七年级数学有理数的减法教案(专业16篇)

格式:DOC 上传日期:2023-11-06 03:37:10
七年级数学有理数的减法教案(专业16篇)
时间:2023-11-06 03:37:10     小编:书香墨

教案是教师在备课过程中制定的教学计划和指导学生学习的工具。编写教案要注意语言的规范和精炼,方便教师和学生的理解。以下教案范例是教师们在实际教学中积累的经验总结,希望能够帮助大家更好地编写教案。

七年级数学有理数的减法教案篇一

1.使学生掌握有理数减法法则并熟练地进行有理数减法运算;

2.培养学生观察、分析、归纳及运算能力。

三、教学重点。

有理数减法法则。

四、教学难点。

有理数减法法则。

五、教学用具。

三角尺、小黑板、小卡片。

六、课时安排。

1课时。

七、教学过程。

(一)、从学生原有认知结构提出问题。

1.计算:

(1)(-2.6)+(-3.1);(2)(-2)+3;(3)8+(-3);(4)(-6.9)+0.

2.化简下列各式符号:

(1)-(-6);(2)-(+8);(3)+(-7);。

(4)+(+4);(5)-(-9);(6)-(+3).

3.填空:

(1)______+6=20;(2)20+______=17;。

(3)______+(-2)=-20;(4)(-20)+______=-6.

在第3题中,已知一个加数与和,求另一个加数,在小学里就是减法运算。如______+6=20,就是求20-6=14,所以14+6=20.那么(2),(3),(4)是怎样算出来的?这就是有理数的减法,减法是加法的逆运算。

(二)、师生共同研究有理数减法法则。

问题1(1)(+10)-(+3)=______;。

(2)(+10)+(-3)=______.

教师引导学生发现:两式的结果相同,(更多内容请访问首页:)即(+10)-(+3)=(+10)+(-3).

(2)(+10)+(+3)=______.

(2)的结果是多少?

于是,(+10)-(-3)=(+10)+(+3).

至此,教师引导学生归纳出有理数减法法则:

减去一个数,等于加上这个数的。相反数。

教师强调运用此法则时注意“两变”:一是减法变为加法;二是减数变为其相反数。减数变号(减法============加法)。

(三)、运用举例变式练习。

例1计算:

(1)(-3)-(-5);(2)0-7.

例2计算:

(1)18-(-3);(2)(-3)-18;(3)(-18)-(-3);(4)(-3)-(-18).

通过计算上面一组有理数减法算式,引导学生发现:

在小学里学习的减法,差总是小于被减数,在有理数减法中,差不一定小于被减数了,只要减去一个负数,其差就大于被减数。

阅读课本63页例3。

(四)、小结。

1.教师指导学生阅读教材后强调指出:

由于把减数变为它的相反数,从而减法转化为加法。有理数的加法和减法,当引进负数后就可以统一用加法来解决。

2.不论减数是正数、负数或是零,都符合有理数减法法则。在使用法则时,注意被减数是永不变的。

(五)、课堂练习。

1.计算:

(1)-8-8;(2)(-8)-(-8);(3)8-(-8);(4)8-8;。

2.计算:

3.计算:

(1)1.6-(-2.5);(2)0.4-1;(3)(-3.8)-7;。

(4)(-5.9)-(-6.1);。

(5)(-2.3)-3.6;(6)4.2-5.7;(7)(-3.71)-(-1.45);(8)6.18-(-2.93).

利用有理数减法解下列问题。

八、布置课后作业:

课本习题2.6知识技能的2、3、4和问题解决1。

九、板书设计。

2.5有理数的减法。

(一)知识回顾(三)例题解析(五)课堂小结。

例1、例2、例3。

(二)观察发现(四)课堂练习练习设计。

十、课后反思。

七年级数学有理数的减法教案篇二

2.内容解析。

有理数的乘法是继有理数的加减法之后的又一种基本运算.有理数乘法既是有理数运算的深入,又是进一步学习有理数的除法、乘方的基础,对后续代数学习是至关重要的.

与有理数加法法则类似,有理数乘法法则也是一种规定,给出这种规定要遵循的原则是“使原有的运算律保持不变”.本节课要在小学已掌握的乘法运算的基础上,通过合情推理的方式,得到“要使正数乘正数(或0)的规律在正数乘负数、负数乘负数时仍然成立,那么运算结果应该是什么”的结论,从而使学生体会乘法法则的合理性.与加法法则一样,正数乘负数、负数乘负数的法则,也要从符号和绝对值来分析.由于绝对值相乘就是非负数相乘,因此,这里关键是要规定好含有负数的两数相乘之积的符号,这是有理数乘法的本质特征,也是乘法法则的核心.

基于以上分析,可以确定本课的教学重点是两个有理数相乘的符号法则.

二、目标及其解析。

1.目标。

(1)理解有理数乘法法则,能利用有理数乘法法则计算两个数的乘法.

(2)能说出有理数乘法的符号法则,能用例子说明法则的合理性.

2.目标解析。

达成目标(1)的标志是学生在进行两个有理数乘法运算时,能按照乘法法则,先考虑两乘数的符号,再考虑两乘数的绝对值,并得出正确的结果.

达成目标(2)的标志是学生能通过具体例子说明有理数乘法的符号法则的归纳过程.

三、教学问题诊断分析。

有理数的乘法与小学学习的乘法的区别在于负数参与了运算.本课要以正数、0之间的运算为基础,构造一组有规律的算式,先让学生从算式左右各数的符号和绝对值两个角度观察这些算式的共同特点并得出规律,再以问题“要使这个规律在引入负数后仍然成立,那么应有……”为引导,让学生思考在这样的规律下,正数乘负数、负数乘正数、两个负数相乘各应有什么运算结果,并从积的符号和绝对值两个角度总结出规律,进而给出有理数乘法法则,在这个过程中体会规定的合理性.上述过程中,学生对于为什么要讨论这些问题、什么叫“观察下面的乘法算式”、从哪些角度概括算式的规律等,都会出现困难.为了解决这些困难,教师应该在“如何观察”上加强指导,并明确提出“从符号和绝对值两个角度看规律”的要求.

本课的教学难点是:如何观察给定的乘法算式;从哪些角度概括算式的规律.

四、教学过程设计。

教师引导学生从有理数分类的角度考虑,区分出有理数乘法的情况有:正数乘正数、正数与0相乘、正数乘负数、负数乘正数、负数乘负数.

设计意图:有理数分为正数、零、负数,由此引出两个有理数相乘的几种情况,既复习有关知识,为下面的教学做好准备,又渗透了分类讨论思想.

问题2下面从我们熟悉的乘法运算开始.观察下面的乘法算式,你能发现什么规律吗?

3×3=9,

3×2=6,

3×1=3,

3×0=0.

追问1:你认为问题要我们“观察”什么?应该从哪几个角度去观察、发现规律?

如果学生仍然有困难,教师给予提示:

(1)四个算式有什么共同点?——左边都有一个乘数3.

(2)其他两个数有什么变化规律?——随着后一个乘数逐次递减1,积逐次递减3.

设计意图:构造这组有规律的算式,为通过合情推理,得到正数乘负数的法则做准备.通过追问、提示,使学生知道“如何观察”“如何发现规律”.

教师:要使这个规律在引入负数后仍然成立,那么,3×(-1)=-3,这是因为后一乘数从0递减1就是-1,因此积应该从0递减3而得-3.

追问2:根据这个规律,下面的两个积应该是什么?

3×(-2)=,

3×(-3)=.

练习:请你模仿上面的过程,自己构造出一组算式,并说出它的变化规律.

设计意图:让学生自主构造算式,加深对运算规律的理解.

先让学生观察、叙述、补充,教师再总结:都是正数乘负数,积都为负数,积的.绝对值等于各乘数绝对值的积.

设计意图:先得到一类情况的结果,降低归纳概括的难度,同时也为后面的学习奠定基础.

问题3观察下列算式,类比上述过程,你又能发现什么规律?

3×3=9,

2×3=6,

1×3=3,

0×3=0.

鼓励学生模仿正数乘负数的过程,自己独立得出规律.

设计意图:为得到负数乘正数的结论做准备;培养学生的模仿、概括的能力.

追问1:要使这个规律在引入负数后仍然成立,你认为下面的空格应各填什么数?

(-1)×3=,

(-2)×3=,

(-3)×3=.

练习:请你模仿上面的过程,自己构造出一组算式,并说出它的变化规律.

先让学生观察、叙述、补充,教师再总结:都是负数乘正数,积都为负数,积的绝对值等于各乘数绝对值的积.

追问3:正数乘负数、负数乘正数两种情况下的结论有什么共性?你能把它概括出来吗?

设计意图:让学生模仿已有的讨论过程,自己得出负数乘正数的结论,并进一步概括出“异号两数相乘,积的符号为负,积的绝对值等于各乘数绝对值的积”.既使学生感受法则的合理性,又培养他们的归纳思想和概括能力.

问题4利用上面归纳的结论计算下面的算式,你能发现其中的规律吗?

(-3)×3=,

(-3)×2=,

(-3)×1=,

(-3)×0=.

追问1:按照上述规律填空,并说说其中有什么规律?

(-3)×(-1)=,

(-3)×(-2)=,

(-3)×(-3)=.

设计意图:由学生自主探究得出负数乘负数的结论.因为有前面积累的丰富经验,学生能独立完成.

问题5总结上面所有的情况,你能试着自己给出有理数乘法法则吗?

学生独立思考后进行课堂交流,师生共同完成,得出结论后再让学生看教科书.

学生独立思考、回答.如果有困难,可先让学生看课本第29页有理数乘法法则后面的一段文字.

设计意图:让学生尝试归纳乘法法则,明确按法则计算的关键步骤.

例1计算:

(1)。

;(2)。

;(3)。

学生独立完成后,全班交流.

教师说明:在(3)中,我们得到了。

=1.与以前学习过的倒数概念一样,我们说。

与-2互为倒数.一般地,在有理数中仍然有:乘积是1的两个数互为倒数.

追问:在(2)中,8和-8互为相反数.由此,你能说说如何得到一个数的相反数吗?

设计意图:本例既作为巩固乘法法则,又引出了倒数的概念(因为这个概念很容易理解),同时说明了求一个数的相反数与乘-1之间的关系(反过来有-8=8×(―1)).

设计意图:利用有理数乘法解决实际问题,体现数学的应用价值.

小结、布置作业。

请同学们带着下列问题回顾本节课的内容:

(2)用有理数乘法法则进行两个有理数的乘法运算的基本步骤是什么?

(3)举例说明如何从正数、0的乘法运算出发,归纳出正数乘负数的法则.

(4)你能举例说明符号法则“负负得正”的合理性吗?

设计意图:引导学生从知识内容和学习过程两个方面进行小结.

作业:教科书第30页,练习1,2,3;第37页,习题1.4第1题.

五、目标检测设计。

1.判断下列运算结果的符号:

(1)5×(-3);。

(2)(-3)×3;。

(3)(-2)×(-7);。

(4)(+0.5)×(+0.7).

2计算:

(1)6×(-9);(2)(-6)×0.25;(3)(-0.5)×(-8);。

(4)。

;(5)0×(-6);(6)8×。

设计意图:检测学生对有理数乘法法则的理解情况.

七年级数学有理数的减法教案篇三

1.1正数和负数(2)。

教学目标:

教学重点:

深化对正负数概念的理解。

教学难点:

正确理解和表示向指定方向变化的量。

教学准备:彩色粉笔。

教学过程:

一、复习引入:

学生思考并讨论.

(数0既不是正数又不是负数,是正数和负数的分界,是基准.

二、讲解新课。

度,用负数表示低于海平面的某地的海拔高度。例如,珠穆朗玛峰的海拔高度为8848.43米,吐鲁番盆地的海拔高度为—155米。记账时,通常用正数表示收入款额,用负数表示支出款额。

思考:教科书第4页(学生先思考,教师再讲解)。

三、课堂练习课本p4练习1,2,3,4。

四、课时小结。

引入负数可以简明的表示相反意义的量,对于相反意义的量,如果其中一种量用正数表示,那么另一种量可以用负数表示.在表示具有相反意义的量时,把哪一种意义的量规定为正,可根据实际情况决定.要特别注意零既不是正数也不是负数,建立正负数概念后,当考虑一个数时,一定要考虑它的符号,这与以前学过的数有很大的区别.

五、课外作业教科书p5:2、4。

板书设计:

七年级数学有理数的减法教案篇四

1.1正数和负数(2)。

教学目标:

教学重点:

深化对正负数概念的理解。

教学难点:

正确理解和表示向指定方向变化的量。

教学准备:彩色粉笔。

教学过程:

一、复习引入:

学生思考并讨论.

(数0既不是正数又不是负数,是正数和负数的分界,是基准.

二、讲解新课。

度,用负数表示低于海平面的某地的海拔高度。例如,珠穆朗玛峰的海拔高度为8848.43米,吐鲁番盆地的海拔高度为—155米。记账时,通常用正数表示收入款额,用负数表示支出款额。

思考:教科书第4页(学生先思考,教师再讲解)。

三、课堂练习课本p4练习1,2,3,4。

四、课时小结。

引入负数可以简明的表示相反意义的量,对于相反意义的量,如果其中一种量用正数表示,那么另一种量可以用负数表示.在表示具有相反意义的量时,把哪一种意义的量规定为正,可根据实际情况决定.要特别注意零既不是正数也不是负数,建立正负数概念后,当考虑一个数时,一定要考虑它的符号,这与以前学过的数有很大的区别.

五、课外作业教科书p5:2、4。

板书设计:

七年级数学有理数的减法教案篇五

学习过程:

一、自主学习不动笔墨不读书!请拿出你的笔和你的激情,探究新知:

1.小学学过的加法运算律有哪些?举例说明运用运算律有何好处?

2.加法的交换律:

两个数相加,交换_______的位置,和不变.用式子表示:a+b=_______.

3.加法的结合律:

七年级数学有理数的减法教案篇六

1、(6分)把下列各数填在相应的集合内:

-23,0.25,,-5.18,18,-38,10,+7,0,+12。

正数集合:{………}。

整数集合:{………}。

分数集合:{………}。

2、某校对七年级男生进行俯卧撑测试,以能做7个为标准,超过的次数用正数表示,不足的次数用负数表示,其中8名男生的成绩如下表:

2-103-2-310。

(1)这8名男生的达标率是百分之几?

(2)这8名男生共做了多少个俯卧撑?

答案。

1、

正数集合:{0.25,18,10,+7,+12………}。

整数集合:{-23,18,-38,10,+7,0,+12………}。

分数集合:{0.25,,-5.18………}。

2、

(1)50%,(2)56个。

七年级数学有理数的减法教案篇七

1、知识目标:借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性,会判断一个数是正数还是负数。

2、能力目标:能应用正负数表示生活中具有相反意义的量。

3、情感态度:让学生了解有关负数的历史、体会负数与实际生活的联系。教学重难点。

重点:理解有理数的意义。

难点:能用正负数表示生活中具有相反意义的量。

教学过程。

一、创设情境、提出问题。

某班举行知识竞赛,评分标准是:答对一题加1分,答错一题扣1分,不回答得0分;每个队的基础分均为0分。两个队答题情况见书上第23页。

二、分析探索、问题解决。

分组讨论扣的分怎样表示?

用前面学的数能表示吗?

数怎么不够用了?

引出课题。

讲授正数、负数、有理数的定义。

用负数表示比“0”低的数,如:-10,读作负10,表示比0低10分的数。启发学生再从生活中例举出用负数表示具有相反意义的数。

三、巩固练习。

1、用正数或负数表示下列各题中的数量:

(2)球赛时,如果胜2局记作+2,那么-2表示______;。

(3)若-4万表示亏损4万元,那么盈余3万元记作______;。

(4)+150米表示高出海平面150米,低于海平面200米应记作______.

分析:用正、负数可分别表示具有相反意义的量,通常高于海平面的高度用正数表示,低于海平面的高度用负数表示;完全相反的两个方向,一个方向定为用正数表示,则另一个方向用负数表示;如运进与运出,收入与支出,盈利与亏损,买进与卖出,胜与负等都是具有相反意义的量。

2、下面说法中正确的是().

a.“向东5米”与“向西10米”不是相反意义的量;

b.如果汽球上升25米记作+25米,那么-15米的意义就是下降-15米;

c.如果气温下降6℃记作-6℃,那么+8℃的意义就是零上8℃;。

d.若将高1米设为标准0,高1.20米记作+0.20米,那么-0.05米所表示的高是0.95米。

三、小结回顾、纳入体系。

学生交流回顾、讨论总结,教师补充如下:

概念:正数、负数、有理数。

分类:有理数的分类:两种分法。

应用:有理数可以用来表示具有相反意义的量。

七年级数学有理数的减法教案篇八

学习目标:。

1、理解加减法统一成加法运算的意义.

2、会将有理数的加减混合运算转化为有理数的加法运算.

3、培养学习数学的兴趣,增强学习数学的信心.

教学方法:讲练相结合。

教学过程。

1、一架飞机作特技表演,起飞后的高度变化如下表:

高度的变化上升4.5千米下降3.2千米上升1.1千米下降1.4千米。

记作+4.5千米—3.2千米+1.1千米—1.4千米。

请你们想一想,并和同伴一起交流,算算此时飞机比起飞点高了千米.

2、你是怎么算出来的,方法是。

1、现在我们来研究(—20)+(+3)—(—5)—(+7),该怎么计算呢?还是先自己独立动动手吧!

2、怎么样,计算出来了吗,是怎样计算的,与同伴交流交流,师巡视指导.

如:(-20)+(+3)-(-5)-(+7)有加法也有减法。

=(-20)+(+3)+(+5)+(-7)先把减法转化为加法。

=-20+3+5-7再把加号记在脑子里,省略不写。

可以读作:“负20、正3、正5、负7的”或者“负20加3加5减7”.

4、师生完整写出解题过程。

1、解决引例中的问题,再比较前面的方法,你的感觉是。

2、例题:计算-4.4-(-4)-(+2)+(-2)+12.4。

3、练习:计算1)(—7)—(+5)+(—4)—(—10)。

1、小结:说说这节课的收获。

2、p241、2。

3、计算。

1)27—18+(—7)—322)。

五、作业。

1、p2552、p26第8题、14题。

七年级数学有理数的减法教案篇九

理解有理数的概念,懂得有理数的两种分类方法:会判别一个有理数是整数还是分数,是正数、负数还是零。

二、过程与方法。

经历对有理数进行分类的探索过程,初步感受分类讨论的思想。

三、情感态度与价值观。

通过对有理数的学习,体会到数学与现实世界的紧密联系。

教学重难点及突破。

在引入了负数后,本课对所学过的数按照一定的标准进行分类,提出了有理数的概念。分类是数学中解决问题的常用手段,通过本节课的学习,使学生了解分类的思想并进行简单的分类是数学能力的体现,教师在教学中应引起足够的重视。关于分类标准与分类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不宜过多展开。

教学准备。

用电脑制作动画体现有理数的分类过程。

教学过程。

四、课堂引入。

2.举例说明现实中具有相反意义的量。

3.如果由a地向南走3千米用3千米表示,那么-5千米表示什么意义?

4.举两个例子说明+5与-5的区别。

七年级数学有理数的减法教案篇十

2、会把省略加号和括号的有理数加减混合运算看成几个有理数的加法运算;

3.进一步感悟“转化”的思想。

把有理数的加减法混合运算统一为加法运算。

省略负数前面的加号的有理数加法,运用运算律交换加数位置时,符号不变。

根据有理数的减法法则,有理数的加减速混合运算可以统一为加法运算。

1、完成下列计算:

(1)3+7-12;(2)(-8)-(-10)+(-6)-(+4)。

归纳:根据有理数的减法法则,有理数的`加减混合运算可以统一为运算;

省略负数前面的加号和()后的形式是______________________;

展示交流。

1、把下列运算统一成加法运算:

2、将下列有理数加法运算中,加号省略:

(1)12+(-8)=________________;

3、将下列运算先统一成加法,再省略加号:

=___[]______________________。

4、仿照本p37例6,完成下列计算:

盘点收获。

个案补充。

1.计算:

本p39习题2。5第6题(1)、(3)、(5),第7题。

七年级数学有理数的减法教案篇十一

本节是在学习有理数加.减.乘.除.乘方的基础上。引入了有理数的混合运算,学生通过讨论、理解有理数混合运算顺序,掌握有理数混合运算.它是有理数运算的推广和延续。

本节课的重点是能熟练的按照有理数的运算顺序进行混合运算。难点是在正确运算的基础上,适当的运用运算律简化运算。首先,我先复习了运算律,既是对上节的复习,又对这节学习作铺垫。又通过详细分析了例题,小组讨论。学生自主学习,使他们更明确了运算顺序,进行有理数运算,培养了学生自主探究的习惯。第三,在例题的讲解中穿插了让学生自己动手锻炼的过程.及时的反馈学习情况.最后,通过“算24点”游戏,创设良好的氛围,让学生动脑动手动口,不仅可以提高学生学习兴趣,训练学生的'思维,还可以培养学生的数学运算能力和数学表达能力.

课后的专家的对教学过程和课堂的学生的学习效果进行了肯定,同时也提出了建议,希望根据学生的实际情况,将例题的难度降低,让学生能更好的适应.

本次活动,无论是课上,还是课后的研讨,老师们都表现出高度的热情,整个研讨过程都呈现出浓厚的氛围。通过本次活动,锻炼和提高了我们的教学能力,相信通过坚持不懈地实践,我们教师的专业成长步伐会更快!

七年级数学有理数的减法教案篇十二

学习目标:。

1、理解有理数的运算法则;能根据有理数乘法运算法则进行有理的简单运算。

2、经历探索有理数乘法法则过程,发展观察、归纳、猜想、验证能力.

3、培养语言表达能力.调动学习积极性,培养学习数学的兴趣.

学习重点:有理数乘法。

学习难点:法则推导。

教学方法:引导、探究、归纳与练习相结合。

教学过程。

一、学前准备。

计算:

(1)(一2)十(一2)。

(2)(一2)十(一2)十(一2)。

(3)(一2)十(一2)十(一2)十(一2)。

(4)(一2)十(一2)十(一2)十(一2)十(一2)。

猜想下列各式的值:

(一2)×2(一2)×3。

(一2)×4(一2)×5。

二、探究新知。

1、自学有理数乘法中不同的形式,完成教科书中29~30页的填空.

2、观察以上各式,结合对问题的研究,请同学们回答:

(3)负数乘以正数积为__________数,(4)负数乘以负数积为__________数。

提出问题:一个数和零相乘如何解释呢?

七年级数学有理数的减法教案篇十三

知识与能力

从简单的转盘游戏开始,使学生在生活经验和试验的基础上,进一步体验不确定事件的特点及事件发生的可能性大小。

能用实验对数学猜想做出检验,从而增加猜想的可信度。 解决问题

在转盘游戏过程中,经历猜测结果,实验验证,分析试验结果等数学活动,增加数学活动经验。

情感态度与价值观

在合作与交流过程中,体验小组合作更有利于探究数学知识,敢于发表自己观点,提高个人认识。

在实验中,体会不确定事件的特点及事件发生可能性大小;使每个学生都能积极认真参与课堂设计中的实验,真正在实验中获得知识上的认识。

创设情境,切入标题

请同学们猜测,当我自由转动转盘时,指针会落在什么颜域呢?

请各小组分别派一名代表,看哪组能转出红色。

结果,8小组有6组转出了红色。

为什么会出现这样的结果呢?

因为,在这个转盘中,红域的面积大,白域的面积小,因此,当转盘停上转动时,指针落到红域的可能性大。

大家同意这种看法吗?下面我们亲自动手感受一下。

学生按照题目要求进行实验。

请各组组长把你组的实验数据汇报一下(教师把数据填写在表格里) 实验结果:六个小组每组实验16次,全班共实验96次,指针落在红域的次数分别如下9,6,10,5,8,12。共计50次。

请同学们对我们的实验结果进行分析交流,谈谈你在试验中有哪些心得。

根据观察,转盘上红域的面积为总面积的一半,指针落在红域的可能性也应该是一半。通过对我们全班的实验结果分析,指针落在红域的比例是50∶96,结果接近百分之五十。

在小组内实验结果不明显,实验次数越多越能说明问题。

通过实验,我们确定感受到,转盘游戏中各区域的面积的可能性大小与指针落在什么区域的可能性大小有直接关系。以后在生活中再遇到转盘游戏问题可要想想今天的实验结论。

下面我们利用转盘做一下数学游戏(出示幻灯片),学生按教学设计中要求进行游戏,教师巡回指导。

每组每人游戏一次,全班共游戏48次。其游戏结果是,平均数增大1的,共35次,平均数减小1的,共13次。

请同学们对下列问题进行交流(幻灯片出示教材206页4个问题)。 这个转盘转到“平均数增大1”区域的可能性大,从面积大小就可以看出。

如果平均数增大1,我是在卡片上增加一个数,这个数等于卡片上数字的个数加1,如果是平均数减小1,我就在每个数上都减去1。

同学们说出很多种方法,不一一列举。

“平均数增大1”的次数占总次数的百分之七十三,“平均数减小1”占百分之二十七。

如果将这个实验继续做下去,卡片上所有数的平均数会增大。

同学们说的都很好,课后能不能自己也利用转盘设计一个新的游戏,感兴趣的同学可以在课下与我交流。

以下过程同教学设计,略去。

指导学生完成教材第206页习题。

学生可从各个方面加以小结。 布置作业

仿照课堂游戏,自编一个新的游戏。 能否利用扑克牌设计本节转盘游戏。

七年级数学有理数的减法教案篇十四

要想尽最大可能的发挥出课堂45分钟的效益,需要从许多方面去准备,去思考,比如对教学重点和难点的突破,对课堂的组织对突发事件的应对以及对学生实际情况的了解等等。要想上好一节课需要付出很多的精力。复习课并不是单纯的让学生去重复练习,更重要的是使学生在巩固基础的前提下,分析问题解决问题的能力得到提高。

七年级数学有理数的减法教案篇十五

1.通过与温度计的类比,了解数轴的概念,会画数轴。

2.知道如何在数轴上表示有理数,能说出数轴上表示有理数的点所表示的数,知道任何一个有理数在数轴上都有唯一的点与之对应。

过程方法。

1.从直观认识到理性认识,从而建立数轴概念。

2.通过数轴概念的学习,初步体会对应的思想、数形结合的思想方法。

3.会利用数轴解决有关问题。

情感态度。

通过对数轴的学习,体会到数形结合的思想方法,进而初步认识事物之间的联系性。

【教学重点】。

1.数轴的概念。

2.能将已知数在数轴上表示出来,说出数轴上已知点所表示的数。

【教学难点】。

从直观认识到理性认识,从而建立数轴的概念。

【情景引入】。

1.小明感冒了,医生用体温计测量了他的体温,并说:“37.8度。”

提疑:医生为什么通过体温计就可以读出任意一个人的体温?

(体温计上的刻度)。

2.我们再一起去看看12月时祖国各地的自然风光和温度情况(电脑分别显示黑龙江、焦作、海南三个城市美丽的自然风光,温度分别为-10°c,0°c,20°c)。

提疑:那么要测量这种气温所需要的温度计的刻度应该如何安排?需要用到哪些数?

(正数、零、负数)。

3.请尝试画出你想像中的温度计,并和其他同学交流,注意交流时要发表自己的见解。然后提问:请找出一支温度计从外观上具有哪些不可缺少的特征?(组织学生讨论交流)学生可能会从不同的角度回答,教师给予必要的引导,总结出与数轴相对应的特点,如形状是直的、0刻度、单位刻度。(电脑动态演示,将温度计水平放置,抽象得出数轴图形表示有理数-10,0,20的过程)从而引出课题------数轴。

七年级数学有理数的减法教案篇十六

一、选择题:(本大题共有8小题,每小题3分,共24分)。

1、的相反数是()。

a.b.c.2d.

2、在数轴上距离原点2个单位长度的点所表示的数是()。

a.2b.c.2或d.1或。

3、下列各式中正确的是()。

a.b.c.d.

4、绝对值不大于3的所有整数的积等于()。

a.b.6c.36d.0。

5、下列说法中,正确的是()。

a.任何有理数的绝对值都是正数b.如果两个数不相等,那么这两个数的绝对值也不相等。

c.任何一个有理数的绝对值都不是负数d.只有负数的绝对值是它的相反数。

6、如果a与1互为相反数,则等于()。

a.2b.2c.1d.-1。

7、的值为()。

a.0b.3.14--3.14d.0.14。

列为()。

a.-b-a。

二、填空题(本大题共有10小题,每小题3分,共30分)。

9、的倒数是____________.

10、绝对值等于2的数是___________.

1015。

1896。

11、相反数等于本身的数是_____________.

12、倒数等于本身的数是___________.

13、=______________.

14、孔子出生于公元前551年,如果用-551年表示,则李白出生于公元7表示为________。

15、有一组按规律排列的数-1,2,-4,8,-16,,第个数是__________.

16、已知=0,则____________.

_________________________________________________。(列出三式,有一式给一分.)。

18、一个大长方形被分成8个小长方形,其中有5个小长方形的面积如图中的数字所。

示,填上表中所缺的数,则这个大长方形的面积为_______。

三、解答下列各题:(本大题共8题,共96分)。

19、把下列各数填在相应的大括号里(8分)。

32,,7.7,,,,0,,

正数集合:;负数集合:;。

整数集合:;负分数集合:。

20、在数轴上表示下列各数及它们的相反相数,并根据数轴上点的位置把它们按从小到大的顺序排列。(10分)。

21、比较下列各数的大小(要写出解题过程)(6分)。

(1)与(2)与。

22、计算下列各题(每小题4分,共40分)。

23、体育课上,某中学对七年级男生进行了引体向上测试,以能做7个为标准多于标准的次数记为正数,不足的次数记为负数,其中8名男生的成绩为+2,-1,+3,0,-2,-3,+1,0。

(1)这8名男生中达到标准的占百分之几?(2)他们共做了多少次引体向上?

25、某出租车沿公路左右方向行驶,向左为正,向右为负,某天从a地出发后到收工回家所走路线如下:(单位:千米)+8,-9,+4,+7,-2,-10,+18,-3,+7,+5。

(1)问收工时离出发点a多少千米?

(2)若该出租车每千米耗油0.3升,问从a地出发到收工共耗油多少升?

26、(8分)股民李明上星期六买进春兰公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况(单位:元)(注:用正数记股价比前一日上升数,用负数记股价比前一日下降数)。

星期一二三四五六。

每股涨跌+4+4.5-1-2.5-6+2。

(1)星期三收盘时,每股是多少元?

(2)本周内最高价是每股多少元?最低价每股多少元?

参考答案。

1.b;2;c;3.d;4.d;5.c;6.c;7.c;8.c;9.3;10.2。

11.0;12.13.-3.142;14.+701;15.;。

16.-4;。

10515。

189276。

18.

面积比等于。

19.

正数集合:;负数集合:;。

整数集合:;负分数集合:。

20.

21.(1)∵,

(2)∵,

6

22.(1)-2;(2)9;(3)2;(4)4;(5);。

(6)-35;(7)-12;(8)0;。

(9)。

(10).

24.略。

25.解:(1+0.2)7+(1.5+0.4)3=13.1元,

(1+0.2)6=7.2元。

所以,1月份水费为13.1元,2月份水费为7.2元.

26.解:(1)8-9+4+7-2-10+18-3+7+5=25,离a地25千米。

(2)8+9+4+7+2+10+18+3+7+5=73,

0.373=21.9升.

27.(1)27+4+4.5-1=34.5元;。

(2)最高35.5元,最低26元;。

(3)。

买入价为27元,

卖出价为27+4+4.5-1-2.5-6+2=28元。

买入手续费27x0.15%x1000=40.5元。

卖出税费28x(0.15%+0.1%)x1000=70元。

扣除税费40.5+70=110.5元。

【本文地址:http://www.xuefen.com.cn/zuowen/8158940.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档