最新勾股定理证明小论文(专业14篇)

格式:DOC 上传日期:2023-11-05 07:55:11
最新勾股定理证明小论文(专业14篇)
时间:2023-11-05 07:55:11     小编:雅蕊

总结是一种思考和反思的方式,通过总结,我们可以更好地了解自己的成长和进步。总结的目的是为了更好地认清问题所在,并采取相应的措施来解决。通过仔细阅读这些范文,可以了解到不同领域和主题的写作特点和规律。

勾股定理证明小论文篇一

中国最早的一部数学著作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:

周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么

怎样

才能得到

关于

天地得到数据呢?”

商高回答说:“数的产生来源于对方和圆这些形体饿认识。其中有一条原理:当直角三角形‘矩’得到的一条直角边‘勾’等于3,另一条直角边‘股’等于4的时候,那么它的斜边‘弦’就必定是5。这个原理是大禹在治水的时候就总结出来的呵。”

从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要懂得数学原理了。稍懂平面几何饿读者都知道,所谓勾股定理,就是指在直角三角形中,两条直角边的平方和等于斜边的平方。

用勾(a)和股(b)分别表示直角三角形得到两条直角边,用弦(c)来表示斜边,则可得:

勾2+股2=弦2

亦即:

a2+b2=c2

勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年首先发现的。其实,我国古代得到人民对这一数学定理的发现和应用,远比毕达哥拉斯早得多。如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的.对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了

五百

多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例(32+42=52)。所以现在数学界把它称为勾股定理,应该是非常恰当的。

在稍后一点的《九章算术一书》中,勾股定理得到了更加规范的一般性表达。书中的《勾股章》说;“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦。”把这段话列成算式,即为:

弦=(勾2+股2)(1/2)

亦即:

c=(a2+b2)(1/2)

中国古代的数学家们不仅很早就发现并应用勾股定理,而且很早就尝试对勾股定理作理论的证明。最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽。赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明。在这幅“勾股圆方图”中,以弦为边长得到正方形abde是由4个相等的直角三角形再加上中间的那个小正方形组成的。每个直角三角形的面积为ab/2;中间懂得小正方形边长为b-a,则面积为(b-a)2。于是便可得如下的式子:

4×(ab/2)+(b-a)2=c2

化简后便可得:

a2+b2=c2

亦即:

c=(a2+b2)(1/2)

赵爽的这个证明可谓别具匠心,极富创新意识。他用几何图形的截、割、拼、补来证明代数式之间的恒等关系,既具严密性,又具直观性,为中国古代以形证数、形数统一、代数和几何紧密结合、互不可分的独特风格树立了一个典范。以后的数学家大多继承了这一风格并且代有发展。例如稍后一点的刘徽在证明勾股定理时也是用的以形证数的方法,只是具体图形的分合移补略有不同而已。

中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位。尤其是其中体现出来的“形数统一”的思想方法,更具有科学创新的重大意义。事实上,“形数统一”的思想方法正是数学发展的一个极其重要的条件。正如当代中国数学家吴文俊所说:“在中国的传统数学中,数量关系与空间形式往往是形影不离地并肩发展着的......十七世纪笛卡儿解析几何的发明,正是中国这种传统思想与方法在几百年停顿后的重现与继续。”。

勾股定理证明小论文篇二

在初二上学期我们学习了一种很实用并且很容易理解的定理——勾股定理。

勾股定理就是把直角三角形的两直角边的平方和等于斜边的平方这一特性,又称毕达哥拉斯定理或毕氏定理。

我脑海中印象最深的就是那棵毕达哥拉斯树,它是由勾股定理不断的连接从而构成的一个树状的几何图形。两个相邻的小正方形面积的和等于相邻的一个大正方形的面积。它看起来非常别致、漂亮,因为勾股定理是数学史上的一颗明珠,它将会使人们再算一些问题时变得更方便。

你如果把勾股定理倒过来,它还是勾股定理逆定理,它最大的好处就在于它能够证明某些三角形是直角三角形。这一点在我们几何问题中是有很大价值的。

我国古代的《周髀算经》就有关于勾股定理的记载::“若求邪至日者,以日下为句,日高为股,句股各自乘,并而开方除之,得邪至日”,而且它还记载了有关勾股定理的证明:昔者周公问于商高曰:“窃闻乎大夫善数也,请问昔者包牺立周天历度——夫天可不阶而升,地不可得尺寸而度,请问数安从出?”商高曰:“数之法出于圆方,圆出于方,方出于矩,矩出于九九八十一。故折矩,以为句广三,股修四,径隅五。既方之,外半其一矩,环而共盘,得成三四五。两矩共长二十有五,是谓积矩。故禹之所以治天下者,此数之所生也。”

同时发现勾股定理的还有古希腊的毕达哥拉斯。但是从很多泥板记载表明,巴比伦人是世界上最早发现“勾股定理”的。

由此可见古代的人们是多么的聪明、细心和善于发现!

法国和比利时称勾股定理为驴桥定理,埃及称为埃及三角形。我国古代把直角三角形中较短的直角边叫做勾,较长的直角边叫做股,斜边叫做弦,所以它又叫勾股弦定理。

勾股定理流长深远,我们不能败给古人,我们一定要善于发现,将勾股定理灵活地运用在生活中,将勾股定理发扬光大!常见的勾股数按“勾股弦”顺序:3,4,5;6,8,10;5,12,13;7,24,25;8,15,17;9,40,41……经过计算表明,勾、股、弦的比例为1:√3:2。

勾股定理既重要又简单,更容易吸引人,所以它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。

勾股定理必将在人们今后的生活中发挥更大的作用!!

勾股定理证明小论文篇三

1、用验证法发现直角三角形中存在的边的关系。

(二)能力训练点。

观察和分析直角三角形中,两边的变化对第三边的影响,总结出直角三角形各边的基本关系。

(三)德育渗透点。

培养学生掌握由特殊到一般的化归思想,从具体到抽象的思维方法,以及化归的思想,从而达到从感性认识到理性认识的飞跃;又从一般到特殊,从抽象到具体,应用到实践中去。

二、教学重点、难点及解决办法。

1、重点:发现并证明勾股定理。

2、难点:图形面积的转化。

3、突出重点,突破难点的办法:《几何画板》辅助教学。

三、教学手段:

利用计算机辅助面积转化的探求。

四、课时安排:

本课题安排1课时。

五、教学设想:

六、教学过程(略)。

勾股定理证明小论文篇四

中国最早的一部数学著作――《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:

周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?”

商高回答说:“数的产生来源于对方和圆这些形体饿认识。其中有一条原理:当直角三角形‘矩’得到的一条直角边‘勾’等于3,另一条直角边‘股’等于4的时候,那么它的斜边‘弦’就必定是5。这个原理是大禹在治水的时候就总结出来的呵。”

从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要懂得数学原理了。稍懂平面几何饿读者都知道,所谓勾股定理,就是指在直角三角形中,两条直角边的平方和等于斜边的平方。

用勾(a)和股(b)分别表示直角三角形得到两条直角边,用弦(c)来表示斜边,则可得:

勾2+股2=弦2。

亦即:

a2+b2=c2。

勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年首先发现的。其实,我国古代得到人民对这一数学定理的发现和应用,远比毕达哥拉斯早得多。如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例(32+42=52)。所以现在数学界把它称为勾股定理,应该是非常恰当的。

在稍后一点的《九章算术一书》中,勾股定理得到了更加规范的一般性表达。书中的《勾股章》说;“把勾和股分别自乘,然后把它们的'积加起来,再进行开方,便可以得到弦。”把这段话列成算式,即为:

弦=(勾2+股2)(1/2)。

亦即:

c=(a2+b2)(1/2)。

中国古代的数学家们不仅很早就发现并应用勾股定理,而且很早就尝试对勾股定理作理论的证明。最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽。赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明。在这幅“勾股圆方图”中,以弦为边长得到正方形abde是由4个相等的直角三角形再加上中间的那个小正方形组成的。每个直角三角形的面积为ab/2;中间懂得小正方形边长为b-a,则面积为(b-a)2。于是便可得如下的式子:

4×(ab/2)+(b-a)2=c2。

化简后便可得:

a2+b2=c2。

亦即:

c=(a2+b2)(1/2)。

赵爽的这个证明可谓别具匠心,极富创新意识。他用几何图形的截、割、拼、补来证明代数式之间的恒等关系,既具严密性,又具直观性,为中国古代以形证数、形数统一、代数和几何紧密结合、互不可分的独特风格树立了一个典范。以后的数学家大多继承了这一风格并且代有发展。例如稍后一点的刘徽在证明勾股定理时也是用的以形证数的方法,只是具体图形的分合移补略有不同而已。

中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位。尤其是其中体现出来的“形数统一”的思想方法,更具有科学创新的重大意义。事实上,“形数统一”的思想方法正是数学发展的一个极其重要的条件。正如当代中国数学家吴文俊所说:“在中国的传统数学中,数量关系与空间形式往往是形影不离地并肩发展着的......十七世纪笛卡儿解析几何的发明,正是中国这种传统思想与方法在几百年停顿后的重现与继续。”。

勾股定理证明小论文篇五

摘要:勾股定理又名商高定理,也名毕达哥拉斯定理。从两千多年前至今都有人在研究,其证明方法多达500种,并且在实际生活中有广泛应用。在中学阶段,勾股定理是几何部分最重要的定理之一,不仅是教学的重点、难点、考点,而且也是几何学习的基础,除此之外,还可以激发学生学习兴趣,开拓学生知识面,提升学生思维水平。

关键词:勾股定理中学生心理特征证明方法解题思路。

一、勾股定理介绍

在古代中国,数学着作《周髀算经》开头,记载着一段周公向商高请教数学知识的对话:昔者周公问于商高曰:“窃闻乎大夫善数也,请问昔者包牺立周天历度——夫天可不阶而升,地不可得尺寸而度,请问数安从出?”商高答曰:“若求邪至日者,以日下为勾,日高为股,勾股各自乘,并而开方除之,得邪至日”这是中国古代对勾股定理的最早记录。在《九章算术》中,“勾股术曰:勾股各自乘,并而开方除之,即弦.又股自乘,以减弦自乘,其余开方除之,即勾.又勾自乘,以减弦自乘,其余开方除之,即股”。毕达哥拉斯参加一次餐会,餐厅铺着正方形大理石地砖,他凝视这些排列规则、美丽的方形磁砖,但毕达哥拉斯不只是欣赏磁砖的美丽,而是想到它们和“数”之间的关系,于是拿了画笔并且蹲在地板上,选了一块磁砖以它的对角线为边画一个正方形,他发现这个正方形面积恰好等于两块磁砖的面积和。这是西方对毕达哥拉斯定理最早的描述。

二、中学生心理特征

中学阶段的学生正处于发育的第二高峰期,在生理和心理上都有很大的变化,在心理上的普遍特征:1.有意注意发展显着,注意的范围扩大,稳定性和集中性增强;2.记忆力随着年龄的增长而增加,对图片、音频等感性的记忆较好,对公式、定理等纯理论的记忆较差,尤其是数学学科,基础的理论公式很多,学生很容易记混淆;3.抽象思维的能力有提升,处于形式运算阶段,但对事物的思考基本还停留在事物表面,没有完全形成自主有意识的抽象思维倾向;4.自制力有所提升,他们开始喜欢崇拜有意志力、自控力的人,但是自身的自制力比较薄弱。虽然我并不赞成把学生分为优等生、中等生和差等生,但是在实际的教育中,是存在这样的分化,并且学生都存在上述的四个普遍特征,也存在一些差异:学习能力、思维方式、自制力等不同。优等生在各个方面普遍比中等生好,而中等生又普遍比差等生好,我们应该从这些差异点着手,因材施教,激发学习兴趣,提升学习能力,引导自主学习,减少学生之间的差异,使学生健康成长,实现自我价值。

三、勾股定理的典型证明方法

勾股定理是全人类文明的一个象征,也是平面几何学的一颗明珠,在实际生活中也有广泛应用。两千年以来,人们从来没有停止对勾股定理的研究。据不完全统计,勾股定理的证明方法多达500种,每一种方法都有优点,每一种方法都包含全人类的智慧。但在中学教学中,我们不可能做到面面俱到,只能教给学生一些典型、基础的证明方法,通过教学引导学生自主学习,自主探索。

说明:第一种证明方法有两个要点:1.几何图形的变化;2.确定等量关系。初中生可以理解这两个要点,因此,我们可以以探究的形式让学生自己做,一来可以提高学生自主学习的兴趣,二来也符合当下的教育理念——探究学习。对于基础较薄弱的学生而言,在掌握基本知识点的同时,可以增加他们学习数学的兴趣,减少对数学的畏惧情绪,对于基础较好的学生而言,他们可以通过这种证明方法,自学勾股定理的基本知识。第二、三种方法分别结合了相似三角形和圆的基础知识点,在教授相似三角形和圆的`相关定理时,提出他们在勾股定理证明中的运用。把前后知识点串联起来,差等生可以回顾勾股定理,加深理解,激发他们学习的兴趣,中等生和优等生可以构建不同知识点之间的联系,形成知识体系,提升他们的抽象思维能力,对后继学习有很大帮助。

四、勾股定理的典型解题思路

本题先通过不变量寻找等量关系,再利用勾股定理求解问题。引导基础较差的学生通过折叠寻找图形中的不变量,建立等量关系,提升其处理数学问题的信心,学会一些数学的基本方法和思维方式;引导基础较好的学生复习对称图形的性质,适当提炼解题思路,构建知识体系。

说明:题目本身很简单,由题目容易想到勾股数3、4、5,而忽略分类讨论。我们应引导学生突破惯性思维,不能过于片面、主观,应认真仔细省题。初中生对问题有思考,但思考的深度不够。通过这道题可以告诉学生:突破惯性思维,全面思考问题,不惧怕数学题,使他们愿意主动思考数学题。本题运用到分类讨论思想,这个思想在数学上的运用十分广泛。

五、结语

勾股定理是中学阶段最重要的定理之一,本文从中学生的心理特征,以及不同层次的学生的不同学习特点、心理特点出发,立足缩小学生间的层次差异、实现学生自我价值的观点,讨论勾股定理在实际教学中的不同证明方法的教法,和一些典型题型的解题思路,以及如何在教课过程中引导不同层次的学生学习,产生数学学习兴趣,构建数学知识体系。

参考文献:

[1]《周髀算经》[m].文物出版社1980年3月.据宋代嘉靖六年本影印.

[2]《九章算术》[m].重庆大学出版社.10月.

勾股定理证明小论文篇六

勾股定理是初等几何中的一个基本定理。这个定理有十分悠久的历史,两千多年来,人们对勾股定理的证明颇感兴趣,因为这个定理太贴近人们的生活实际,以至于古往今来,下至平民百姓,上至帝王总统都愿意探讨和研究它的证明.下面结合几种图形来进行证明。

一、传说中毕达哥拉斯的证法(图1)。

左边的正方形是由1个边长为的正方形和1个边长为的正方形以及4个直角边分别为、,斜边为的直角三角形拼成的。右边的正方形是由1个边长为的正方形和4个直角边分别为、,斜边为的直角三角形拼成的。因为这两个正方形的面积相等(边长都是),所以可以列出等式,化简得。

在西方,人们认为是毕达哥拉斯最早发现并证明这一定理的,但遗憾的是,他的证明方法已经失传,这是传说中的证明方法,这种证明方法简单、直观、易懂。

二、赵爽弦图的证法(图2)。

第一种方法:边长为的正方形可以看作是由4个直角边分别为、,斜边为的直。

角三角形围在外面形成的。因为边长为的正方形面积加上4个直角三角形的面积等于外围正方形的面积,所以可以列出等式,化简得。

第二种方法:边长为的正方形可以看作是由4个直角边分别为、,斜边为的角三角形拼接形成的(虚线表示),不过中间缺出一个边长为的正方形“小洞”。

因为边长为的正方形面积等于4个直角三角形的面积加上正方形“小洞”的面积,所以可以列出等式,化简得。

这种证明方法很简明,很直观,它表现了我国古代数学家赵爽高超的证题思想和对数学的钻研精神,是我们中华民族的骄傲。

三、美国第20任总统茄菲尔德的证法(图3)。

这个直角梯形是由2个直角边分别为、,斜边为的直角三角形和1个直角边为的等腰直角三角形拼成的。因为3个直角三角形的面积之和等于梯形的面积,所以可以列出等式,化简得。

这种证明方法由于用了梯形面积公式和三角形面积公式,从而使证明更加简洁,它在数学史上被传为佳话。

勾股定理证明小论文篇七

该同学的实习职位是教师,兼职的课目是初中语文。该同志实习期间工作认真,在工作中遇到不懂的地方,能够虚心向富有经验的前辈请教,善于思考,能够举一反三。对于别人提出的工作建议,可以虚心听取。在时间紧迫的情况下,加时加班完成任务,热爱学生,爱岗敬业。能够将在学校所学的知识灵活应用到具体的工作中去,保质保量完成工作任务。同时,该同志严格遵守我校的各项规章制度,实习时间,服从实习安排,完成实习任务。尊敬实习单位人员,并能与本校同事和睦相处,与其一同工作的员工都对该同志的表现予以肯定。

证明人:_________(实习单位盖章)。

_________年____月____日。

勾股定理证明小论文篇八

师:那么,一个三角形满足什么条件,才能是直角三角形呢?

生:有一个内角是90°,那么这个三角形就为直角三角形.。

生:如果一个三角形,有两个角的和是90°,那么这个三角形也是直角三角形.。

二、讲授新课。

是不是三角形的三边只要有两边的平方和等于第三边的平方,就能得到一个直角三角形呢?

活动3下面的三组数分别是一个三角形的三边长?

勾股定理证明小论文篇九

:勾股定理又名商高定理,也名毕达哥拉斯定理。从两千多年前至今都有人在研究,其证明方法多达500种,并且在实际生活中有广泛应用。在中学阶段,勾股定理是几何部分最重要的定理之一,不仅是教学的重点、难点、考点,而且也是几何学习的基础,除此之外,还可以激发学生学习兴趣,开拓学生知识面,提升学生思维水平。

:勾股定理 中学生 心理特征 证明方法 解题思路。

在古代中国,数学着作《周髀算经》开头,记载着一段周公向商高请教数学知识的对话:昔者周公问于商高曰:“窃闻乎大夫善数也,请问昔者包牺立周天历度——夫天可不阶而升,地不可得尺寸而度,请问数安从出?”商高答曰:“若求邪至日者,以日下为勾,日高为股,勾股各自乘,并而开方除之,得邪至日”这是中国古代对勾股定理的最早记录。在《九章算术》中,“勾股术曰:勾股各自乘,并而开方除之,即弦.又股自乘,以减弦自乘,其余开方除之,即勾.又勾自乘,以减弦自乘,其余开方除之,即股”。毕达哥拉斯参加一次餐会,餐厅铺着正方形大理石地砖,他凝视这些排列规则、美丽的方形磁砖,但毕达哥拉斯不只是欣赏磁砖的美丽,而是想到它们和"数"之间的关系,于是拿了画笔并且蹲在地板上,选了一块磁砖以它的对角线 为边画一个正方形,他发现这个正方形面积恰好等于两块磁砖的面积和。这是西方对毕达哥拉斯定理最早的描述。

中学阶段的学生正处于发育的第二高峰期,在生理和心理上都有很大的变化,在心理上的普遍特征:1.有意注意发展显着,注意的范围扩大,稳定性和集中性增强;2.记忆力随着年龄的增长而增加,对图片、音频等感性的记忆较好,对公式、定理等纯理论的记忆较差,尤其是数学学科,基础的理论公式很多,学生很容易记混淆;3.抽象思维的能力有提升,处于形式运算阶段,但对事物的思考基本还停留在事物表面,没有完全形成自主有意识的抽象思维倾向;4.自制力有所提升,他们开始喜欢崇拜有意志力、自控力的人,但是自身的自制力比较薄弱。虽然我并不赞成把学生分为优等生、中等生和差等生,但是在实际的教育中,是存在这样的分化,并且学生都存在上述的四个普遍特征,也存在一些差异:学习能力、思维方式、自制力等不同。优等生在各个方面普遍比中等生好,而中等生又普遍比差等生好,我们应该从这些差异点着手,因材施教,激发学习兴趣,提升学习能力,引导自主学习,减少学生之间的'差异,使学生健康成长,实现自我价值。

勾股定理是全人类文明的一个象征,也是平面几何学的一颗明珠,在实际生活中也有广泛应用。两千年以来,人们从来没有停止对勾股定理的研究。据不完全统计,勾股定理的证明方法多达500种,每一种方法都有优点,每一种方法都包含全人类的智慧。但在中学教学中,我们不可能做到面面俱到,只能教给学生一些典型、基础的证明方法,通过教学引导学生自主学习,自主探索。

说明:第一种证明方法有两个要点:1.几何图形的变化;2.确定等量关系。初中生可以理解这两个要点,因此,我们可以以探究的形式让学生自己做,一来可以提高学生自主学习的兴趣,二来也符合当下的教育理念——探究学习。对于基础较薄弱的学生而言,在掌握基本知识点的同时,可以增加他们学习数学的兴趣,减少对数学的畏惧情绪,对于基础较好的学生而言,他们可以通过这种证明方法,自学勾股定理的基本知识。第二、三种方法分别结合了相似三角形和圆的基础知识点,在教授相似三角形和圆的相关定理时,提出他们在勾股定理证明中的运用。把前后知识点串联起来,差等生可以回顾勾股定理,加深理解,激发他们学习的兴趣,中等生和优等生可以构建不同知识点之间的联系,形成知识体系,提升他们的抽象思维能力,对后继学习有很大帮助。

本题先通过不变量寻找等量关系,再利用勾股定理求解问题。引导基础较差的学生通过折叠寻找图形中的不变量,建立等量关系,提升其处理数学问题的信心,学会一些数学的基本方法和思维方式;引导基础较好的学生复习对称图形的性质,适当提炼解题思路,构建知识体系。

说明:题目本身很简单,由题目容易想到勾股数3、4、5,而忽略分类讨论。我们应引导学生突破惯性思维,不能过于片面、主观,应认真仔细省题。初中生对问题有思考,但思考的深度不够。通过这道题可以告诉学生:突破惯性思维,全面思考问题,不惧怕数学题,使他们愿意主动思考数学题。本题运用到分类讨论思想,这个思想在数学上的运用十分广泛。

勾股定理是中学阶段最重要的定理之一,本文从中学生的心理特征,以及不同层次的学生的不同学习特点、心理特点出发,立足缩小学生间的层次差异、实现学生自我价值的观点,讨论勾股定理在实际教学中的不同证明方法的教法,和一些典型题型的解题思路,以及如何在教课过程中引导不同层次的学生学习,产生数学学习兴趣,构建数学知识体系。

[1]《周髀算经》[m].文物出版社1980年3月.据宋代嘉靖六年本影印.

[2]《九章算术》[m].重庆大学出版社.2006年10月.

勾股定理证明小论文篇十

事实认定是民事诉讼研究中至关重要的一环,它是民事诉讼的法理研究以及实务裁判中核心的讨论热点。事实认定是裁判实务中,法官对于案件争议的裁判过程。而法官当然并非仅依据个人经验进行事实认定,而是需要借助法律的抽象规定,将之具体化,去抽象化,细节的对应各个案例,得出公允的判断。这其中,对于诉讼双方提出的说法进行认定,归化出裁判认可的法律事实。指导裁判人员做出判断的便是一系列行之有据的证明标准。

而此处的证明标准又是抽象的规定,需要人为的操作化,将之转化为实践中可行的判断规则需要动用裁判人员的理解力进行操作。如何正确的理解与转化成为了实务中的重要问题。这决定着案件中事实的正确认定,关系着当事人双方利益的维护。

一、证明标准的概念

“证明标准”即为在诉讼中法官对于认定案件事实,当事人提供证据所要达到的证明程度。一个确定的证明标准所限制的便是,当当事人一方提供之标准达到了规定之程度,即为证明。法官应当认定这一事实,反之,则待证事实仍然存疑,又可化分为未证实或证伪的情况。

在英美法系国家,学理上的证明标准被理解为负有承担证明和提供证据责任的一方当事人,对其主张的事实予以证明应达到的水平、程度或量(level、degreeorquantum)。所谓证明标准,是指为了避免遭到于己不利的裁判,负有证明责任的当事人履行其责任必须达到法律所要求的程度。也有学者认为,“证明标准”是负担证明责任的人提供证据对案件事实加以证明所达到的程度。

二、证明的任务

在民事诉讼中,我们应当实行什么样的.证明标准,是由民事诉讼证明的任务来推动的。那么它的任务究竟为何?学界存在着性质截然不同的两种看法,一是客观真实;二是法律真实。

通过对刑事诉讼法以及行政诉讼法的研究,再结合我国民事诉讼法律法规的规定,有学者得出了“概括而言,证明标准之规定存在于我国三大诉讼法中,且他们是完全一致的:案件事实清楚,证据确实充分”。这一规定,虽然简短,但是对证据对应该达到的证明程度提出了质于量的要求。具体而言,它要求:

(一)定案的证据需要全部查证却符合事实;

(二)所有案件事实都有能够证明的事实证据;

(四)依据证据推导出的事实,必须是唯一的,其它情况不可排除或已排除。

三、我国民事诉讼的证明标准的选择与确定

基于三大诉讼对证据标准的规定,理论界一般认为,我国三大诉讼法对案件的证明标准是一元制证明标准,都是要达到“案件事实清楚,证据确实充分”的程序,尽管也有学者对此结论提出异议。对此,许多学者提出质疑,认为我国应该实行二元制甚至多元制的证明标准。

依据我国《证据规定》第73规定的“因证据证明力无法判断导致争议的事实难以认定的,人们法院应该依据举证责任分配的规则作出裁判。”

这一条该条规定采取了“明显大于”的表述,并未细致的表述裁判人员该如何判定作何依据等等。它的规定是我国民事诉讼裁判领域证明标准的确定。即“高度盖然性”的证明标准。它对于事实裁判存在一定的障碍,即法官究竟依何做出裁判,这高度盖然性的表述,催生出又一讨论问题。即自由心证在我国的确定,即它该如何操作的事实问题。

四、证明标准与自由心证

自由心证(内心确信制度)是指法官依据法律规定,通过内心的良知、理性等对证据的取舍和证明力进行判断,并最终形成确信的制度。民事诉讼上的内心确信制度其创立与发展有着曲折的过程,但确立至今已被世界大多数国家认可并计入法律。大陆法系与英美法系有着悠久且相异的判断传统。分别为强调裁判人员的绝对心证与强调一定规则规范的心证。但都不约而同的承认发展出了下述现代自由心证规则(我国的民事诉讼法也作出了同质的规定,表现在第73条中:法官具有其他人无权随意干涉的自由判断证据的职权;法官的自由裁量证据的行为受到证据规则的约束;法官必须在裁判文书中表明心证形成的过程。

五、承认与完善自由心证

(一)制定严密、科学的证据规则

我国长期以来由于证据规则的缺乏,造成法院查证范围过宽,期限过长,效率低下。规定一系列证据规则,有利于法官在审理案件中直接依据双方提出的证据做出结论,以避免法官不必要的查证活动,限制法官过分的自由裁判。面对现实中,国家不承认心证规则,但法律裁判又不得不使用导致的法官滥用的现象。不如用规范细致的心证规则加以规制,如此一来,顺应发展趋势与潮流,用好裁判中不可或缺的证据规则。

(二)改善立法指导思想,提高立法技术,尽可能地降低立法抽象性

我国一贯采用粗线条立法已经使一些新生的民事经济关系无法找到明确的法律规范相对应,从而形成事实上的“无法可依”,即使有原则条款,也会因其过于原则、抽象、非经解释就无法适用而给执法人员随意解释预留空间。

(三)确立人们法院判决公开化

除了确立裁判文书必须详细说明判决理由的要求,从根本上提高裁判文书的质量,通过心证公开保证心证公正。还应当实现判决书的公开,及不仅要做到公开认证的过程,还有公开认证的理由与理论。

勾股定理证明小论文篇十一

兹证明我单位______________,于__________出生,身份证号码:______________,自_______________至今在我单位工作,任职为______,月收入约为___________元。

该人员与___________为夫妻关系,有______________________为儿子/女儿,此次预计于_________至__________前往韩国旅游。

特此证明!

负责人签名:公司职务:

单位电话:

申请人本人手机号码:

公司名:

勾股定理证明小论文篇十二

相交线与平行线在平面几何计算和证明中的应用十分广泛,对学生分析问题、综合解题的能力要求更高。在学生学完《相交线与平行线》这一章后,我及时组织了这次复习课《证明专练》,进一步发展了学生的推理能力,有条理地锻炼了学生的思维和表达能力.培养了学生的实践和探索能力,收到了良好的效果。下面我就来谈谈这节课的过程及反思。

首先,我谈谈本节课的设计意图:我了解到学生对于证明题的思路和过程的书写存在一些问题,在这样一个情况下,我设计了这样一节课。我通过一个简单的证明题目,对它进行多次变式,由不同的学生共同完成。使学生的空间观念、动脑动手的能力得到培养。让学生体会用数量关系来证明位置关系,反过来,用位置关系来说明数量关系,这样,数量与位置之间就建立了完美的结合,进一步让学生体会数学的转化之美。

其次,我再来说说这节课在教材中的地位与作用:

(1)会运用平行线的性质和判定进行推理证明,体会研究几何问题的思路和方法,这一章是证明题目的起点,也是规范学生说理过程,形成条理的关键期,所以本章内容的地位尤为显得重要。

(2)进一步发展推理能力,能够有条理地锻炼自己的.思维和表达能力,是学生学习几何的重中之重,为今后的几何证明起到了承上启下的作用。

我再来说下,这节课的重点和难点。这节课的重点是:复习近平行线的性质和判定。这节课的难点是:平行的性质和判定的综合应用。

还有我在“教学方法”上采用:回顾与思考,经过观察、归纳、对比来寻找图形位置关系和数量关系,发现图形的性质与判定等环节,获得正确的学习方式。

我在学生“学法指导”上,采用了小组讨论,合作探究等形式让学生互相启发、互相促进、积极交流,充分发挥学生的主体作用,激发学生的学习兴趣,增强了课堂活力。

最后,我再来重点谈谈这节课的教学过程:

先从复习提问开始:通过层层递进,环环相扣的提问,让学生对基础知识进一步加深认识和掌握。

然后我通过一道具体例子来说明图形的位置关系和数量关系之间的相互转化.我把一个简单的证明题目,对它进行四次变式,最后变成一道较为复杂的题目,并且在整个过程中找五位同学把这个过程续写到黑板上,完成较为复杂题目的证明,就像一幅作品由不同的学生共同合作完成一样。然后通过一道对应的习题进行练习,在证明这个练习题后,让学生分组进行讨论,并且相互说出你的证明思路,不仅能够用数学语言进行证明,而且能够用口语进行思路的表达。对证明题目起到了及时巩固的作用,使学生的空间观念、动脑动手的能力得到了培养。

下一个环节,我按常环节规布置作业:在布置常规作业的同时,留下一道能力题目,供学生巩固提高,使一些学生吃得饱。

课的最后,我给学生展示了一个“小”环节“教师寄语”,也可以看成是“教学反思”吧!

数学就是把一些琐碎的看起来相互之间没有联系的知识点,经过合理的组合,形成条理的过程,就像一张支离破碎的网,用你的智慧在每一个有网结的地方建立知识间的联系,形成完整的知识链条。

这就是本节课我的构思和思路,谢谢大家。

勾股定理证明小论文篇十三

知识与技能:

1、了解勾股定理的文化背景,体验勾股定理的探索过程,了解利用拼图验证勾股定理的方法。

2、了解勾股定理的内容。

3、能利用已知两边求直角三角形另一边的长。

过程与方法:

1、通过拼图活动,体验数学思维的严谨性,发展形象思维。

2、在探索活动中,学会与人合作,并能与他人交流思维的过程和探索的结果。

情感与态度:

1、通过对勾股定理历史的了解,对比介绍我国古代和西方数学家关于勾股定理的研究,激发学生热爱祖国悠久文化的情感,激励学生奋发学习。

2、在探索勾股定理的过程中,体验获得结论的快乐,锻炼克服困难的勇气,培养合作意识和探索精神。

二教学重、难点。

重点:探索和证明勾股定理难点:用拼图方法证明勾股定理。

三、学情分析。

学生对几何图形的观察,几何图形的分析能力已初步形成。部分学生解题思维能力比较高,能够正确归纳所学知识,通过学习小组讨论交流,能够形成解决问题的思路。

四、教学策略。

本节课采用探究发现式教学,由浅入深,由特殊到一般地提出问题,鼓励学生采用观察分析、自主探索、合作交流的学习方法,让学生经历数学知识的形成与应用过程。

五、教学过程。

教学环节。

教学内容。

活动和意图。

创设情境导入新课。

以“航天员在太空中遇到外星人时,用什么语言进行沟通”导入新课,让孩子们尽情发挥他们的想象.而华罗庚建议可以用勾股定理的图形进行和外星人沟通,为什么呢?通过一段vcr说明原因。

[设计意图]激发学生对勾股定理的兴趣,从而较自然的引入课题。

新知探究。

毕达哥拉斯是古希腊著名的数学家。相传在2500年以前,他在朋友家做客时,发现朋友家用地砖铺成的地面反映了直角三角形的三边的某种数量关系。

(1)同学们,请你也来观察下图中的地面,看看能发现些什么?

(2)你能找出图18.1-1中正方形1、2、3面积之间的关系吗?

通过讲述故事来进一步激发学生学习兴趣,使学生在不知不觉中进入学习的最佳状态。

如图,每个小方格代表1个单位面积,我们分别以a,b,c三边为边长作正方形。

回答以下内容:

(1)想一想,怎样利用小方格计算正方形a、b、c面积?

(2)怎样求出正方形面积c?

(3)观察所得的各组数据,你有什么发现?

(4)将正方形a,b,c分别移开,你能发现直角三角形边长a,b,c有何数量关系?

引导学生将边不在格线上的图形转化为边在格线上的图形,以便于计算图形面积.

问题是思维的起点”,通过层层设问,引导学生发现新知。

探究交流归纳。

拼图验证加深理解。

如图,每个小方格代表1个单位面积,我们分别以a,b,c三边为边长作正方形。

回答以下内容:

(1)想一想,怎样利用小方格计算正方形p、q、r的面积?

(2)怎样求出正方形面积r?

(3)观察所得的各组数据,你有什么发现?

(4)将正方形p,q,r分别移开,你能发现直角三角形边长a,b,c有何数量关系?

由以上两问题可得猜想:

直角三角形两直角边的平方和等于斜边的平方。

而猜想要通过证明才能成为定理。

活动探究:

(1)让学生利用学具进行拼图。

(2)多媒体课件展示拼图过程及证明过程理解数学的严密性。

从特殊的等腰直角三角形过渡到一般的直角三角形。

渗透从特殊到一般的数学思想.为学生提供参与数学活动的时间和空间,发挥学生的主体作用;培养学生的类比迁移能力及探索问题的能力,使学生在相互欣赏、争辩、互助中得到提高。

通过这些实际操作,学生进行一步加深对数形结合的理解,拼图也会产生感性认识,也为论证勾股定理做好准备。

利用分组讨论,加强合作意识。

1、经历所拼图形与多媒体展示图形的联系与区别。

2、加强数学严密教育,从而更好地理解代数与图形相结合。

应用新知解决问题。

在应用新知这个环节,我把以往的单纯求解边长之类的题目换成了几个运用勾股定理来解决问题的古算题。

把生活中的实物抽象成几何图形,让学生了解丰富变幻的图形世界,培养了学生抽象思维能力,特别注重培养学生认识事物,探索问题,解决实际的能力。

回顾小结整体感知。

在最后的小结中,不但对知识进行小结更对方法要进行小节,还可向学生介绍了美丽的图案毕达哥拉斯树,让学生切身感受到其实数学与生活是紧密联系的,进一步发现数学的另一种美。

学生通过对学习过程的小结,领会其中的数学思想方法;通过梳理所学内容,形成完整知识结构,培养归纳概括能力。。

布置作业巩固加深。

必做题:

1.完成课本习题1,2,3题。

选做题:

针对学生认知的差异设计了有层次的作业题,既使学生巩固知识,形成技能,让感兴趣的学生课后探索,感受数学证明的灵活、优美与精巧,感受勾股定理的丰富文化。

勾股定理证明小论文篇十四

细雨湿衣看不见,闲花落地听无声。

阅完卷,我陷入沉思,难道这样的问题,答案不应该是“百花齐放,百家争鸣”吗?为什么却成了标准统一化的答案了呢?不由得回顾起了课堂中的一幕。

《青春的证明》这一课是以采访身边人的梦想为切入点,学生讨论要想实现梦想你需要具备哪些优秀品质?从古至今,从国内到国外,从伟人到偶像举例层出不穷,总结出的品质更是种类繁多。“作为刚刚站在青春起跑线上的我们,要想追逐梦想,你最需要什么品质呢?”我问,“自信、自立、自强、坚持不懈”,生答,看似教学目标,重难点在引导中,并突破了,是这样的吗?我又一次对自己课堂目标的完成提出质疑,学生体验到什么是自立,自强了吗?他们明白生活中自立自强吗?如果问题中再出现“请你分享生活中自立自强的例子”学生是不是又会写上“自己穿衣服,自己做饭,自己上学”这种与年龄不相符的答案呢?是呀,我的课堂并没有给他们体验和实践的机会呀,实践能力的提升缺失了!

有时就是这样,总是把课堂设计成自己预想的那样,自己可以控制的那样,其实就是限制了学生亲自体验与实践,准备一个生活中或学习中的困境抛给学生,没有固定的结局或答案,让学生亲自上阵解决问题,也许他们努力了尽心了但失败了;也许通过他人帮助和集体力量成功了。但那都是真实的体验,都能真正体会到有责任,敢担当,不怕困难,挑战自我的过程就是在不断走向自立自强。

一道简单的举例题,让我反复的思考着教学。

将本文的word文档下载到电脑,方便收藏和打印。

【本文地址:http://www.xuefen.com.cn/zuowen/7757347.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档