编写教案是教师备课工作的重要组成部分。编写教案时,要注重培养学生的综合能力,注重实践操作和思维训练。通过阅读这些教案范文,相信大家对教案的编写有了更深入的理解和把握。
七年级数学有理数的减法教案篇一
1、知识目标:了解有理数乘法法则的合理性,掌握有理数的乘法法则,熟练运用有理数的法则进行准确运算。
2、能力目标:通过对问题的变式探索,培养自己观察、分析、抽象、概括的能力。
3、情感目标:培养积极思考和勇于探索的精神,形成良好的学习习惯。
重点:有理数乘法运算法则的推导及熟练运用。
难点:有理数乘法运算中积的符号的确定。
1、在小学我们已经接触了乘法,那什么叫乘法呢?
求几个的运算,叫乘法。
一个数同0相乘,得0。
2、请你列举几道小学学过的乘法算式。
规定:向右为正,现在之后为正。
3分钟后蜗牛应在o点的()边()cm处。
可以列式为:(+2)(+3)=。
问题2:如果蜗牛一直以每分钟2cm的速度向左爬行,那么3分钟后蜗牛在什么位置?
规定:向右为正,现在之后为正。
3分钟后蜗牛应在o点的()边()cm处。
可以列式为:
问题3:如果蜗牛一直以每分钟2cm的速度向右爬行,那么3分钟前蜗牛在什么位置?
规定:向右为正,现在之后为正。
3分钟前蜗牛应在o点的()边()cm处。
可以表示为:
问题4:如果蜗牛一直以每分钟2cm的速度向左爬行,那么3分钟前蜗牛在什么位置?
规定:向右为正,现在之后为正。
3分钟前蜗牛应在o点的()边()cm处。
可以表示为:
2、观察这四个式子:
(+2)(+3)=+6(—2)(—3)=+6。
(—2)(+3)=—6(+2)(—3)=—6。
正数乘正数积为__数:负数乘负数积为__数:
负数乘正数积为__数:正数乘负数积为__数:
乘积的绝对值等于各乘数绝对值的_____。
思考:当一个因数为0时,积是多少?
两数相乘,同号得,异号得,并把绝对值。
任何数同0相乘,都得。
1、你能确定下列乘积的符号吗?
37积的符号为;(—3)7积的符号为;
3(—7)积的`符号为;(—3)(—7)积的符号为。
2先阅读,再填空:
(—5)x(—3)。同号两数相乘。
(—5)x(—3)=+()得正。
5x3=15把绝对值相乘。
所以(—5)x(—3)=15。
填空:(—7)x4____________________。
(—7)x4=—()___________。
7x4=28_____________。
所以(—7)x4=____________。
[例1]计算:
(1)(—5)(2)(—5)。
(3)(—6)(—0.45)(4)(—7)0=。
解:(1)(—5)(—6)=+(56)=+30=30。
请同学们仿照上述步骤计算(2)(3)(4)。
(2)(—5)6==。
(3)(—6)(—0.45)==。
(4)(—7)0=。
让我们来总结求解步骤:
两个数相乘,应先确定积的,再确定积的。
1、小组口算比赛,看谁更棒。
(1)3(—4)(2)2(—6)(3)(—6)2。
(4)6(—2)(5)(—6)0(6)0(—6)。
2、仔细计算。,注意积的符号和绝对值。
(1)(—4)0.25(2)(—0.5)(—2)(3)(—)。
(4)(—2)(—)(5)(—)(—)(6)(—)5。
1、下列说法错误的是()。
a、一个数同0相乘,仍得0。
b、一个数同1相乘,仍得原数。
c、如果两个数的乘积等于1,那么这两个数互为相反数。
d、一个数同—1相乘,得原数的相反数。
2、在—2,3,4,—5这四个数中,任意两个数相乘,所得的积最大的是()。
a、10b、12c、—20d、不是以上的答案。
3、计算下列各题:
(5)(—6)(—5)=;(6)(—5)(—6)=。
七年级数学有理数的减法教案篇二
1、(6分)把下列各数填在相应的集合内:
-23,0.25,,-5.18,18,-38,10,+7,0,+12。
正数集合:{………}。
整数集合:{………}。
分数集合:{………}。
2、某校对七年级男生进行俯卧撑测试,以能做7个为标准,超过的次数用正数表示,不足的次数用负数表示,其中8名男生的成绩如下表:
2-103-2-310。
(1)这8名男生的达标率是百分之几?
(2)这8名男生共做了多少个俯卧撑?
答案。
1、
正数集合:{0.25,18,10,+7,+12………}。
整数集合:{-23,18,-38,10,+7,0,+12………}。
分数集合:{0.25,,-5.18………}。
2、
(1)50%,(2)56个。
七年级数学有理数的减法教案篇三
1、知识目标:借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性,会判断一个数是正数还是负数。
2、能力目标:能应用正负数表示生活中具有相反意义的量。
3、情感态度:让学生了解有关负数的历史、体会负数与实际生活的联系。教学重难点。
重点:理解有理数的意义。
难点:能用正负数表示生活中具有相反意义的量。
教学过程。
一、创设情境、提出问题。
某班举行知识竞赛,评分标准是:答对一题加1分,答错一题扣1分,不回答得0分;每个队的基础分均为0分。两个队答题情况见书上第23页。
二、分析探索、问题解决。
分组讨论扣的分怎样表示?
用前面学的数能表示吗?
数怎么不够用了?
引出课题。
讲授正数、负数、有理数的定义。
用负数表示比“0”低的数,如:-10,读作负10,表示比0低10分的数。启发学生再从生活中例举出用负数表示具有相反意义的数。
三、巩固练习。
1、用正数或负数表示下列各题中的数量:
(2)球赛时,如果胜2局记作+2,那么-2表示______;。
(3)若-4万表示亏损4万元,那么盈余3万元记作______;。
(4)+150米表示高出海平面150米,低于海平面200米应记作______.
分析:用正、负数可分别表示具有相反意义的量,通常高于海平面的高度用正数表示,低于海平面的高度用负数表示;完全相反的两个方向,一个方向定为用正数表示,则另一个方向用负数表示;如运进与运出,收入与支出,盈利与亏损,买进与卖出,胜与负等都是具有相反意义的量。
2、下面说法中正确的是().
a.“向东5米”与“向西10米”不是相反意义的量;
b.如果汽球上升25米记作+25米,那么-15米的意义就是下降-15米;
c.如果气温下降6℃记作-6℃,那么+8℃的意义就是零上8℃;。
d.若将高1米设为标准0,高1.20米记作+0.20米,那么-0.05米所表示的高是0.95米。
三、小结回顾、纳入体系。
学生交流回顾、讨论总结,教师补充如下:
概念:正数、负数、有理数。
分类:有理数的分类:两种分法。
应用:有理数可以用来表示具有相反意义的量。
七年级数学有理数的减法教案篇四
经历综合运用有理数加减法解决实际问题的过程,培养学生分析问题解决问题的能力、
三、情感态度与价值观。
体会数学与现实生活的联系,提高学生学习数学的兴趣、
教学重点、难点与关键。
1、重点:有理数加减法统一为加法运算,掌握有理数加减混合运算、
2、难点:省略括号和加号的加法算式的运算方法、
投影仪、
四、教学过程。
一、复习提问,引入新课。
1、叙述有理数的加法、减法法则、
2、计算、
(1)(—8)+(—6);(2)(—8)—(—6);(3)8—(—6);。
(4)(—8)—6;(5)5—14、
五、新授。
我们已学习了有理数加、减法的运算,今天我们来研究怎样进行有理数的加减混合运算、
六、巩固练习。
1、课本第24页练习、
(1)题是已写成省略加号的代数和,可运用加法交换律、结合律、
原式=1+3—4—0。5=0—0。5=—0。5。
(2)题运用加减混合运算律,同号结合、
原式=—2。4—4。6+3。5+3。5=—7+7=0。
(3)题先把加减混合运算统一为加法运算、
原式=(—7)+(—5)+(—4)+(+10)。
=—7—5—4+10(省略括号和加号)。
=—16+10。
=—6。
七、课堂小结。
八、作业布置。
1、课本第25页第26页习题1、3第5、6、13题、
九、板书设计:
第四课时。
1、把有理数加减混合运算转化为加法后,常用加法交换律和结合律使计算简便、
归纳:加减混合运算可以统一为加法运算、
用式子表示为a+b—c=a+b+(—c)、
2、随堂练习。
3、小结。
4、课后作业。
十、课后反思。
本课教学反思。
本节课主要采用过程教案法训练学生的听说读写。过程教案法的理论基础是交际理论,认为写作的过程实质上是一种群体间的交际活动,而不是写作者的个人行为。它包括写前阶段,写作阶段和写后修改编辑阶段。在此过程中,教师是教练,及时给予学生指导,更正其错误,帮助学生完成写作各阶段任务。课堂是写作车间,学生与教师,学生与学生彼此交流,提出反馈或修改意见,学生不断进行写作,修改和再写作。在应用过程教案法对学生进行写作训练时,学生从没有想法到有想法,从不会构思到会构思,从不会修改到会修改,这一过程有利于培养学生的写作能力和自主学习能力。学生由于能得到教师的及时帮助和指导,所以,即使是英语基础薄弱的同学,也能在这样的环境下,写出较好的作文来,从而提高了学生写作兴趣,增强了写作的自信心。
这个话题很容易引起学生的共鸣,比较贴近生活,能激发学生的兴趣,在教授知识的同时,应注意将本单元情感目标融入其中,即保持乐观积极的生活态度,同时要珍惜生活的点点滴滴。在教授语法时,应注重通过例句的讲解让语法概念深入人心,因直接引语和间接引语的概念相当于一个简单的定语从句,一个清晰的脉络能为后续学习打下基础。此教案设计为一个课时,主要将安妮的处境以及她的精神做一个简要概括,下一个课时则对语法知识进行讲解。
在此教案过程中,应注重培养学生的自学能力,通过辅导学生掌握一套科学的学习方法,才能使学生的学习积极性进一步提高。再者,培养学生的学习兴趣,增强教案效果,才能避免在以后的学习中产生两极分化。
在教案中任然存在的问题是,学生在“说”英语这个环节还有待提高,大部分学生都不愿意开口朗读课文,所以复述课文便尚有难度,对于这一部分学生的学习成绩的提高还有待研究。
七年级数学有理数的减法教案篇五
1.1正数和负数(2)。
教学目标:
教学重点:
深化对正负数概念的理解。
教学难点:
正确理解和表示向指定方向变化的量。
教学准备:彩色粉笔。
教学过程:
一、复习引入:
学生思考并讨论.
(数0既不是正数又不是负数,是正数和负数的分界,是基准.
二、讲解新课。
度,用负数表示低于海平面的某地的海拔高度。例如,珠穆朗玛峰的海拔高度为8848.43米,吐鲁番盆地的海拔高度为—155米。记账时,通常用正数表示收入款额,用负数表示支出款额。
思考:教科书第4页(学生先思考,教师再讲解)。
三、课堂练习课本p4练习1,2,3,4。
四、课时小结。
引入负数可以简明的表示相反意义的量,对于相反意义的量,如果其中一种量用正数表示,那么另一种量可以用负数表示.在表示具有相反意义的量时,把哪一种意义的量规定为正,可根据实际情况决定.要特别注意零既不是正数也不是负数,建立正负数概念后,当考虑一个数时,一定要考虑它的符号,这与以前学过的数有很大的区别.
五、课外作业教科书p5:2、4。
板书设计:
七年级数学有理数的减法教案篇六
学习过程:
一、自主学习不动笔墨不读书!请拿出你的笔和你的激情,探究新知:
1.小学学过的加法运算律有哪些?举例说明运用运算律有何好处?
2.加法的交换律:
两个数相加,交换_______的位置,和不变.用式子表示:a+b=_______.
3.加法的结合律:
七年级数学有理数的减法教案篇七
理解有理数的概念,懂得有理数的两种分类方法:会判别一个有理数是整数还是分数,是正数、负数还是零。
二、过程与方法。
经历对有理数进行分类的探索过程,初步感受分类讨论的思想。
三、情感态度与价值观。
通过对有理数的学习,体会到数学与现实世界的紧密联系。
教学重难点及突破。
在引入了负数后,本课对所学过的数按照一定的标准进行分类,提出了有理数的概念。分类是数学中解决问题的常用手段,通过本节课的学习,使学生了解分类的思想并进行简单的分类是数学能力的体现,教师在教学中应引起足够的重视。关于分类标准与分类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不宜过多展开。
教学准备。
用电脑制作动画体现有理数的分类过程。
教学过程。
四、课堂引入。
2.举例说明现实中具有相反意义的量。
3.如果由a地向南走3千米用3千米表示,那么-5千米表示什么意义?
4.举两个例子说明+5与-5的区别。
七年级数学有理数的减法教案篇八
1.1正数和负数(2)。
教学目标:
教学重点:
深化对正负数概念的理解。
教学难点:
正确理解和表示向指定方向变化的量。
教学准备:彩色粉笔。
教学过程:
一、复习引入:
学生思考并讨论.
(数0既不是正数又不是负数,是正数和负数的分界,是基准.
二、讲解新课。
度,用负数表示低于海平面的某地的海拔高度。例如,珠穆朗玛峰的海拔高度为8848.43米,吐鲁番盆地的海拔高度为—155米。记账时,通常用正数表示收入款额,用负数表示支出款额。
思考:教科书第4页(学生先思考,教师再讲解)。
三、课堂练习课本p4练习1,2,3,4。
四、课时小结。
引入负数可以简明的表示相反意义的量,对于相反意义的量,如果其中一种量用正数表示,那么另一种量可以用负数表示.在表示具有相反意义的量时,把哪一种意义的量规定为正,可根据实际情况决定.要特别注意零既不是正数也不是负数,建立正负数概念后,当考虑一个数时,一定要考虑它的符号,这与以前学过的数有很大的区别.
五、课外作业教科书p5:2、4。
板书设计:
七年级数学有理数的减法教案篇九
知识与能力
从简单的转盘游戏开始,使学生在生活经验和试验的基础上,进一步体验不确定事件的特点及事件发生的可能性大小。
能用实验对数学猜想做出检验,从而增加猜想的可信度。 解决问题
在转盘游戏过程中,经历猜测结果,实验验证,分析试验结果等数学活动,增加数学活动经验。
情感态度与价值观
在合作与交流过程中,体验小组合作更有利于探究数学知识,敢于发表自己观点,提高个人认识。
在实验中,体会不确定事件的特点及事件发生可能性大小;使每个学生都能积极认真参与课堂设计中的实验,真正在实验中获得知识上的认识。
创设情境,切入标题
请同学们猜测,当我自由转动转盘时,指针会落在什么颜域呢?
请各小组分别派一名代表,看哪组能转出红色。
结果,8小组有6组转出了红色。
为什么会出现这样的结果呢?
因为,在这个转盘中,红域的面积大,白域的面积小,因此,当转盘停上转动时,指针落到红域的可能性大。
大家同意这种看法吗?下面我们亲自动手感受一下。
学生按照题目要求进行实验。
请各组组长把你组的实验数据汇报一下(教师把数据填写在表格里) 实验结果:六个小组每组实验16次,全班共实验96次,指针落在红域的次数分别如下9,6,10,5,8,12。共计50次。
请同学们对我们的实验结果进行分析交流,谈谈你在试验中有哪些心得。
根据观察,转盘上红域的面积为总面积的一半,指针落在红域的可能性也应该是一半。通过对我们全班的实验结果分析,指针落在红域的比例是50∶96,结果接近百分之五十。
在小组内实验结果不明显,实验次数越多越能说明问题。
通过实验,我们确定感受到,转盘游戏中各区域的面积的可能性大小与指针落在什么区域的可能性大小有直接关系。以后在生活中再遇到转盘游戏问题可要想想今天的实验结论。
下面我们利用转盘做一下数学游戏(出示幻灯片),学生按教学设计中要求进行游戏,教师巡回指导。
每组每人游戏一次,全班共游戏48次。其游戏结果是,平均数增大1的,共35次,平均数减小1的,共13次。
请同学们对下列问题进行交流(幻灯片出示教材206页4个问题)。 这个转盘转到“平均数增大1”区域的可能性大,从面积大小就可以看出。
如果平均数增大1,我是在卡片上增加一个数,这个数等于卡片上数字的个数加1,如果是平均数减小1,我就在每个数上都减去1。
同学们说出很多种方法,不一一列举。
“平均数增大1”的次数占总次数的百分之七十三,“平均数减小1”占百分之二十七。
如果将这个实验继续做下去,卡片上所有数的平均数会增大。
同学们说的都很好,课后能不能自己也利用转盘设计一个新的游戏,感兴趣的同学可以在课下与我交流。
以下过程同教学设计,略去。
指导学生完成教材第206页习题。
学生可从各个方面加以小结。 布置作业
仿照课堂游戏,自编一个新的游戏。 能否利用扑克牌设计本节转盘游戏。
七年级数学有理数的减法教案篇十
本节是在学习有理数加.减.乘.除.乘方的基础上。引入了有理数的混合运算,学生通过讨论、理解有理数混合运算顺序,掌握有理数混合运算.它是有理数运算的推广和延续。
本节课的重点是能熟练的按照有理数的运算顺序进行混合运算。难点是在正确运算的基础上,适当的运用运算律简化运算。首先,我先复习了运算律,既是对上节的复习,又对这节学习作铺垫。又通过详细分析了例题,小组讨论。学生自主学习,使他们更明确了运算顺序,进行有理数运算,培养了学生自主探究的习惯。第三,在例题的讲解中穿插了让学生自己动手锻炼的过程.及时的反馈学习情况.最后,通过“算24点”游戏,创设良好的氛围,让学生动脑动手动口,不仅可以提高学生学习兴趣,训练学生的'思维,还可以培养学生的数学运算能力和数学表达能力.
课后的专家的对教学过程和课堂的学生的学习效果进行了肯定,同时也提出了建议,希望根据学生的实际情况,将例题的难度降低,让学生能更好的适应.
本次活动,无论是课上,还是课后的研讨,老师们都表现出高度的热情,整个研讨过程都呈现出浓厚的氛围。通过本次活动,锻炼和提高了我们的教学能力,相信通过坚持不懈地实践,我们教师的专业成长步伐会更快!
七年级数学有理数的减法教案篇十一
本课(节)课题3.1认识直棱柱第1课时/共课时。
教学目标(含重点、难点)及。
1、了解多面体、直棱柱的有关概念.
2、会认直棱柱的侧棱、侧面、底面.。
3、了解直棱柱的侧棱互相平行且相等,侧面是长方形(含正方形)等特征.。
教学重点与难点。
教学重点:直棱柱的有关概念.
教学难点:本节的例题描述一个物体的形状,把它看成怎样的两个几何体的组合,都需要一定的空间想象能力和表达能力.
内容与环节预设、简明设计意图二度备课(即时反思与纠正)。
析:学生很容易回答出更多的答案。
师:(继续补充)有许多著名的建筑,像古埃及的金字塔、巴黎的艾菲尔铁塔、美国的迪思尼乐园、德国的古堡风光,中国北京的西客站,它们也是由不同的立体图形组成的;那么立体图形在生活中有着怎样的广泛的应用呢?瞧,食物中的冰激凌、樱桃、端午节的粽子等。
1.多面体、棱、顶点概念:
2.合作交流。
师:以学习小组为单位,拿出事先准备好的几何体。
学生活动:(让学生从中闭眼摸出某些几何体,边摸边用语言描。
述其特征。)。
师:同学们再讨论一下,能否把自己的语言转化为数学语言。
学生活动:分小组讨论。
说明:真正体现了“以生为本”。让学生在主动探究中发现知识,充分发挥了学生的主体作用和教师的主导作用,课堂气氛活跃,教师教的轻松,学生学的愉快。
师:请大家找出与长方体,立方体类似的物体或模型。
析:举出实例。(找出区别)。
师:(总结)棱柱分为之直棱柱和斜棱柱。(根据其侧棱与底面是否垂直)根据底面多边形的边数而分为直三棱柱、直四棱柱……直棱柱有以下特征:
有上、下两个底面,底面是平面图形中的多边形,而且彼此全等;
侧面都是长方形含正方形。
长方体和正方体都是直四棱柱。
3.反馈巩固。
完成“做一做”
析:由第(3)小题可以得到:
直棱柱的'相邻两条侧棱互相平行且相等。
4.学以至用。
出示例题。(先请学生单独考虑,再作讲解)。
析:引导学生着重观察首饰盒的侧面是什么图形,上底面是什么图形,然后与直棱柱的特征作比较。(使学生养成发现问题,解决问题的创造性思维习惯)。
最后完成例题中的“想一想”
5.巩固练习(学生练习)。
完成“课内练习”
师:我们这节课的重点是什么?哪些地方比较难学呢?
合作交流后得到:重点直棱柱的有关概念。
直棱柱有以下特征:
有上、下两个底面,底面是平面图形中的多边形,而且彼此全等;
侧面都是长方形含正方形。
例题中的把首饰盒看成是由两个直三棱柱、直四棱柱的组合,或着是两个直四棱柱的组合需要一定的空间想象能力和表达能力。这一点比较难。
板书设计。
作业布置或设计作业本及课时特训。
七年级数学有理数的减法教案篇十二
知识与技能:理解掌握有理数的减法法则,会将有理数的减法运算转化为加法运算。
过程与方法:通过把减法运算转化为加法运算,向学生渗 透转化思想,通过有理数的 减法运算,培养学生的运算能力。
情感态度与价值观:通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想。
运用有理数的减法法则,熟练进行减法运算。
理解有理数减法法则。
本节是在学习了正负数、相反数、有理数加法运算之后,以初中代数第一 册第53页的有理数减法法则及有理数减法运算的例1、例2为课堂教学内容。有理数的'减法运算是一种基本的有理数运算,对今后正确熟练地进行有理数的混合运算,并对解决实际问题都有十分重要的作用。
师生互动法
幻灯片
1课时
1、计算(口答):
(1) 1+(-2)
(2) -10+(+3)
(3) +10+(-3)
2、出示幻灯片二:
如图:
教师引导观察
教师总结:这就是我们今天要学习的内容(引入新课,板书课题)
1、师:谁能把10-3=7这个式子中的性质符号补出来呢?
(+10)-(+3)=7
再计算:(+10)+(-3),师让学生观察两式结果,由此得到:
(+10)-(+3)=(+10)+(-3)
观察减法是否可以转化为加法 计算呢?是如何转化的呢?
(教师发挥主导作用,注意学生的参与意识)
2、再看一题:
计算:(-10)-(-3)
问题:计算:(-10)+(+3)
教师引导,学生观察上述两题结果,由此得到
(-10)-(-3)=(-10)+(+3)
教师进一步引导学生观察式子,你能得到什么结论呢?
教师总结:由以上两式可以看出减法运算可以转化成加法运算。
教师提问:通过以上的学习,同学们想一想两个有理数相减的法则是什么?
教师对学生回答给予点评,总结有理数减法法则:减去一个数,等于加上这个数的相反数。
强调法则:(1)减法转化为加法,减数要变成相反数(2)法则适用于任何两个有理数相减(3)用字母表示一般形式为a-b=a+(-b)
3 、例题讲解:
出示幻灯片三(例1和例2)
例1计算:
(1)6-(-8)
(2)(-2)-3
(3)(-2.8)-(-1.7)
(4)0-4
(5)5+(-3)-(-2)
(6)(-5)-(-2.4)+(-1)
教师板书做示范,强调解题的规范性, 然后师生共同总结解题步骤,(1)转化(2)进行加法运算。
师巡视指导,最后师生讲评两个学生的解题过程。
课后练习1、2
教师巡视指导
师组织学生自己编题
1、 谈谈本节课你有哪些收获和体会?[
2、本节课涉及的数学思想和数学方法是什么
教师点评:有 理数减法法则是一个转化法则,要求同学们掌握并能应用进 行计算。
课堂检测(包括基础题和能力提高题)
1、-9-(-11)
2、3-15
学生思考后抢答,尽量照顾不同层次的学生参与的积极性。
学生观察思考如何计算
学生观察思考
互相讨论
学生口述解题过程
由两个学生板演,其他学生在练习本上做
第1小题学生抢答
第2小题找两个 学生板演。
学生回答
学生相互交流自己的收获和体会,教师参与互动并给予鼓励性评价。
综合考查学以致用
既复习巩固有理数加法法则,同时为进行有理数减法运算打下基础
创设问题情境,激发学生的认知兴趣。
让学生通过尝试,自己认识减法可以转化为加法计算。
学生通过一个问题易于充分发挥学习的主动性,同时也培养了学生分析问题的能力
可以培养学生严谨的学风和良好 的学习习惯,同时锻炼学生的表达能力
可以照顾不层次的学生,调动学生学习积极性。
通过练习让学生进一步巩固新知,体验知识的应用性。
能增强学生学习的主动性和参与意识。
学生尝试小结,疏理知识,自由发表学习心得,能锻炼学生的语言表达能力和归纳概括能力。
锻炼学生综合运用知识,独立解题的能力
板书设计:
2.6有 理数的减法
有理数减法法则:
(+10)-(+3)=(+10)+(-3)
( -10)-(-3)=(-10)+(+3)
减去一个数等于加上这个数的相反数. 例1:
例2:
练习:
本节课我在问题探索过程中,以提问的形式展现新问题,激发学生的好奇心,学生学习的积极性很高,讨论交流的气氛很热烈,解决问题后有 一种成就感,从而使学生更积极主动的学习,并且营造了良好的学习氛围,从而收到较好的学习效果。
七年级数学有理数的减法教案篇十三
一、问题的引入:在问题的引入上。新课标规定应从实际情景入手,并且使学生能够对问题产生强烈的求知欲。我采用了敌军对我军进行小规模军事侦察的问题,使学生处在一个指挥官的角色。对问题提出解决的办法,并且在对学生提出的各种情况,作出实际的操作,使学生明白数学在解决实际问题中的应用。我感觉在问题的引入上问题过于简单,使学生思考的范围过于局限。没有出现比较热烈的学习气氛。所以问题的引入应加大深度,应具有一定的挑战性。
二、问题的探索:在问题的探索上,我采用了一个小人在坐标轴上来回行走,产生一种动态效果,使学生在充满好奇心的状态下,在老师提供的情景下,在具有较多的时间和空间的条件下,亲身参加探索发现,主动的获取知识和技能。但在整个的实施过程中出现了一些问题,比如:在法则的得出上学生的总结出现了一些问题,我再处理时由于怕时间不够充裕所以学生出现的问题我给作出了解答,其实这里应由学生自己来解决,这样对学生能力的提高非常有帮助。
三、习题的配备:整个习题的配备大致是按从易到难的顺序排列的,面向全体学生,采用多种形式,使不同层次的学生都有所得,并且采用循序渐进的方法,使学生对加法法则的理解进一步的加强。在讲解完例题后,让学生互相提问,以促使学生积极踊跃的参与到教学活动中来,创造一种轻松的学习氛围。在最后的习题配备上,让学生对两个加数及和之间的关系作出判断,并且对各种情况作出讨论,达到本节课的一个高潮。促使学生的思路得到进一步的加强。但我总体感觉习题的量不够充足,学生的练习机会较少。
七年级数学有理数的减法教案篇十四
根据定义,无限循环小数和有限小数(整数可认为是小数点后是0的小数),统称为有理数,无限不循环小数是无理数。
但人类不可能写出一个位数最多的有理数,对全地球人类,或比地球人更智慧的生物来说是有理数的数,对每个地球人来说,可能是无法知道它是有理数还是无理数了。因此有理数和无理数的边界,竟然紧靠无理数,任何两个十分接近的无理数中间,都可以加入无穷多的有理数,反之也成立。
竟然没有人知道有理数的边界,或者说有理数的边界是无限接近无理数的。
定理。
定理:位数最多的非无限循环有理数是不可能被写出的,尽管它的定义是有有限位,但它是无限趋近于无理数的,以致于没有手段进行判断。
证明。
证明:假设位数最多的非无限循环有理数被写出,我们在这个数的最后再加一位,这个数还是有限位有理数,但位数比已写出有理数多一位,证明原来写出的不是位数最多的非无限循环有理数。所以位数最多的非无限循环有理数是不可能被写出的。
七年级数学有理数的减法教案篇十五
一、选择题:(本大题共有8小题,每小题3分,共24分)。
1、的相反数是()。
a.b.c.2d.
2、在数轴上距离原点2个单位长度的点所表示的数是()。
a.2b.c.2或d.1或。
3、下列各式中正确的是()。
a.b.c.d.
4、绝对值不大于3的所有整数的积等于()。
a.b.6c.36d.0。
5、下列说法中,正确的是()。
a.任何有理数的绝对值都是正数b.如果两个数不相等,那么这两个数的绝对值也不相等。
c.任何一个有理数的绝对值都不是负数d.只有负数的绝对值是它的相反数。
6、如果a与1互为相反数,则等于()。
a.2b.2c.1d.-1。
7、的值为()。
a.0b.3.14--3.14d.0.14。
列为()。
a.-b-a。
二、填空题(本大题共有10小题,每小题3分,共30分)。
9、的倒数是____________.
10、绝对值等于2的数是___________.
1015。
1896。
11、相反数等于本身的数是_____________.
12、倒数等于本身的数是___________.
13、=______________.
14、孔子出生于公元前551年,如果用-551年表示,则李白出生于公元7表示为________。
15、有一组按规律排列的数-1,2,-4,8,-16,,第个数是__________.
16、已知=0,则____________.
_________________________________________________。(列出三式,有一式给一分.)。
18、一个大长方形被分成8个小长方形,其中有5个小长方形的面积如图中的数字所。
示,填上表中所缺的数,则这个大长方形的面积为_______。
三、解答下列各题:(本大题共8题,共96分)。
19、把下列各数填在相应的大括号里(8分)。
32,,7.7,,,,0,,
正数集合:;负数集合:;。
整数集合:;负分数集合:。
20、在数轴上表示下列各数及它们的相反相数,并根据数轴上点的位置把它们按从小到大的顺序排列。(10分)。
21、比较下列各数的大小(要写出解题过程)(6分)。
(1)与(2)与。
22、计算下列各题(每小题4分,共40分)。
23、体育课上,某中学对七年级男生进行了引体向上测试,以能做7个为标准多于标准的次数记为正数,不足的次数记为负数,其中8名男生的成绩为+2,-1,+3,0,-2,-3,+1,0。
(1)这8名男生中达到标准的占百分之几?(2)他们共做了多少次引体向上?
25、某出租车沿公路左右方向行驶,向左为正,向右为负,某天从a地出发后到收工回家所走路线如下:(单位:千米)+8,-9,+4,+7,-2,-10,+18,-3,+7,+5。
(1)问收工时离出发点a多少千米?
(2)若该出租车每千米耗油0.3升,问从a地出发到收工共耗油多少升?
26、(8分)股民李明上星期六买进春兰公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况(单位:元)(注:用正数记股价比前一日上升数,用负数记股价比前一日下降数)。
星期一二三四五六。
每股涨跌+4+4.5-1-2.5-6+2。
(1)星期三收盘时,每股是多少元?
(2)本周内最高价是每股多少元?最低价每股多少元?
参考答案。
1.b;2;c;3.d;4.d;5.c;6.c;7.c;8.c;9.3;10.2。
11.0;12.13.-3.142;14.+701;15.;。
16.-4;。
10515。
189276。
18.
面积比等于。
19.
正数集合:;负数集合:;。
整数集合:;负分数集合:。
20.
21.(1)∵,
(2)∵,
6
22.(1)-2;(2)9;(3)2;(4)4;(5);。
(6)-35;(7)-12;(8)0;。
(9)。
(10).
24.略。
25.解:(1+0.2)7+(1.5+0.4)3=13.1元,
(1+0.2)6=7.2元。
所以,1月份水费为13.1元,2月份水费为7.2元.
26.解:(1)8-9+4+7-2-10+18-3+7+5=25,离a地25千米。
(2)8+9+4+7+2+10+18+3+7+5=73,
0.373=21.9升.
27.(1)27+4+4.5-1=34.5元;。
(2)最高35.5元,最低26元;。
(3)。
买入价为27元,
卖出价为27+4+4.5-1-2.5-6+2=28元。
买入手续费27x0.15%x1000=40.5元。
卖出税费28x(0.15%+0.1%)x1000=70元。
扣除税费40.5+70=110.5元。
【本文地址:http://www.xuefen.com.cn/zuowen/7912221.html】