和解读信息,还能够帮助我们理解和应对复杂的现实世界。因此,培养和发展数据思维能力,对个人来说具有重要的意义。

总结:数据思维是当今社会中不可或缺的能力之一,通过运用数据思维,我们能够更好地理解和解决问题。不仅仅是在工作中,数据思维对于个人的成长和发展也有积极的影响。通过学习和应用数据思维,我们可以更加客观地看待问题,更加理性地做出决策,并在不断变化的世界中保持适应性。因此,数据思维不仅是一种技能,更是一种思维方式和生活态度,值得我们不断探索和发展。

数据思维栋心得体会报告篇十三

甲方:___分行(包括在韩国所有分支机构)

地址:

电话:

传真:

联系人:

乙方:__________银行股份有限公司

数据中心地址:

电话:

传真:

联系人:

甲乙双方经充分协商确认合同,同意按照以下条款签定本合同并执行本合同。

一、合同标的

1.1乙方同意向甲方提供、甲方同意接受乙方提供本合同项下所列的专业技术服务(以下简称专业服务)。

1.2一方未获另一方事先书面许可,不得将本合同所述的权利、义务及/或责任转让予第三方。

1.3乙方需将本合同项下的专业技术服务项目分包其他方提供时,应在本合同规定的项目启动前30个工作日,以书面形式通知甲方,甲方同意后双方签署合同变更书,方可生效。否则,甲方有权视分包商提供的服务为无效服务。

1.4《专业技术服务说明书》应确定乙方提供的专业技术服务项目、专业技术范围、服务实施前提、工作项目、乙方及甲方责任、服务水准、专业技术服务完成标志以及提供专业技术服务的时间。

1.5《专业技术服务说明书》服务项目中每一项服务完成时,双方将依照双方共同约定的验收方式和标准进行验收后,签署《验收备忘录》。

二、定义

“专业服务”指《专业技术服务说明书》,乙方向甲方提供的服务项目管理、工程、计划、咨询、教育、培训、安装及维护、场地准备、设备管理或操作支持等服务。

“服务水平”指《专业技术服务说明书》所列乙方须提供的服务水平。

“项目”指与《专业技术服务说明书》相关的活动。

“获授权人员”由乙方指派提供专业服务的人员。

“数据”由甲方提供给乙方并与甲方客户相关的所有数据,以下所列均是数据的一部分:1.存储或者以其它方式固定于有形媒体、电子媒体或其他媒体上并且可提取为可察觉形式的所有资料、数据文档、图像、图表、影像;此类数据或者已经清晰注明保密,或者本身属性已是保密类型;2.在处理上述数据的过程中产生的资料、数据文档、图像、图表、影像。

“担保”任何第三方权利或权益,包括保证、抵押、质押、留置、期权、债权、优先购买权、优先权或其他类似的可产生上述权利或利益的类似安排或协议。

“设备”提供专业服务时所必需的设备、设施、硬件及/或操作系统软件;以及与专业服务、管理、指示或其编排相关的任何档案、文件、记录。

“操作手册”存储或者以其它方式固定在媒体上并且可提取为可察觉形式的关于系统的所有操作手册、参考资料和相关文件和信息。

“操作系统”指乙方在______银行股份有限公司使用的硬件和操作系统软件组成之系统。

“工作日”指韩国银行业对公众营业的任意日期。

“保密资料和数据”包括但不限于在履行本合同过程中或者在双方业务处理过程中可获得的双方交易和业务有关的所有信息(书面、口头或电子形式的信息)

“灾难恢复计划”指经事先双方同意,以书面形式表述并不断更新的,当专业服务中断情况下而采取的系统和数据恢复措施。

三、专业技术服务内容、服务期限

3.1专业技术服务内容的具体细节见《专业技术服务说明书》。

3.2专业技术服务期限:本合同持续有效到任何一方向另一方提前六个月发出书面通知予以终止。

四、服务变更

4.1任何一方均可以要求对《专业技术服务说明书》下的服务进行更改。任一更改申请须以书面形式提交。

4.2根据更改要求的范围和复杂程度,甲乙双方可对实现变更要求所发生的费用进行磋商。

4.3就上述第4.1条,双方达成一致,并签署变更备忘录后,变更生效。变更将修改或替取《专业技术服务说明书》中或先前的任何变更备忘录中所有不一致的条款。

4.4提出变更请求的一方应提交书面申请,描述变更、变更的理由和变更将产生的影响,并提交另一方讨论,接收方须于接到申请后三周内向建议方知会其决定。

4.5如双方对该申请达成一致同意意见,双方授权代表将签署相应的《变更备忘录》。经双方授权代表签字盖章后的变更备忘录将作为本合同的有效附件和执行变更的依据。变更将修改或替取《专业技术服务说明书》中或先前的任何变更备忘录中所有不一致的条款。

五、灾难恢复

5.1双方须遵守灾难恢复计划和政策。

5.2转移:若因任何原因造成乙方不能向甲方提供专业服务,或者预测系统不能正常运行48小时以上从而导致在这段时间内不能提供专业服务,乙方应该迅速书面通知甲方并根据灾难恢复计划转移到灾难恢复中心。

5.3测试:乙方须至少每年2次在咨询甲方意见后审计及检测灾难恢复计划,并至少向甲方提供2次灾难恢复演练的服务。

六、义务

6.1乙方义务

6.1.1乙方将严格按照《专业技术服务说明书》的要求提供所列明的每一项服务。乙方保证其提供的服务符合本合同条款的要求。

6.1.2服务水平调整:乙方必须定期并应甲方要求检测服务水平,并根据以下条件升级和调整服务水平:(a)技术、硬件和软件处理的发展情况;及(b)中华人民共和国法律和韩国法律的变更。

6.1.3为了提供本合同所规定的专业服务,经双方同意后乙方同意执行由甲方、甲方内部和外部审计人员以及韩国金融管理机构推荐的现场安全审计以及韩国金融监管要求的信息系统维护的建议。

6.1.4根据本合同条款以及所有合法的由乙方发布的指令,乙方须事先彻底地咨询甲方后负责谨慎地以最正确和最有效的方式提供专业服务,同时乙方对安全性有关规定、手册、获授权人员和委员会组织等应及时维护并升级,同时向甲方通知。

6.1.5乙方在系统投产后6个月以内应进行安全性及系统缺点分析,向甲方提出分析报告。

6.1.6隔离和区分:

乙方须确保:

(a)对数据进行清晰的隔离及/或区分,以确保乙方的任何其他客户或无权限人员不能够浏览、更改和访问数据。

(b)在乙方可运用的范围内必须对专业技术服务分工处理,只有获授权人员并且在必要情况下才能访问数据。

(c)必须有充分的阻止非获授权人员进入的物理控制程序。必须有必要的数据加密措施、逻辑控制和监控程序以确保甲方数据所在网络、系统及对甲方数据的计算机操作正确地与乙方的其他客户隔离及区分。

(d)乙方须检测隔离及区分标准之有效性。乙方须在甲方对隔离及区分进行检测和审计时提供协助。

(e)所有正确数据及文件的管理程序须制定于乙方的操作手册中,以确保甲方数据与其他数据之正确隔离及区分。

6.1.7监测报告:乙方必须于合同生效日后各个历月的第一周内,按甲方事前书面同意的格式向甲方书面提交上一个月之服务履行结果的监测报告。

6.1.8内部检查报告:乙方应每季度组织一次对内部信息系统及安全管理执行情况的内部检查,并向甲方提供书面内部检查季度报告。在甲方书面要求下,乙方应立即向甲方书面报告任何被甲方视为可能影响乙方提供的专业服务的异常情况。

6.1.9员工安全意识:乙方在征求甲方意见后,向获授权甲方人员提供安全课程并确保每年每个员工至少参加8小时此类课程。

6.1.10保险:乙方必须在本合同有效期内对所有设备和数据之丢失向具有良好信誉的保险公司购买及维持订有保险。投保保险费用由乙方承担。

6.1.11乙方业务范围和组织结构的变化不影响本合同的履行。

6.1.12乙方将服务做分包时,必须经过甲方的批准,并且要以书面的形式订立。

6.1.13乙方必须向甲方提供其所提供服务的最新的技术文件,这里指的技术文件包括it流程和数据库结构等。

6.1.14乙方必须向甲方提供最新的经审计的财务报告以及设备检查结果的第三方独立报告,报告范围指的是双方服务协议涉及的全部设备和费用(即包括购买设备的费用和维护设备所需要的费用,如果这部分费用需要分行承担的话)。

6.1.15乙方必须根据所提供的服务,提供合格的、有竞争力的人才来负责专业服务,以保证甲方业务的正常运行。且乙方必须制定人力资源培训计划,乙方制定的计划应该包括培训数量、培训类型、培训费用等方面。

6.1.16乙方应将本合同项下使用和操作的知识传授给甲方,以便甲方it部门的人员懂得如何运用,特别是乙方提供的应用系统的处理流程和数据库结构。

6.2甲方义务

6.2.1为了乙方能够及时并按时完成本合同规定的责任,甲方须与乙方合作并为乙方提供其合理要求的资料和协助。

6.2.2甲方必须让乙方注意到依据韩国相关法律乙方必须履行的对外保密责任。

6.2.3甲方应乙方要求的技术配合,应认真负责。甲方技术部门应认真执行值班制度,在规定时间有响应。

6.2.4甲方对乙方提出的版本升级、新业务投产等提供相关测试环境和配合。

6.2.5甲方需采用防火墙、ip加密机、数据备份等技术,保证全部业务数据安全可靠,介质、密码保管符合规定,病毒、恶意攻击、漏洞检测等防范工作落实到位。

6.2.6严格按照乙方测试工作通知,及时组织实施测试工作、收集测试信息、确认测试结果、提交测试情况,确认结果的真实性。

6.2.7严格按照乙方投产、变更工作通知,及时组织实施相关工作、收集投产、变更信息,确认投产、变更结果,提交投产、变更情况,确认结果的真实性。

七、权利保证与权利归属

7.1乙方保证其在提供专业服务和形成资料的过程中所使用的文件、资料、软件及其他物品均可合法地不受打扰地用于专业服务的执行。乙方保证其专业服务与资料不侵犯任何第三方的知识产权,不存在任何与此相关的争议。如甲方因接受乙方提供的专业服务或资料引起与第三方纠纷,产生的一切法律责任与费用由乙方承担。

7.2对于乙方所提供的房屋、硬件、软件和其它物品,乙方应保证拥有必要的许可、证明或其他文件,确保在本合同实施过程中,不会侵犯第三方的权益。

7.3如甲方不合理使用乙方提供的文件、资料、软件及其他物品,从而引起的任何纠纷,乙方概不负责。

7.4源代码为乙方所有,即_______银行股份有限公司所有。

八、审计

8.1必须是甲方、甲方内部和外部审计人员以及他们的授权代表、韩国金融管理机构人员及其授权的审计机构,才能要求获得数据资料。

8.2乙方给予甲方、甲方内部和外部审计人员以及他们的授权代表、韩国金融管理机构人员及其授权的审计机构:在中国法律、行政法规和监管规章许可的范围内进入*银行股份有限公司及访问甲方数据和甲方系统的相关权利。

8.3为了执行本合同规定的审计以及执行跟本合同规定相关的活动和审计,乙方必须在合同有效期内提供必要协助。

8.4甲方必须向____________银行股份有限公司总行相关部门申请有关对乙方进行审核的一切手续,并得到批准后方可进行。

九、数据保护

9.1数据所有权:乙方确认所有客户数据及与其相关权利应一直为甲方之独有财产,且甲方保留存在于此类数据中的一切权利。

9.2担保:乙方不得导致或允许在资料上设定任何担保或对资料进行任何处置。

9.3保护:乙方须采取一切必要措施,按照当前公认商业惯例、中国银行业监督管理委员会和韩国金融管理机构和其他有裁决权管理机构所颁布的指引,采取一切必要措施在规定期间内保管数据,以保证所有数据的安全性、完整性和防止数据的毁损、修改和遗失。

9.4乙方须提供联线通讯介质,且乙方必须保证数据获取和数据传输的安全,包括数据在数据中心、灾难恢复中心,以及在it基础上的交易过程中的传输安全。

9.5乙方须明确安排备份,应急,记录保护等措施,包括硬件、设备、软件、和数据档案,以保证it连续性的运作。

9.6数据恢复

乙方须:

(b)应甲方请求,若数据发生任何毁坏及遗失,在不违背根据本合同或其他规定可采取的任何其他补救措施的前提下,恢复数据或促使数据恢复至上述毁坏和遗失发生前的状态。

9.7乙方必须一直对数据及与有关服务相关之一切资料予以保密,不得将数据作为履行其在本协议项下责任以外之任何其他用途(中国/韩国法律法规及监管要求另有规定的除外)。

9.8若事先未经甲方书面同意,除获授权人员外,除非在本合同考虑及目的而言属必要或属于中国法律及/或韩国法律规定要求以外,乙方不得向任何人员透露数据(无论是全部还是部分)。

9.9终止:本协议终止后,乙方关于数据保密性的责任仍然具有全面效力。

十、保密

10.1任一方将视另一方业务相关的所有信息为商业秘密,并有义务予以保密,不将在本合同谈判时或合同期间所获知的任何信息泄露给任何第三方(中国/韩国法律法规及监管要求另有规定的除外)。此条款的条文将本合同期满或终止后继续生效,但不适用于任何已在公众知悉范围的资料。

10.2本合同属双方商业秘密,未经一方书面同意,另一方不得向第三方披露。

十一、违约责任和赔偿

11.1对于乙方在执行合同中给甲方造成的直接损失,损失由过错方承担。对于利润上的损失、本可节省或避免的损失、附带损失或其他经济上的间接损失,以及因甲方没有履行本合同项下义务而发生的任何损失,乙方不承担责任。

十二、终止

12.1如一方提出终止合同,该方可在任何时间向另一方提前六个月发出书面通知予以终止。

12.2如果任何一方不能履行本合同中的责任和义务,则另一方可在知悉该重大违反事项后5个工作日内向违约方发出书面补救通知,要求违约方尽快就该重大违反事项作出补救措施。如在收到书面补救通知14日内,违约方未能补救该重大违反事项,则另一方可向违约方发出书面终止通知,于该终止通知指定之日期全部或部分终止本合同。

12.3在本合同期间,如接到韩国金融管理机构的书面要求,甲方可向乙方即刻发出书面通知终止本合同。如中国金融监管机关要求的,乙方可向甲方即刻发出书面通知终止本合同。

12.4对于在服务的所有工作终止之前乙方所提供的专业服务,甲方有责任支付费用。

十三、协助移交服务

13.1移交协助:在本协议终止时,乙方须:

(b)如果乙方在双方约定日期之前不能归还保密资料和数据以及甲方拥有的产权,甲方有权及于此获特许进入__________-银行股份有限公司取回上述资料。

13.2责任:乙方须持续不断提供专业服务,直至所有数据、保密资料及有关服务已交还甲方或已移交至甲方指定之另一服务商。

十四、法律适用与争议解决

14.1本合同适用中华人民共和国法律及韩国法律并依照其解释。

14.2有关本合同的任何疑异,双方应首先本着相互信任、长期合作的原则,共同协商解决。

14.3如果本合同的某些条款与本合同签订时的法律、法规发生冲突,该条款无效。

十五、不可抗力

15.1如果本合同的任何一方因受战争、火灾、洪水、台风、地震、国内骚乱、恐怖行动、暴乱、禁运、任何官方或军事管制、或其它灾害影响等不可抗力事件,而不能履行本合同,则任何一方都不须承担违约责任。

15.2受阻的一方应在不可抗力发生后尽可能短的时间内通知另一方。

15.3倘因不可抗力事件导致持续四周以上不能履行责任,则非违约方有权发出书面通知终止本合同。订约各方毋须就因不可抗力事件导致终止本合同而向另一方负责。

15.4如果因有关政府部门对本合同的实施的强制干预,致使本合同无法履行,或者履约会导致成本大幅度增长,与双方在签署合同之时所作的预测有很大差异,则应将此事件视为不可抗力,但合同一方对此进行操纵或促成的除外。

十六、杂项

16.1本合同附件为合同不可分割的一部分,与本合同具有同等效力。

16.2合同条款与附件有抵触时,以合同条款为准。

16.3如果本合同的某些条款被认定为无效、不合法或不能执行,此类无效、不合法或不能执行的认定不影响其他条款的有效性、合法性,或可执行性。

16.4双方所有权的变化不影响本合同的有效性、合法性,或可执行性。

16.5双方同意遵守韩国、中国以及此项业务所涉及的其它国家或地区的所有有关法律和条例。

16.6本合同一式四份,双方各执二份,经双方授权代表签字并加盖公章后生效。

甲方:__________分行

盖章:

授权代表签字:

日期:

乙方:__________银行股份有限公司

盖章:

授权代表签字:

日期:

数据思维栋心得体会报告篇十四

近年来,数据思维在各行各业中的应用越来越被重视。作为一种从大量数据中提取和分析有价值信息的能力,数据思维已经成为了当今社会中不可或缺的一部分。而在我自身的学习和实践中,我不仅感受到了数据思维的强大影响力,也深刻体会到了它给我们带来的帮助和启示。

首先,数据思维教会了我如何更加客观地看待问题。在过去,主观臆断和经验判断往往主导着我们的思考方式。然而,数据思维的出现改变了这一局面。通过数据分析,我们可以基于真实的事实来做出决策,避免了因主观因素而产生的盲目行动。数据思维告诉我们,数据是客观存在的,它们会准确地反映事物的本质和规律。只有通过数据思维,我们才能更加全面、科学地认识问题本质,做出更加准确的判断。

其次,数据思维能够帮助我们发现问题和解决问题。通过对大量数据的收集、整理和分析,我们可以发现问题的存在,并找出问题的根源。而这也为我们提供了解决问题的线索。举个例子来说,对于一款产品而言,当我们发现用户流失率较高时,可以通过数据分析找出导致用户流失的原因,进而采取相应的措施改善产品。数据思维的运用,不仅能帮助我们发现问题,更重要的是它能够提供解决问题的方法和方向。

此外,数据思维的另一个重要作用是帮助我们做出正确的决策。当我们面临复杂的决策时,往往需要综合各种因素来进行权衡。而数据思维在这方面可以提供有力的支持。通过对相关数据的分析,我们可以得出准确的结论,并对各种可能的结果进行预测和评估。基于这些数据,我们能够更加全面、客观地了解决策的风险与收益,并最终做出更加合理和明智的决策。

最后,数据思维还让我明白了一个道理,那就是数据的质量至关重要。数据的质量直接影响到分析和决策的准确性和可靠性。因此,在进行数据分析时,我们必须确保数据的真实性和完整性。数据思维要求我们善于挖掘数据中隐藏的价值,而这需要我们具备筛选和验证数据的能力。毫无疑问,数据分析可以提供很多有用的信息,但我们需要注意的是,我们所获得的信息只是在一定条件下的不完全真实描述。对于数据的正确理解和解读,是数据思维能否发挥作用的重要前提。

综上所述,数据思维在现代社会中的应用已经渗透到各行各业,它不仅帮助我们更加客观地看待问题,发现和解决问题,还能帮助我们做出正确的决策。通过数据思维的训练和实践,我深刻体会到了数据思维的价值和重要性。在未来的学习和工作中,我将继续努力提升自己的数据思维能力,将其运用到实际工作中,不断创新和进步。

数据思维栋心得体会报告篇十五

数据可视化是一种通过图表、图形等形式,将大量数据清晰、直观地表达出来的技术。数据可视化报告是企业、机构、个人等对某一事务、问题或主题的数据进行分析后所制作的图表或图形报告。最近,我在参加一个关于数据可视化报告制作的培训课程中,收获了很多关于数据可视化的心得体会。

第二段:影响数据可视化报告的因素

制作数据可视化报告是一项技艺活,它需要有深厚的统计学、材料科学和设计能力。具体来说,影响数据可视化报告质量的因素主要有以下三个方面:数据的质量、报告的可视化方式和观众的群体。

第三段:如何制作一份优秀的数据可视化报告

有了前两段的铺垫,下面我将分享一个行之有效的方法,帮助读者制作一份优秀的数据可视化报告。具体地说,它包括以下几个步骤:确定报告的目标和受众,收集与整理数据,选择最佳的可视化方式,制作报告并进行检查和修正。

第四段:数据可视化的优势

为什么要制作数据可视化报告呢?这是因为数据可视化具有以下优势:可以直观地展现数据关系、有助于提高决策的精度和效率、有助于吸引观众的注意力等。除此之外,数据可视化还可以帮助我们发现数据之间的联系,为我们提供更多新的思路和想法。

第五段:总结

总之,在制作数据可视化报告时,我们需要注重以下两点:首先,了解数据可视化的技术和需求,利用专业软件进行图形设计和呈现;其次,理解和使用数据背后的逻辑和统计学方法,保证分析结果的准确性和科学性。通过不断探索和实践,相信我们可以制作出一份优秀的数据可视化报告,帮助我们更好地了解和把握事物的本质。

数据思维栋心得体会报告篇十六

数据通信是指通过各种信息传输媒介来进行数据的传输和交换的过程。在今天的信息时代,数据通信技术已经成为社会发展的重要基础设施。我有幸参加了一场有关数据通信的报告会,并且在会后写下了以下的心得体会。

第一段:报告会的开场白给我留下了深刻的印象。报告人首先介绍了数据通信的定义和重要性,让我们对数据通信有了更深的了解。他还提到数据通信技术的不断发展给我们的生活和工作带来了很多便利,比如网络通信、电子邮件等。这让我意识到数据通信已经成为我们生活中不可或缺的一部分。

第二段:报告人重点介绍了数据通信的基本原理和常用的传输方式。他提到,数据通信是通过将传输的数据转换成电信号或光信号来进行传输的。而在不同的应用环境下,我们可以选择不同的传输方式,比如有线传输和无线传输。通过听他的讲解,我加深了对数据通信技术的理解,并且对于不同的传输方式有了更清晰的认识。

第三段:报告人还介绍了一些数据通信中常用的协议和标准。他提到,协议是指数据通信中各个节点之间进行通信时所遵循的规则。而标准则是为了确保不同厂家的设备可以互通而制定的统一规范。通过了解这些协议和标准,我发现在数据通信中,统一的规范和规则非常重要,它们有助于不同设备之间的互操作性,提高了数据通信的效率和可靠性。

第四段:报告会的最后,报告人还介绍了一些数据通信中常见的问题和挑战。他提到,数据通信中存在的问题主要包括数据安全、带宽瓶颈和网络拥塞等。这些问题对于数据通信的发展和应用都带来了一定的困扰。然而,报告人也告诉我们,随着技术的不断进步,这些问题正在逐渐得到解决。我觉得这点非常鼓舞人心,也让我对数据通信的未来充满了希望。

第五段:通过这次报告会,我深刻认识到数据通信在现代社会中的重要性和应用价值。我也意识到作为一名计算机专业的学生,我需要不断学习和掌握数据通信技术的知识,并将其应用于实践中。只有不断跟上技术的发展,并积极解决其中的问题,我们才能更好地推动数据通信技术的发展,为社会进步做出自己的贡献。

在这次报告会中,我不仅了解了数据通信的基本原理和常用的传输方式,还了解了数据通信中的一些协议和标准。我也明白了数据通信中存在的一些问题和挑战,以及这些问题正在逐渐得到解决的过程中。通过参加这样的报告会,我不仅拓宽了自己的知识面,还增强了对数据通信的兴趣和热情。希望将来我能够更好地应用所学的知识,为数据通信技术的发展和应用做出自己的贡献。

数据思维栋心得体会报告篇十七

近年来,“大数据”这个概念突然火爆起来,成为业界人士舌尖上滚烫的话题。所谓“大数据”,是指数据规模巨大,大到难以用我们传统信息处理技术合理撷取、管理、处理、整理。“大数据”概念是“信息”概念的3.0版,主要是对新媒体语境下信息爆炸情境的生动描述。

我们一直有这样的成见:信息是个好东西。对于人类社会而言,信息应该多多益善。这种想法是信息稀缺时代的产物。由于我们曾吃尽信息贫困和蒙昧的苦头,于是就拼命追逐信息、占有信息。我们甚至还固执地认为,占有的信息越多,就越好,越有力量。但是,在“大数据’时代,信息不再稀缺,这种成见就会受到冲击。信息的失速繁衍造成信息的严重过剩。当超载的信息逼近人们所能承受的极限值时,就会成为一种负担,我们会不堪重负。

信息的超速繁殖源自于信息技术的升级换代。以互联网为代表的新媒体技术打开了信息所罗门的瓶子,数字化的信息失速狂奔,使人类主宰信息的能力远远落在后面。美国互联网数据中心指出,互联网上的数据每两年翻一番,目前世界上的90%以上数据是近几年才产生的。,数字存储信息占全球数据量的四分之一,另外四分之三的信息都存储在报纸、胶片、黑胶唱片和盒式磁带这类媒介上。,只有7%是存储在报纸、书籍、图片等媒介上的模拟数据,其余都是数字数据。到,世界上存储的数据中,数字数据超过98%。面对数字数据的大量扩容,我们只能望洋兴叹。

“大数据”时代对人类社会的影响是全方位的。这种影响究竟有多大,我们现在还无法预料。哈佛大学定量社会学研究所主任盖瑞·金则以“一场革命”来形容大数据技术给学术、商业和政府管理等带来的变化,认为“大数据”时代会引爆一场“哥白尼式革命”:它改变的不仅仅是信息生产力,更是信息生产关系;不仅是知识生产和传播的内容,更是其生产与传播方式。

我们此前的知识生产是印刷时代的产物。它是15世纪古登堡时代的延续。印刷革命引爆了人类社会知识生产与传播的“哥白尼式革命”,它使得知识的生产和传播突破了精英、贵族的垄断,开启了知识传播的大众时代,同时,也确立了“机械复制时代”的知识生产与传播方式。与印刷时代相比,互联网新媒体开启的“大数据”时代,则是一场更为深广的革命。在“大数据”时代,信息的生产与传播往往是呈几何级数式增长、病毒式传播。以互联网为代表的媒介技术颠覆了印刷时代的知识生产与传播方式。新媒体遍地开花,打破了传统知识主体对知识生产与传播的垄断。新媒体技术改写了静态、单向、线性的知识生产格局,改变了自上而下的知识传播模式,将知识的生产与传播抛入空前的不确定之中。在“大数据”时代,我们的知识生产若再固守印刷时代的知识生产理念,沿袭此前的知识生产方式,就会被远远地甩在时代后面。

(节选自2013.2.22《文汇读书周报》,有删改)

数据思维栋心得体会报告篇十八

职责:

2、负责公司hadoop核心技术组件日常运维工作;

3、负责公司大数据平台现场故障处理和排查工作;

4、研究大数据前沿技术,改进现有系统的服务和运维架构,提升系统可靠性和可运维性;

任职要求:

1、本科或以上学历,计算机、软件工程等相关专业,3年以上相关从业经验

4、良好团队精神服务意识,沟通协调能力;

【本文地址:http://www.xuefen.com.cn/zuowen/8318200.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档