2023年函数建模教学设计大全(12篇)

格式:DOC 上传日期:2023-11-05 09:50:02
2023年函数建模教学设计大全(12篇)
时间:2023-11-05 09:50:02     小编:文轩

难能可贵的品质总是与艰辛和努力相伴。在写总结时,我们要保持客观性,不夸大自己的成绩,也不过分苛责自己的缺点。以下是一些优秀的总结范文,供大家参考和学习,希望能给大家带来一些启示。

函数建模教学设计篇一

2、教学目标的确定及依据。

根据教学大纲要求,结合教材,考虑到学生已有的认知结构心理特征,我制定了如下的教学目标:

(1)知识目标:理解对数函数的意义;掌握对数函数的图像与性质;初步学会用。

(2)能力目标:渗透类比、数形结合、分类讨论等数学思想方法,培养学生观察、

分析、归纳等逻辑思维能力.。

(3)情感目标:通过指数函数和对数函数在图像与性质上的对比,使学生欣赏数。

学的精确和美妙之处,调动学生学习数学的积极性.。

3、教学重点与难点。

难点:对数函数性质中对于在a1与01两种情况函数值的不同变化.。

学生在整个教学过程中始终是认知的主体和发展的主体,教师作为学生学习的指导者,应充分地调动学生学习的积极性和主动性,有效地渗透数学思想方法.根据这样的原则和所要完成的教学目标,对于本节课我主要考虑了以下两个方面:

1、教学方法:

(1)启发引导学生实验、观察、联想、思考、分析、归纳;

(2)采用“从特殊到一般”、“从具体到抽象”的方法;

(3)渗透类比、数形结合、分类讨论等数学思想方法.。

2、教学手段:

计算机多媒体辅助教学.。

“授之以鱼,不如授之以渔”,方法的掌握,思想的形成,才能使学生受益终身.本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:

(1)类比学习:与指数函数类比学习对数函数的图像与性质.。

(2)探究定向性学习:学生在教师建立的情境下,通过思考、分析、操作、探索,

(3)主动合作式学习:学生在归纳得出对数函数的图像与性质时,通过小组讨论,

使问题得以圆满解决.。

1、温故知新。

设计意图:既复习了指数函数和反函数的有关知识,又与本节内容有密切关系,

有利于引出新课.为学生理解新知清除了障碍,有意识地培养学生。

分析问题的能力.。

2、探求新知。

函数建模教学设计篇二

教学目标:

2、能较熟练地运用指数函数的性质解决指数函数的平移问题。

教学重点:

教学难点:

教学过程:

一、情境创设。

二、数学应用与建构。

例1、解不等式:

小结:解关于指数的不等式与判断几个指数值的大小一样,是指数性质的运用,关键是底数所在的范围。

例2、说明下列函数的图象与指数函数y=2x的图象的关系,并画出它们的`示意图。

小结:指数函数的平移规律:y=f(x)左右平移,y=f(x+k)(当k0时,向左平移,反之向右平移),上下平移y=f(x)+h(当h0时,向上平移,反之向下平移)。

练习:

(1)将函数f(x)=3x的图象向右平移3个单位,再向下平移2个单位,可以得到函数x的图象。

(2)将函数f(x)=3x的图象向右平移2个单位,再向上平移3个单位,可以得到函数y的图象。

(3)将函数图象先向左平移2个单位,再向下平移1个单位所得函数的解析式是。

(4)对任意的a0且a1,函数y=a2x1的图象恒过的定点的坐标是(),函数y=a2x—1的图象恒过的定点的坐标是()。

小结:指数函数的定点往往是解决问题的突破口!定点与单调性相结合,就可以构造出函数的简图,从而许多问题就可以找到解决的突破口。

(5)如何利用函数f(x)=2x的图象,作出函数y=2x和y=2|x2|的图象?

(6)如何利用函数f(x)=2x的图象,作出函数y=|2x—1|的图象?

小结:函数图象的对称变换规律。

例3、已知函数y=f(x)是定义在r上的奇函数,且x0时,f(x)=1—2x,试画出此函数的图象。

例4、求函数的最小值以及取得最小值时的x值。

小结:复合函数常常需要换元来求解其最值。

练习:

(1)函数y=ax在[0,1]上的最大值与最小值的和为3,则a等于();。

(2)函数y=2x的值域为();。

(4)当x0时,函数f(x)=(a2—1)x的值总大于1,求实数a的取值范围。

三、小结。

四、作业:

课本p55—6、7。

五、课后探究。

(1)函数f(x)的定义域为(0,1),则函数f(x)的定义域为?

(2)对于任意的x1,x2r,若函数f(x)=2x,试比较函数的大小。

函数建模教学设计篇三

时,函数值变化情况的区分.(3)指数函数是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从指数函数的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究.二.学情分析:学生在学习了函数概念和函数性质基础上对函数有了初步认识,但我所教班时平行班,学生学习兴趣不浓,积极性高,针对这种情况,教学时要总层层设问降低难度,用几何画板直观演示提高学生学习积极性,时学生主动学习。

三.教学目标:

知识与技能:理解指数函数的概念,掌握指数函数的图象和性质,培养学生实际应用函数的能力。

过程与方法:通过观察图象,分析、归纳、总结、自主建构指数函数的性质。领会数形结合的数学思想方法,培养学生发现、分析、解决问题的能力。

情感态度与价值观:在指数函数的学习过程中,体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。

投影仪。

六.教学方法。

启发讨论研究式。

七.教学过程。

(一)创设情景。

学生回答:y与x之间的关系式,可以表示为y=2x。

问题2:一种放射性物质不断衰变为其他物质,每经过一年剩留的质量约是原来的84%.求出这种物质的剩留量随时间(单位:年)变化的函数关系.设最初的质量为1,时间变量用x表示,剩留量用y表示。

学生回答:y与x之间的关系式,可以表示为y=0.84x。

(二)导入新课。

引导学生观察,两个函数中,底数是常数,指数是自变量。设计意图:充实实例,突出底数a的取值范围,让学生体会到数学来源于生产生活实际。函数y=2x、y=0.84x分别以01的数为底,加深对定义的感性认识,为顺利引出指数函数定义作铺垫。

一般地,函数是r。

叫做指数函数,其中x是自变量,函数的定义域的含义:

”如果不这样规定会出现什么情况?问题:指数函数定义中,为什么规定“设计意图:教师首先提出问题:为什么要规定底数大于0且不等于1呢?这是本节的一个难点,为突破难点,采取学生自由讨论的形式,达到互相启发,补充,活跃气氛,激发兴趣的目的。

对于底数的分类,可将问题分解为:

(1)若a。

则在实数范围内相应的函数值不存在)都无意义)。

在这里要注意生生之间、师生之间的对话。

设计意图:认识清楚底数a的特殊规定,才能深刻理解指数函数的定义域是r;并为学习对数函数,认识指数与对数函数关系打基础。

教师还要提醒学生指数函数的定义是形式定义,必须在形式上一模一样才行,然后把问题引向深入。

1:指出下列函数那些是指数函数:

在同一平面直角坐标系内画出下列指数函数的图象。

画函数图象的步骤:列表、描点、连线思考如何列表取值?教师与学生共同作出。

图像。

时函数值变化的不同情况,学生往往容易混淆,这是教学中的一个难点。为此,必须利用图像,数形结合。教师亲自板演,学生亲自在课前准备好的坐标系里画图,而不是采用几何画板直接得到图像,目的是使学生更加信服,加深印象,并为以后画图解题,采用数形结合思想方法打下基础。

利用几何画板演示函数特征。由特殊到一般,得出指数函数。

的图象,观察分析图像的共同。

的图象特征,进一步得出图象性质:

教师组织学生结合图像讨论指数函数的性质。

设计意图:这是本节课的重点和难点,要充分调动学生的积极性、主动性,发挥他们的潜能,尽量由学生自主得出性质,以便能够更深刻的记忆、更熟练的运用。

特别地,函数值的分布情况如下:

设计意图:再次强调指数函数的单调性与底数a的关系,并具体分析了函数值的分布情况,深刻理解指数函数值域情况。3.简单应用(板书)。

1.利用指数函数单调性比大小.(板书)。

一类函数研究完它的概念,图象和性质后,最重要的是利用它解决一些简单的问题.首先我们来看下面的问题.

例1.比较下列各组数的大小。

(1)与;(2)与;。

(3)与1.(板书)。

首先让学生观察两个数的特点,有什么相同?由学生指出它们底数相同,指数不同.再追问根据这个特点,用什么方法来比较它们的大小呢?让学生联想指数函数,提出构造函数的方法,即把这两个数看作某个函数的函数值,利用它的单调性比较大小.然后以第(1)题为例,给出解答过程.

函数建模教学设计篇四

2.结合具体的幂函数的图象,了解它们的变化情况及性质

3.在探讨幂函数性质的过程中,体会由特殊到一般及数形结合的数学思想方法

幂函数的图象和性质

画幂函数的图象并由图象概括其性质

教学内容问题、任务师生活动设计意图

1.某种蔬菜每千克1元,若购买千克,需要支付元是函数吗?

2.正方形的边长为,那么它的面积是的函数吗?

3.立方体的边长为,那么它的体积是的函数吗?

4.正方形的面积为,那么它的边长是的函数吗?

5.某人内骑车 内行进了1,那么他骑车的平均速度是函数吗?

6.这五个函数有什么共同特征?

7.给出幂函数的定义

8.下列函数是幂函数吗?

9.幂函数的定义和指数函数的定义有什么区别?

10. 已知幂函数的图象过点(4, ),求这个函数的解析式?

11. 观察幂函数的图象

12.作函数的图象。

13. 作函数的图象。

14.作函数的图象。

15.根据所作函数的图象,分别讨论这些函数的性质。

16.你能证明幂函数在[0,+ 上是增函数吗?

17.从整体上把握幂函数的图象。

作业p79习题1、2、3

师:投影展示问题,引导学生根据函数的定义进行分析。

生:根据函数定义思考并回答。

师:板书这5个函数表达式。

师生:从形式上分析:是指数幂的形式,其中底数是自变量,指数是常数。

师:板书定义。

生:根据幂函数的形式进行辨别。

生:对比指数函数的定义,指出区别。

师生:用待定系数法共同完成。

师:几何画板展示幂函数图象,随着指数 的改变,幂函数图象的形态和位置都发生改变。

生:观察指数的变化和图象的变化

师:幂函数的图象因指数 不同而形态各异,远比指数函数的.图象复杂。但我们可以通过讨论其中有代表性的几个函数来了解幂函数的图象特征。生:在同一坐标系中作出三个函数的图象。

师:巡视指导。

师:用几何画板作出三个函数的图象。

生:对照检查,注意所作图象的特征。

师:提示横坐标取值: 。巡视学生作图情况。

生:列表,并描点作图。

师:投影函数图象。

师:指导作图:取横坐标0。

生:作图。

师:投影图象。

师:引导学生根据函数的图象,指出函数的性质。

生:指出函数性质并完成课本第78页表格。

生:尝试证明。

师生:共同完成证明。

师:几何画板动态展示幂函数在第一象限的图象,引导学生观察图象的变化。师生共同归纳图象的主要特征:在 上:减函数 :猛增:增函数 :缓增通过实际问题,引入幂函数。由特殊到一般的提练、概括。形式定义,注意辨别。对比,加深印象,避免与指数函数混淆。进一步加强理解幂函数定义。对幂函数的图象作整体感知,了解幂函数的图象和性质与指数 关系密切。三个函数都是初中学过的,描三个点作出简图,把握图象的主要特征。数形结合。

函数建模教学设计篇五

1、教材的地位和作用: 函数是高中数学学习的重点和难点,函数的贯穿于整个高中数学之中。本节课是学生在已掌握了函数的一般性质和简单的指数运算的基础上,进一步研究指数函数,以及指数函数的图像与性质,同时也为今后研究对数函数以及等比数列的性质打下坚实的基础。因此,本节课的内容十分重要,它对知识起到了承上启下的作用。

2、教学的重点和难点:根据这一节课的内容特点以及学生的实际情况,我将本节课教学重点定为指数函数的图像、性质及其运用,本节课的难点是指数函数图像和性质的发现过程,及指数函数图像与底的关系。

基于对教材的理解和分析,我制定了以下的教学目标

1、知识目标(直接性目标):理解指数函数的定义,掌握指数函数的图像、性质及其简单应用。

2、能力目标(发展性目标):通过教学培养学生观察、分析、归纳等思维能力,体会数形结合和分类讨论,增强学生识图用图的能力。

3、情感目标(可持续性目标): 通过学习,使学生学会认识事物的特殊性与一般性之间的关系,培养学生勇于提问,善于探索的思维品质。

1、教学策略:首先从实际问题出发,激发学生的学习兴趣。第二步,学生归纳指数的图像和性质。第三步,典型例题分析,加深学生对指数函数的理解。

2、教学: 贯彻引导发现式教学原则,在教学中既注重知识的直观素材和背景材料,又要激活相关知识和引导学生思考、探究、创设有趣的问题。

3、教法分析:根据教学内容和学生的状况, 本节课我采用引导发现式的教学方法并充分利用多媒体辅助教学。

函数建模教学设计篇六

结合课程标准的要求,参照教材的安排,考虑到学生已有的认知结构、心理特征,我制定了如下教学目标:

(1)通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型。

(2)能画出具体对数函数的图象,学生通过自己动手作图,分组讨论对数函数的性质,提高动手能力、合作学习能力以及分析解决问题的能力。

难点:难点是探究底数对对数函数图象及性质变化的影响。

二、学生学习情况分析。

刚从初中升入高一的学生,仍保留着初中生许多学习特点,能力发展正处于形象思维向抽象思维转折阶段,但更注重形象思维。由于函数概念十分抽象,又以对数运算为基础,同时,初中函数教学要求降低,初中生运算能力有所下降,这双重问题增加了对数函数教学的难度。尤其作为对数函数的第一课时,教师在教学中要控制难度,关注学生学习过程的体验。

三、设计思想。

本节课以建构主义基本理论为指导,以新课标基本理念为依据进行设计的,针对学生现有的认知水平,对数函数的教学首先要挖掘其知识背景贴近学生实际,让学生充分体验到数学的应用价值;其次,激发学生的学习热情,引导他们找到学习对数函数的思路(类比学习指数函数的思路),然后把学习的主动权交给学生,为他们提供自主探究、合作交流的机会,改以前满堂教的方式为让学生满堂学,让学生学会学习。

四、教学基本流程:

五、教学过程:

根据新课标的要求我将本节课分为五个环节:创设情境,形成概念。

(一)创设情境,形成概念。

本节课我是从课本中给出的“考古实例”和学生熟悉的“细胞分裂”实例这样两个材料引出对数函数的概念,让学生熟悉它的知识背景,初步感受对数函数是刻画现实世界的又一重要数学模型。这样处理,对数函数显得不抽象,学生容易接受,降低了新课教学的起点。我的引入材料是这样的:1.请同学们认真阅读材料,解决材料中提出的问题:材料1:考古实例(材料1给出后面的观察提供必要的感性材料)材料2:细胞分裂实例。

过程,既化解难点,又为第一问引导学生有目的用生成细胞个数x表示出细胞分裂次数y,紧接着问学生:这是一个函数吗?将知识迁移到函数的定义,即对于任意一个y是否都有唯一的x与之相对应,为了帮助学生理解,可以借助指数函数图像加以解释,从而得到x=log2y是一个函数,但它又和我们平时所见过的函数形式不一样,我们习惯上用x来表示自变量,y表示函数,所以将其改写成y=log2x,这样的函数称之为对数函数,引出本节课题。

2.这两个函数有什么共同特征?(引导学生观察这两个函数的特征)有了学习指数函数的经验,再结合以上两个实例,学生不难归纳总结出对数函数的一般定义。

3.给出对数函数的定义(提炼出对数函数的概念,明确对数函数的结构特征)想一想:字母a、x、y的含义及取值范围。

1.你能类比指数函数的研究思路,说说对数函数的研究思路吗?

引导学生回顾指数函数的研究思路,强调数形结合,强调函数图象在研究性质中的作用。

关于如何得到对数函数图像我的想法是这样的:一方面描点法画图是学生需要掌握的一类重要的画图方法,而且让学生去亲身经历画出对数函数图像的过程,这样记忆会更深刻,所以我决定将课堂交给学生,让他们自主探究,然后通过实物投影全班同学一起交流,对学生们的共同问题集中解决。2.在同一坐标系中作出下列对数函数的图象:

(1)(2)(3)(4)。

我们估计学生可能遇到的困难是对数运算,所以我们坐标纸上附了列表(列表的用意:多描点,使图像更准确;便于底数分部规律、对称性等的发现.)请完成x,y的对应值表,并用描点法画出函数图像.

函数建模教学设计篇七

《同角三角函数关系式》是人教版高中新教材必修4第一章第二节的第二课。本节内容是同角三角函数关系式的运用,三种题型“知值求值”“弦化切”“函数思想的应用”。

二、学生情况分析。

本课时研究的是同角三角函数关系式的运用、逆用及变形,因此在教学过程中要发展学生的已有认知,发挥知识迁移。

知识目标:

1、掌握同角三角函数关系式的运用、逆用及变形;

2、掌握同角三角函数关系式的三种题型。

能力目标:

渗透分类讨论思想、方程思想。

情感、态度、价值观目标:

发展学生研究问题、解决问题的能力。

四、教学重难点。

重点:

同角三角函数关系式的运用、逆用及变形;

难点:

2、灵活运用公式做运算。

五、教学方法与策略。

教学中注意用新课程理念处理教材,采用学生自主探索、动手实践、合作交流、师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程。根据本节课内容、高一学生认知特点,本节课采用“启发探索、讲练结合”的方法组织教学。

函数建模教学设计篇八

1.能画二次函数的图象,并能够比较它们与二次函数的图象的异同,理解对二次函数图象的影响.

2.能说出二次函数图象的开口方向、对称轴、顶点坐标、增减性、最值.

3.经历探索二次函数的图象的作法和性质的过程,进一步获得将表格、表达式、图象三者联系起来的经验,体会数形结合思想在数学中的应用.

4.通过学生自己的探索活动,达到对抛物线自身特点的认识和对二次函数性质的理解.

函数建模教学设计篇九

“指数函数”的教学共分两个课时完成。第一课时为指数函数的定义,图像及性质;第二课时为指数函数的应用。“指数函数”第一课时是在学习指数概念的基础上学习指数函数的概念和性质,通过学习指数函数的定义,图像及性质,可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,并且为学习对数函数作好准备。

在讲解指数函数的定义前,复习有关指数知识及简单运算,然后由实例引入指数函数的概念,因为手工绘图复杂且不够精确,并且是本节课的教学关键,教学中,我借助电脑手段,通过描点作图,观察图像,引导学生说出图像特征及变化规律,并从而得出指数函数的性质,提高学生的形数结合的能力。

大部分学生数学基础较差,理解能力,运算能力,思维能力等方面参差不齐;同时学生学好数学的自信心不强,学习积极性不高。针对这种情况,在教学中,我注意面向全体,发挥学生的主体性,引导学生积极地观察问题,分析问题,激发学生的求知欲和学习积极性,指导学生积极思维、主动获取知识,养成良好的学习方法。并逐步学会独立提出问题、解决问题。总之,调动学生的非智力因素来促进智力因素的发展,引导学生积极开动脑筋,思考问题和解决问题,从而发扬钻研精神、勇于探索创新。

为了调动学生学习的积极性,使学生变被动学习为主动愉快的学习。教学中我引导学生从实例出发启发出指数函数的定义,在概念理解上,用步步设问、课堂讨论来加深理解。在指数函数图像的画法上,我借助电脑,演示作图过程及图像变化的动画过程,从而使学生直接地接受并提高学生的学习兴趣和积极性,很好地突破难点和提高教学效率,从而增大教学的容量和直观性、准确性。总之,本堂课充分体现了“教师为主导,学生为主体”的教学原则。

函数建模教学设计篇十

1.理解指数函数的定义,初步掌握指数函数的图象,性质及其简单应用.

2.通过指数函数的图象和性质的学习,培养学生观察,分析,归纳的能力,进一步体会数形结合的思想方法.

3.通过对指数函数的研究,使学生能把握函数研究的基本方法,激发学生的学习兴趣.

教学重点和难点。

难点是认识底数对函数值影响的认识.

教学用具。

投影仪。

教学方法。

启发讨论研究式。

教学过程。

一.引入新课。

我们前面学习了指数运算,在此基础上,今天我们要来研究一类新的常见函数-------指数函数.

这类函数之所以重点介绍的原因就是它是实际生活中的一种需要.比如我们看下面的'问题:。

由学生回答:与之间的关系式,可以表示为.

问题2:有一根1米长的绳子,第一次剪去绳长一半,第二次再剪去剩余绳子的一半,……剪了次后绳子剩余的长度为米,试写出与之间的函数关系.

由学生回答:.

在以上两个实例中我们可以看到这两个函数与我们前面研究的函数有所区别,从形式上幂的形式,且自变量均在指数的位置上,那么就把形如这样的函数称为指数函数.

1.定义:形如的函数称为指数函数.(板书)。

教师在给出定义之后再对定义作几点说明.

2.几点说明(板书)。

(1)关于对的规定:。

教师首先提出问题:为什么要规定底数大于0且不等于1呢?(若学生感到有困难,可将问题分解为若会有什么问题?如,此时,等在实数范围内相应的函数值不存在.

若对于都无意义,若则无论取何值,它总是1,对它没有研究的必要.为了避免上述各种情况的发生,所以规定且.

教师引导学生回顾指数范围,发现指数可以取有理数.此时教师可指出,其实当指数为无理数时,也是一个确定的实数,对于无理指数幂,学过的有理指数幂的性质和运算法则它都适用,所以将指数范围扩充为实数范围,所以指数函数的定义域为.扩充的另一个原因是因为使她它更具代表更有应用价值.

刚才分别认识了指数函数中底数,指数的要求,下面我们从整体的角度来认识一下,根据定义我们知道什么样的函数是指数函数,请看下面函数是否是指数函数.

(1),(2),(3)。

(4),(5).

学生回答并说明理由,教师根据情况作点评,指出只有(1)和(3)是指数函数,其中(3)可以写成,也是指数图象.

最后提醒学生指数函数的定义是形式定义,就必须在形式上一摸一样才行,然后把问题引向深入,有了定义域和初步研究的函数的性质,此时研究的关键在于画出它的图象,再细致归纳性质.

3.归纳性质。

作图的用什么方法.用列表描点发现,教师准备明确性质,再由学生回答.

函数。

1.定义域:。

2.值域:。

3.奇偶性:既不是奇函数也不是偶函数。

4.截距:在轴上没有,在轴上为1.

对于性质1和2可以两条合在一起说,并追问起什么作用.(确定图象存在的大致位置)对第3条还应会证明.对于单调性,我建议找一些特殊点.,先看一看,再下定论.对最后一条也是指导函数图象画图的依据.(图象位于轴上方,且与轴不相交.)。

在此基础上,教师可指导学生列表,描点了.取点时还要提醒学生由于不具备对称性,故的值应有正有负,且由于单调性不清,所取点的个数不能太少.

此处教师可利用计算机列表描点,给出十组数据,而学生自己列表描点,至少六组数据.连点成线时,一定提醒学生图象的变化趋势(当越小,图象越靠近轴,越大,图象上升的越快),并连出光滑曲线.

二.图象与性质(板书)。

1.图象的画法:性质指导下的列表描点法.

2.草图:。

当画完第一个图象之后,可问学生是否需要再画第二个?它是否具有代表性?(教师可提示底数的条件是且,取值可分为两段)让学生明白需再画第二个,不妨取为例.

此时画它的图象的方法应让学生来选择,应让学生意识到列表描点不是唯一的方法,而图象变换的方法更为简单.即=与图象之间关于轴对称,而此时的图象已经有了,具备了变换的条件.让学生自己做对称,教师借助计算机画图,在同一坐标系下得到的图象.

最后问学生是否需要再画.(可能有两种可能性,若学生认为无需再画,则追问其原因并要求其说出性质,若认为还需画,则教师可利用计算机再画出如的图象一起比较,再找共性)。

由于图象是形的特征,所以先从几何角度看它们有什么特征.教师可列一个表,如下:。

以上内容学生说不齐的,教师可适当提出观察角度让学生去描述,然后再让学生将几何的特征,翻译为函数的性质,即从代数角度的描述,将表中另一部分填满.

填好后,让学生仿照此例再列一个的表,将相应的内容填好.为进一步整理性质,教师可提出从另一个角度来分类,整理函数的性质.

3.性质.

(1)无论为何值,指数函数都有定义域为,值域为,都过点.

(2)时,在定义域内为增函数,时,为减函数.

(3)时,,时,.

总结之后,特别提醒学生记住函数的图象,有了图,从图中就可以能读出性质.

三.简单应用(板书)。

1.利用指数函数单调性比大小.(板书)。

一类函数研究完它的概念,图象和性质后,最重要的是利用它解决一些简单的问题.首先我们来看下面的问题.

例1.比较下列各组数的大小。

(1)与;(2)与;。

(3)与1.(板书)。

首先让学生观察两个数的特点,有什么相同?由学生指出它们底数相同,指数不同.再追问根据这个特点,用什么方法来比较它们的大小呢?让学生联想指数函数,提出构造函数的方法,即把这两个数看作某个函数的函数值,利用它的单调性比较大小.然后以第(1)题为例,给出解答过程.

解:在上是增函数,且。

(板书)。

教师最后再强调过程必须写清三句话:。

(1)构造函数并指明函数的单调区间及相应的单调性.

(2)自变量的大小比较.

(3)函数值的大小比较.

后两个题的过程略.要求学生仿照第(1)题叙述过程.

例2.比较下列各组数的大小。

(1)与;(2)与;。

(3)与.(板书)。

先让学生观察例2中各组数与例1中的区别,再思考解决的方法.引导学生发现对(1)来说可以写成,这样就可以转化成同底的问题,再用例1的方法解决,对(2)来说可以写成,也可转化成同底的,而(3)前面的方法就不适用了,考虑新的转化方法,由学生思考解决.(教师可提示学生指数函数的函数值与1有关,可以用1来起桥梁作用)。

最后由学生说出1,1,.

解决后由教师小结比较大小的方法。

(1)构造函数的方法:数的特征是同底不同指(包括可转化为同底的)。

(2)搭桥比较法:用特殊的数1或0.

三.巩固练习。

练习:比较下列各组数的大小(板书)。

(1)与(2)与;。

(3)与;(4)与.解答过程略。

四.小结。

3.简单应用。

五.板书设计。

探究活动。

答案:有两个交点.

答案:15天的合同可以签,而30天的合同不能签.

函数建模教学设计篇十一

1.能画二次函数的图象,并能够比较它们与二次函数的图象的异同,理解对二次函数图象的影响.

2.能说出二次函数图象的开口方向、对称轴、顶点坐标、增减性、最值.

3.经历探索二次函数的图象的作法和性质的过程,进一步获得将表格、表达式、图象三者联系起来的经验,体会数形结合思想在数学中的应用.

4.通过学生自己的探索活动,达到对抛物线自身特点的认识和对二次函数性质的理解.

函数建模教学设计篇十二

由于每个学生的基础知识、智力水平和学习方法等都存在一定差别,所以本节课采用分层教学。既创设舞台让优秀生表演,又要重视给后进生提供参与的机会,使其增强学习数学的信心。具体题目安排从易到难,形成梯度,符合学生的认知规律,使全体学生都能得到不同程度的提高。

1.掌握二次函数的图像和性质,了解一元二次方程与二次函数的关系,能依据已知条件确定二次函数的关系式。

2.通过研究生活中实际问题,让学生体会建立数学建模的思想.通过学习和探究xxxx考点问题,渗透数形结合思想及分类讨论思想。

3.查漏补缺,采用小组学习使复习更有效,学生在自主探索与合作交流的过程中,全方位“参与”问题的解决,获得广泛的数学活动经验。

探究利用二次函数的最大值(或最小值)解决实际问题的方法。

如何将实际问题转化为二次函数的问题。

[活动1]学生分组处理前置性作业

教师出示习题答案。组织学生合作交流,深入到每个小组,针对不同情况加强指导。

教师重点关注学困生。

针对学生的实际情况,对习题进行分层处理,树立学困生学习数学的信心。

[活动2]师生共同解决作业中存在的问题

学生自主研究,分组讨论后,然后提出问题,教师对学生回答的问题进行评价

教师重点归纳数学思想。

通过对习题的处理,使学生进一步加深对二次函数有关概念及性质的理解,能用函数观点解决实际问题。同时,小组学习也使学生全方位参与问题的解决。

[活动3]习题现中考

例1(xxxx,南宁)

教师结合教材对比、分析

学生小组合作,完成例题

教师归纳:本题考查了二次函数、一元二次方程与梯形的面积等知识。

对于二次函数与其他知识的综合应用,关键要让学生掌握解题思路,把握题型,能利用数形结合思想进行分析,从而把握解题的突破口。

[活动4]例题现中考

例2(xxxx,济宁)

例3(xxxx,黔东南州)

学生自学,教师指导,让学生讨论回答这两道题的共同特点。

让学生根据讨论的结果概括、归纳出“每每型”二次函数模型的题型特点和解决这类问题的关键。

[活动5]知识提高阶段

教师给出一组习题,学生讨论完成。

知识再运用有助于知识的巩固。

[活动6]小结、布置作业

问题

本节学了哪些内容?你认为最重要的内容是什么?

布置作业

把错题整理到作业本上。

师生共同小结,加深对本节课知识的理解。

让学生参与小结并有不同的答案,可以增强学生学习的积极性和主动性,培养学生对所学知识回顾思考的习惯。

【本文地址:http://www.xuefen.com.cn/zuowen/7795821.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档