对于教师而言,编写教案是提高教学效果和素质的一项重要工作。关注学生的学习情况和心理健康,为学生提供良好的学习环境和支持。利用多媒体教学可以增加教学的趣味性和互动性,教案中可添加相应的多媒体资源。
人教版初中数学九年级教案篇一
14.(曲靖中考)将如图所示的两个平面图形绕轴旋转一周,对其所得的立体图形,下列说法正确的是()。
a.主视图相同b.左视图相同。
c.俯视图相同d.三种视图都不相同。
15.一位美术老师在课堂上进行立体模型素描教学时,把由圆锥与圆柱组成的几何体(如图所示,圆锥在圆柱上底面正中间放置)摆在讲桌上,请你在指定的方框内分别画出这个几何体的三视图(从正面、左面、上面看得到的视图).
16.一种机器上有一个进行转动的零件叫燕尾槽(如图),为了准确做出这个零件,请画出它的三视图.
综合题。
人教版初中数学九年级教案篇二
位似图形的概念,位似图形的性质,位似图形的画法.
(二)内容解析。
位似是在学生已经掌握了相似的相关知识,积累了一定的图形研究方法的基础上,进行探究的.位似就是具有特殊位置关系的相似,是对相似的纵深挖掘与提升,可以让学生进一步体会相似的应用价值和丰富内涵.
根据给出的一系列图形,引导学生观察这些图形的共同特点,从而归纳出位似图形的概念和性质.通过归纳给出图形的共同特点,得出位似图形的概念,体现了研究几何问题的一般方法.对于图形的概念学习,尤其要注重概念的生成过程和基本含义.而利用作位似图形的方法,将一个图形放大或缩小,本质上是位似图形性质的应用,它也是一个集动手与动脑于一体的活动.
二、目标和目标解析。
(一)教学目标。
1.了解位似图形及其有关概念,了解位似与相似的联系和区别,掌握位似图形的性质.
2.掌握位似图形的画法,能够利用作位似图形的方法将一个图形放大或缩小.
(二)目标解析。
2.学生通过对作图方法的模仿和归纳,总结出作位似图形的方法和步骤,并能够利用作位似图形的方法将一个图形放大或缩小.
三、教学问题诊断分析。
位似是相似的延续,学生已经学习了相似的相关知识,对图形已经有了丰富的认知基础,教学中通过实际生活中的图形引入,对位似图形有一个直观的认识,同时也体现了位似知识存在的必要性,增强学习的兴趣和信念.本节教学中应该注重学生自我动手操作能力的培养,使学生重视作图的准确性和规范性.
在形成位似图形的概念,探索位似图形的性质过程中,强调讨论和探究,提高学生分析问题、解决问题、发现和创新的能力,对初三学生是必须的,也是适可的.
本课的教学重点是位似图形的概念,位似图形的作图,以及位似与相似的关系.
教学难点是位似图形的准确作图,动手能力的落实.
四、教学过程设计。
(一)创设情境,引入新知。
位似图形的概念。
问题1在日常生活中,我们经常见到下面所给的这样一类相似的图形,他们有什么特征?
师生活动:教师展示图片,提出问题.学生观察、欣赏图形.
设计意图:教师通过展示的图片调动学生的注意力,激发起好奇心和求知欲.使学生充分感知位似,欣赏位似图形.
师生活动:学生从相似图形的对应顶点、对应边、对应角出发,通过观察了解到有一类相似图形,除具备相似的所有性质外,还有其特性,学生思考,并总结位似图形的概念.
教师加以归纳,得到位似图形的定义:如果两个图形不仅相似,而且对应顶点的连线相交于一点,那么这样的两个图形叫做位似图形,这个点叫做位似中心.
设计意图:通过几个图形的观察,使学生初步意识到位似的特征:对应点连线交于一点.
(二)巩固提高,运用新知。
问题1判断下列各对图形是不是位似图形?
(1)正五边形abcde与正五边形a′b′c′d′e′;。
(2)等边三角形abc与等边三角形a′b′c′.
设计意图:通过辨别位似图形,巩固位似图形的概念,让学生理解位似图形必须满足的条件:(1)两个图形是相似图形;(2)两个相似图形每对对应点所在直线都经过同一点.
问题2是否相似图形都是位似图形?举例说明.
问题3位似图形与相似图形有什么区别和联系?
师生活动:学生举例说明相似图形不一定是位似图形,并总结出位似图形具备相似的所有性质,除此之外,还有其特性,所以位似图形是特殊的相似图形.
设计意图:通过思考位似图形和相似图形的联系与区别,让学生进一步理解位似图形的概念.
位似图形的性质。
问题4观察几组位似图形,猜想对应边之间有什么位置关系?
师生活动:学生通过观察,猜想位似图形对应边是互相平行或者重合的.教师通过多媒体演示,让学生直观的感受到位似图形对应边平行或重合.
问题5已知问题1中的图形,思考对应点到位似中心的距离之比与相似比之间的关系.
师生活动:学生通过观察图形的特点,教师引导学生运用相似的知识证明对应点到位似中心的距离之比与相似比的关系.最终总结出位似图形的性质:位似图形上任意一对对应点到位似中心的距离之比等于相似比.
设计意图:位似的性质通过讨论、对比、证明自然得到,能使学生比较牢固地掌握,比直接给出效果要好,同时让学生意识到数学知识之间的联系性,把新知识转化为旧知识。
人教版初中数学九年级教案篇三
1、等底等高的圆柱与圆锥体积之间有怎样的关系?
2、圆锥的'体积怎样计算?
二、基本练习
1、填空
(1)等底等高的圆柱和圆锥的体积相差12立方分米,这个圆锥的体积是()立方分米,圆柱的体积是()立方分米。
(2)等底等高的一个圆柱和一个圆锥的体积和是96立方分米,圆锥的体积是()立方分米,圆柱的体积是()立方分米。
(3)把一个体积是18立方厘米的圆柱削成一个最大的圆锥,削成的圆锥体积是()立方厘米,削去()立方厘米。
(4)一个圆柱的体积、底面积与一个圆锥相等,圆锥的高是9厘米,圆柱的高是()厘米。
(5)圆锥的底面半径是3厘米,体积是6.28立方厘米,这个圆锥的高是()厘米。
2、判断。
(1)圆锥的底面半径扩大3倍,体积也扩大3倍。()
(2)一个正方体和一个圆锥的底面积和高相等,这个正方体的体积是是圆锥体积的3倍。()
(3)圆锥的底面周长是12.56分米,高是4分米,它的体积是(12.56×4×1/3)立方分米。()
三、综合应用
1、一块圆锥形巧克力,体积是6立方厘米,底面积是4立方厘米,它的高是多少?
2、一个圆锥体积是640立方厘米,高是20厘米,它的底面积是多少平方厘米?
第八课时教学反思
教材中圆锥体积的相对练习较少,但在实际解决问题中却常常需要学生能够灵活应用,所以特别增加了一课时练习。
教学中的一组填空题,对于帮助学生深入理解等底等高圆柱与圆锥的联系很有价值。通过练习,学生们明确了圆柱与等底等高的圆锥体积和为4个圆锥的体积(或4/3个圆柱的体积),而它们的体积相差2个圆锥的体积(或2/3个圆柱的体积)……。掌握这些知识对于解决实际问题很有帮助,如将圆柱削成最大的圆锥,求削去部分的体积是多少,就可直接用圆柱的体积乘2/3(1—1/3)从而使计算简便。
教学中,我也遇到一些阻力——就是学生不愿用方程去解答需要逆向思考的问题,可用算术方法列式又常常对“1/3”发憷。为了更好与初中衔接,我在本节课综合应用环节俨然是一位“推销员”,不断给学生强化方程解法的优势,但在实际应用中全班不足五人愿意采纳这种方法。而用算术方法解答,则必须首先明确:若圆柱和圆锥体积和高(或者是底面积)相等,那么圆锥的底面积(或高)是圆锥的3倍。
[再教建议]针对学生思维习惯,在教学填空第4小题时不仅要讲清原因,而且应要举一反三,促使学生在深入理解的基础上切实掌握体积相等的圆柱与圆锥之间的联系。
人教版初中数学九年级教案篇四
证明(二)
判定定理及相关结论的证明,利用尺规作已知角的平分线
判定定理及相关结论的证明
知识点
1、三角形相关定理
推论两角及其中一角的对边对应相等的两个三角形全等.(aas)
定理等腰三角形的两个底角相等.(等边对等角)
推论等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合.(三线合一)
定理有两个角相等的三角形是等腰三角形.(等角对等边)
定理有一个角等于60º的等腰三角形是等边三角形.
2、直角三角形
定理在直角三角形中,如果一个锐角等于30º,那么它所对的直角边等于斜边的一半.
角三角形,其中一个锐角等于30º,这它所对的直角边必然等于斜边的一半.)
定理直角三角形两条直角边的平方和等于斜边的平方.(勾股定理)
定理如果三角形两边的平方和等于第三方的平方,那么这个三角形是直角三角形.
互逆命题逆命题互逆定理逆定理
定理斜边和一条直角边对应的两个直角三角形全等.(hl)
3、线段的垂直平分线直线与射线有垂线,但无垂直平分线
定理线段垂直平分线上的点到这条线段两个端点的距离相等。
定理到一条线段两端点距离相等的点,在这条线段的垂直平分线上。(线段垂直平分线逆定理)
定理三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。(如图1所示,ao=bo=co)
cc
e图1图2
4、角平分线
定理角平分线上的点到这个角的两边的距离相等。(角平分线是到角的两边距离相等的所有点的集合。)定理在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上。(角平分线逆定理)
定理三角形的三条角平分线相交于一点,并且这个点到三边距离相等.(交点为三角形的内心.如图2,od=oe=of)
人教版初中数学九年级教案篇五
教学内容:
教材第15~16页的例4和第16页的试一试、练一练,完成练习三第1~3题。
教学目标:
1.结合具体情境和实践活动,了解圆柱体积(包括容积)的含义,进一步理解体积和容积的含义。
2.经历类比猜想验证说明的探索圆柱体积的计算方法的进程,掌握圆柱体的计算方法,能正确计算圆柱的体积,并会解决一些简单的`实际问题。
3.引导学生探索和解决问题,渗透、体验知识间相互转化的思想方法。
重点难点:
掌握圆柱体积公式的推导过程。
教学资源:
ppt课件圆柱等分模型
教学过程:
人教版初中数学九年级教案篇六
1.使学生学会圆环面积的计算方法,以及圆形与矩形混合图形的相关计算方法。
2.学会利用已有的知识,运用数学思想方法,推导出圆环面积计算公式,有关于圆形与正方形应用的解答方法。
3.培养学生观察、分析、推理和概括的能力,发展学生的空间概念。
教学重难点
1 教学重点
会利用圆和其他已学的相关知识解决实际问题。
2 教学难点
圆与其他图形计算公式的混合使用。
教学工具
ppt 卡片
教学过程
1 复习巩固上节知识,导入新课
2 新知探究
2.1 圆环面积
一、问题引入
同学们知道光盘可以用来做什么吗?谁能来描述一下光盘的外观。
回答(略)。
今天我们就来做一做与光盘相关的数学问题。
二、圆环面积求解
步骤:
师:求圆环面积需要先求什么?
生:内圆和外圆的面积
师:同学们可以自己做一做,分组交流一下自己的解法。
师:给出计算过程与结果:
三、知识应用
做一做第2题:
师:这是一道典型的圆环面积应用题。通过直径得到半径,代入圆环面积公式,很简单。
2.2 圆与正方形
一、问题引入
师:同学们知道苏州的园林吧。大家有没有观察过园林建筑的窗户?它有很多很漂亮的设计,也有很多很常见的图形,比如五边形、六边形、八边形等等。其中外圆内方或者外方内圆是一种很常见的设计。
师:不仅是在园林中,事实上在中国的建筑和其他的设计中都经常能见到“外圆内方”和“外方内圆”,比如这座沈阳的方圆大厦、商标等等。下面我们来认识一下这种圆形与正方形结合起来构成的图形。
二、知识点
例3:图中的两个圆半径是1m,你能求出正方形和圆之间部分的面积吗?
步骤:
师:题目中都告诉了我们什么?
师:分别要求的是什么?
生:一个求正方形比圆多的面积,一个求圆比正方形多的面积。
师:应该怎么计算呢?
归纳总结
如果两个圆的半径都是r,结果又是怎样的呢?
当r=1时,与前面的结果完全一致。
四、知识应用
70页做一做:
师:同学们用我们刚刚学过的知识来解答一下这道题目吧。
解:铜镜的半径是300px
5.3 随堂练习
若还有足够时间,课堂练习练习十五第5/6/7题。
(可以邀请同学板书解题过程)
6 小结
1. 今天我们共同研究了什么?
今天我们在已知圆和正方形的面积公式的前提下,探索了圆环和“外圆内方”“外方内圆”图形的面积计算方法。这不是要求同学们记住这些推导出来的公式,而是希望同学们能过明白推导的方法,以后遇到类似的问题可以自己运用学过的知识来解决问题。
2. 在日常生活中经常需要去求圆的面积,譬如说:蒙古包做成圆形的是因为可以最大化地利用居住面积,植物根茎的横截面是圆形的,也是因为可以最大化的吸收水分。我们还可以再举出其他的一些例子,如装菜的盘子、车轮为什么要做成圆形的?大家需要多看多想!
7 板书
人教版初中数学九年级教案篇七
(第一课时)。
了解圆的有关概念,理解垂径定理并灵活运用垂径定理及圆的概念解决一些实际问题.
从感受圆在生活中大量存在到圆形及圆的形成过程,讲授圆的有关概念.利用操作几何的方法,理解圆是轴对称图形,过圆心的直线都是它的对称轴.通过复合图形的折叠方法得出猜想垂径定理,并辅以逻辑证明加予理解.
(第二课时)。
了解圆心角的概念:掌握在同圆或等圆中,圆心角、弦、弧中有一个量的两个相等就可以推出其它两个量的相对应的两个值就相等,及其它们在解题中的应用.
(第三课时)教案。
1.了解圆周角的概念.
2.理解圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
3.理解圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.
4.熟练掌握圆周角的定理及其推理的灵活运用.
人教版初中数学九年级教案篇八
作者:李洪烈作者单位:无简介:本课件供课堂教学使用,在开始画面点击右下角的箭头按扭即可停止音乐,再点击一次此按扭即可进入课件主菜单,注意时间有限,本人只做了第一单元,其他单元有待开发。点击第一单元按扭即可进入课件主体。然后一直点击下一页即可进行教学。教学过程中点击“演示”按扭可动画模拟演示实验,另外还有许多文字按扭在这里不详细说明,大家自己去试吧!当进入原子结构动画演示时,课堂教学已基本完成,点击课堂检测按扭进入检测画面,直接点击选项,然后按提交,即可进行电子评分,对回答较好的同学可以给与鼓励画面(点击“鼓励”按扭),鼓励画面下方的返回按扭可以返回检测画面,另外进入下一页前,请点击“停止背景音乐”按扭,此音乐用来在给学生思考是以便欣赏一边做题。最后进入作业布置,点击提示按扭可以出现动画模拟演示。言毕,说明较长,劳烦了!
相关课件:
人教版初中数学九年级教案篇九
解析:对众数的概念理解不清,会误认为这组数据中80出现了三次,所以这组数据的众数是80.根据众数的.意义可知,一组数据中出现次数最多的数据是这组数据的众数.而在数据中70也出现了三次,所以这组数据是众数有两个.
答案:这组数据的众数是70和80.
好题2.某班53名学生右眼视力(裸视)的检查结果如下表所示:
则该班学生右眼视力的中位数是_______.
解析:本题表面上看视力数据已经排序,可以求视力的中位数,有的同学会误认为:因为11个数据按照大小的顺序排列有:0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、1.0、1.2、1.5,则知排在第6个的数是0.6.但注意观察可以发现:题目中的视力数据实际是小组数据,小组的人数才是视力数据的真正个数.因此,不能直接求视力数据的中位数,而应先求出53名学生视力数据的中间数据,即第27名学生的视力就是本班学生右眼视力的中位数.
答案:(53+1)2=27,所以第27名学生的右眼视力为中位数,从表中人数栏数出第27名学生所对应的右眼视力为0.8,即该班学生右眼视力的中位数是0.8.
人教版初中数学九年级教案篇十
教学目标:
知识与技能:
1.描述使用氢气、天然气(或沼气)、石油液化气、酒精、汽油和煤等燃料对环境的影响,懂得选择对环境污染较小的燃料。
2.列举新能源开发的重要性。
过程与方法:
1.通过对燃料的选用来培养比较、分类、归纳、概括等信息加工能力。
2.通过讨论,形成良好的学习习惯和学习方法。
情感态度和价值观:
1.通过燃料对环境影响的学习来树立保护环境的意识,体会化学与社会发展的关系。
2.通过实验和讨论逐步养成善于合作、勤于思考、严谨求实、勇于创新实践的科学精神。
数学重、难点及突破
重点:1.燃料燃烧对空气的影响。
2.新能源、新燃料的开发和利用。
难点:1.对燃料燃烧产物的分析。
2.新能源、新燃料的开发和利用。
教学过程
一、导课(约5分钟)
教师活动学生活动设计意图
提问:那么又是什么污染了我们呼吸的空气呢?是什么使全球变暖呢?思考,回答:是一些有害气体污染了空气;二氧化碳过多形成温室效应,使全球变暖。
提问:那么这些有害气体,以及造成温室效应的二氧化碳又是怎样形成的呢?学生可能回答不出此问题,思考,急于知道答案。
引入新课:(板书:课题三使用燃料燃烧对空气的影响)进入课堂情境。
二、燃料燃烧对空气的影响(约30分钟)
教师活动学生活动设计意图
展示幻灯片,把问题给学生,展示答案思考、回答相关的问题回顾学过的知识
展示酸雨的成因及危害观看幻灯片增加感性认识
汽车尾气的污染、相关的问题思考,回答知识的联系
提问:那么如何来减少汽车尾气对空气的污染呢?分组讨论,总结归纳防治措施:
知识的由于
小结:总结展示产生污染的原因:思考、并想有关内容学生养成归纳总结知识的习惯
三、使用和开发新的燃料及能源(约10分钟)
教师活动学生活动设计意图
引出氢气也是一种环保燃料,让学生写出氢气燃烧的化学方程式,写出化学方程式。
情感交流
这堂课里,你学到了什么?有什么感触?
板书设计
人教版初中数学九年级教案篇十一
1、金属+酸=盐+氢气置换反应条件:金属与酸氢以前,常用盐酸稀硫酸。
例如:锌加稀硫酸,氢气往上窜
2、金属+盐=新金属+新盐置换反应条件:金属与盐盐可溶,一定范围前换后。
例如:铁语硫酸铜溶液的置换反应。
3、酸+金属氧化物=盐+水复分解反应条件:金属与酸氢以前,常用盐酸稀硫酸。
例如:盐酸除铁锈4酸+碱=盐+水复分解反应条件:酸碱反应必中和,成盐生水反应先。
例如:硝 酸和氢氧化铜5酸+盐=新酸+新盐复分解反应条件:酸盐反应先看盐。碳酸盐遇酸就出气,否则盐溶生沉淀。
例如:硝 酸和碳酸银6碱+非金属氧化物=盐+水复分解反应条件:金氧与碱遇到酸,成盐生水无条件。
例如:二氧化硫和硝 酸钡7碱+盐=新碱+新盐复分解反应条件:碱盐反应盐可溶,生成物中有沉淀。
人教版初中数学九年级教案篇十二
(一)知识我先懂:
方差:设有n个数据,各数据与它们的平均数的差的平方分别是
我们用它们的平均数,表示这组数据的方差:即用
来表示。
给力小贴士:方差越小说明这组数据越。波动性越。
(二)自主检测小练习:
1、已知一组数据为2、0、-1、3、-4,则这组数据的方差为。
2、甲、乙两组数据如下:
甲组:1091181213107;
乙组:7891011121112.
分别计算出这两组数据的极差和方差,并说明哪一组数据波动较小.
人教版初中数学九年级教案篇十三
1.描述统计。
通过调查、试验获得大量数据,用归组、制表、绘图等统计方法对其进行归纳、整理,以直观形象的形式反映其分布特征的方法,如:小学数学中的制表、条形统计图、折线统计图、扇形统计图等都是描述统计。另外计算集中量所反映的一组数据的集中趋势,如算术平均数、中位数、总数、加权算术平均数等,也属于描述统计的范围。其目的是将大量零散的、杂乱无序的数字资料进行整理、归纳、简缩、概括,使事物的全貌及其分布特征清晰、明确地显现出来。
2.概率的统计定义。
人们在抛掷一枚硬币时,究竟会出现什么样的结果事先是不能确定的,但是当我们在相同的条件下,大量重复地抛掷同一枚均匀硬币时,就会发现“出现正面”或“出现反面”的次数大约各占总抛掷次数的:左右。这里的“大量重复”是指多少次呢?历史上不少统计学家,例如皮尔逊等人作过成千上万次抛掷硬币的试验,其试验记录如下:
可以看出,随着试验次数的增加,出现正面的频率波动越来越小,频率在0.5这个定值附近摆动的性质是出现正面这一现象的内在必然性规律的表现,0.5恰恰就是刻画出现正面可能性大小的数值,0.5就是抛掷硬币时出现正面的概率。这就是概率统计定义的思想,这一思想也给出了在实际问题中估算概率的`近似值的方法,当试验次数足够大时,可将频率作为概率的近似值。
例如100粒种子平均来说大约有90粒种子发芽,则我们说种子的发芽率为90%;。
因为前30年出现晴天的频率为0.83,所以概率大约是0.83。
3.概率的古典定义。
【本文地址:http://www.xuefen.com.cn/zuowen/8144928.html】