最新勾股定理活动课教案范文(15篇)

格式:DOC 上传日期:2023-11-04 22:32:07
最新勾股定理活动课教案范文(15篇)
时间:2023-11-04 22:32:07     小编:紫薇儿

教案要尽量避免繁琐和冗长,突出重点和难点,使教学内容条理清晰,易于理解和接受。教案的编写需要关注学生的个体差异,提供不同层次的学习任务。希望这些教案能够给教师们提供一些启示和借鉴,促进教学实践的不断创新和发展。

勾股定理活动课教案篇一

本节课教学模式主要采用“互动式”教学模式及“类比”的教学方法.通过前面所学的垂直平分线定理及其逆定理,做类比对象,让学生自己提出问题并解决问题.在课堂教学中营造轻松、活泼的课堂气氛.通过师生互动、生生互动、学生与教材之间的互动,造成“情意共鸣,沟通信息,反馈流畅,思维活跃”,达到培养学生思维能力的目的.具体说明如下:

(1)让学生主动提出问题

(2)让学生自己解决问题

(3)通过实际问题的解决,培养学生的数学意识.

勾股定理活动课教案篇二

【知识与技能】

理解并掌握勾股定理的逆定理,会应用定理判定直角三角形;理解勾股定理与勾股定理逆定理的区别与联系;理解原命题和逆命题的概念,知道二者的关系及二者真假性的关系。

【过程与方法】

经历得出猜想、推理证明的过程,提升自主探究、分析问题、解决问题的能力。

【情感、态度与价值观】

体会事物之间的联系,感受几何的魅力。

【重点】勾股定理的逆定理及其证明。

【难点】勾股定理的逆定理的证明。

(一)导入新课

复习勾股定理,分清其题设和结论。

提问学生画直角三角形的方法(可用尺类工具),然后要求不能用绳子以外的工具。

出示古埃及人利用等长的3、4、5个绳结间距画直角三角形的方法,以其中蕴含何道理为切入点引出课题。

(二)讲解新知

请学生思考3,4,5之间的关系,结合勾股定理的学习经验明确

出示数据2.5cm,6cm,6.5cm,请学生计算验证数据满足上述平方和关系,并画出相应边长的三角形检验是否为直角三角形。

学生活动:同桌两人一组,将三边换成其他满足上述平方和关系的数据,如4cm,7.5cm,8.5cm,画出相应边长的三角形检验是否为直角三角形。

勾股定理活动课教案篇三

勾股定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a2+b2=c2.

即直角三角形两直角的平方和等于斜边的平方.

因此,在运用勾股定理计算三角形的边长时,要注意如下三点:

(2)注意分清斜边和直角边,避免盲目代入公式致错;

2.学会用拼图法验证勾股定理

如,利用四个如图1所示的直角三角形三角形,拼出如图2所示的三个图形.

请读者证明.

请同学们自己证明图(2)、(3).

3.在数轴上表示无理数

二、典例精析

解:由勾股定理,得

132-52=144,所以另一条直角边的长为12.

所以这个直角三角形的面积是×12×5=30(cm2).

例2如图3(1),一只蚂蚁沿棱长为a的正方体表面从顶点a爬到

顶点b,则它走过的最短路程为

a.b.c.3ad.分析:本题显然与例2属同种类型,思路相同.但正方体的

各棱长相等,因此只有一种展开图.

解:将正方体侧面展开

勾股定理活动课教案篇四

学会观察图形,勇于探索图形间的关系,培养学生的空间观念。

2、过程与方法。

(1)经历一般规律的探索过程,发展学生的抽象思维能力。

(2)在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想。

3、情感态度与价值观。

(1)通过有趣的问题提高学习数学的兴趣。

(2)在解决实际问题的过程中,体验数学学习的实用性。

教学重点:

探索、发现事物中隐含的勾股定理及其逆及理,并用它们解决生活实际问题。

教学难点:

利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题。

教学准备:

多媒体。

教学过程:

第一环节:创设情境,引入新课(3分钟,学生观察、猜想)。

情景:

第二环节:合作探究(15分钟,学生分组合作探究)。

学生分为4人活动小组,合作探究蚂蚁爬行的最短路线,充分讨论后,汇总各小组的方案,在全班范围内讨论每种方案的路线计算方法,通过具体计算,总结出最短路线。让学生发现:沿圆柱体母线剪开后展开得到矩形,研究“蚂蚁怎么走最近”就是研究两点连线最短问题,引导学生体会利用数学解决实际问题的方法:建立数学模型,构图,计算。

第三环节:做一做(7分钟,学生合作探究)。

教材23页。

李叔叔想要检测雕塑底座正面的ad边和bc边是否分别垂直于底边ab,但他随身只带了卷尺。

(1)你能替他想办法完成任务吗?

第四环节:巩固练习(10分钟,学生独立完成)。

2.如图,台阶a处的蚂蚁要爬到b处搬运食物,它怎么走最近?并求出最近距离。

第五环节课堂小结(3分钟,师生问答)。

内容:如何利用勾股定理及逆定理解决最短路程问题?

第六环节:布置作业(2分钟,学生分别记录)。

作业:1.课本习题1.5第1,2,3题.。

要求:a组(学优生):1、2、3。

b组(中等生):1、2。

c组(后三分之一生):1。

勾股定理活动课教案篇五

思路点拨:要求甲、乙两人的距离,就要确定甲、乙两人在平面的位置关系,由于甲往东、乙往北,所以甲所走的路线与乙所走的路线互相垂直,然后求出甲、乙走的路程,利用勾股定理,即可求出甲、乙两人的距离.(13千米)

勾股定理活动课教案篇六

1、知识与技能目标

学会观察图形,勇于探索图形间的关系,培养学生的空间观念。

2、过程与方法

(1)经历一般规律的探索过程,发展学生的抽象思维能力。

(2)在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想。

3、情感态度与价值观

(1)通过有趣的问题提高学习数学的兴趣。

(2)在解决实际问题的过程中,体验数学学习的实用性。

教学重点:

探索、发现事物中隐含的勾股定理及其逆及理,并用它们解决生活实际问题。

教学难点:

利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题。

教学准备:

多媒体

教学过程:

第一环节:创设情境,引入新课(3分钟,学生观察、猜想)

情景:

第二环节:合作探究(15分钟,学生分组合作探究)

学生分为4人活动小组,合作探究蚂蚁爬行的最短路线,充分讨论后,汇总各小组的方案,在全班范围内讨论每种方案的路线计算方法,通过具体计算,总结出最短路线。让学生发现:沿圆柱体母线剪开后展开得到矩形,研究“蚂蚁怎么走最近”就是研究两点连线最短问题,引导学生体会利用数学解决实际问题的方法:建立数学模型,构图,计算。

第三环节:做一做(7分钟,学生合作探究)

教材23页

李叔叔想要检测雕塑底座正面的ad边和bc边是否分别垂直于底边ab,但他随身只带了卷尺。

(1)你能替他想办法完成任务吗?

第四环节:巩固练习(10分钟,学生独立完成)

2.如图,台阶a处的蚂蚁要爬到b处搬运食物,它怎么走最近?并求出最近距离。

第五环节课堂小结(3分钟,师生问答)

内容:如何利用勾股定理及逆定理解决最短路程问题?

第六环节:布置作业(2分钟,学生分别记录)

作业:1.课本习题1.5第1,2,3题.

要求:a组(学优生):1、2、3

b组(中等生):1、2

c组(后三分之一生):1

勾股定理活动课教案篇七

1、通过拼图,用面积的方法说明勾股定理的正确性.

2、通过实例应用勾股定理,培养学生的知识应用技能.

1.用面积的方法说明勾股定理的正确.

2.勾股定理的应用.

勾股定理的应用.

一、学前准备:

1、阅读课本第46页到第47页,完成下列问题:

2、剪四个完全相同的直角三角形,然后将它们拼成如图所示的'图形。大正方形的面积可以表示为_________________________,又可以表示为__________________________.对比两种表示方法,看看能不能得到勾股定理的结论。用上面得到的完全相同的四个直角三角形,还可以拼成如下图所示的图形,与上面的方法类似,也能说明勾股定理是正确的方法(请逐一说明)

二、合作探究:

(一)自学、相信自己:

(二)思索、交流:

(三)应用、探究:

(四)巩固练习:

1、如图,64、400分别为所在正方形的面积,则图中字

母a所代表的正方形面积是_________。

三.学习体会:

本节课我们进一步认识了勾股定理,并用两种方法证明了这个定理,在应用此定理解决问题时,应注意只有直角三角形的三边才有这样的关系,如果不是直角三角形应该构造直角三角形来解决。

2②图

四.自我测试:

五.自我提高:

勾股定理活动课教案篇八

1、知识目标:

(2)会应用勾股定理的逆定理判定一个三角形是否为直角三角形;

(3)知道什么叫勾股数,记住一些觉见的勾股数.

2、能力目标:

(1)通过勾股定理与其逆定理的比较,提高学生的辨析能力;

(2)通过勾股定理及以前的知识联合起来综合运用,提高综合运用知识的能力.

3、情感目标:

(1)通过自主学习的发展体验获取数学知识的感受;

(2)通过知识的纵横迁移感受数学的辩证特征.。

教学用具:直尺,微机。

教学方法:以学生为主体的讨论探索法。

勾股定理活动课教案篇九

教学方法叶圣陶说过“教师之为教,不在全盘授予,而在相机诱导。”因此教师利用几何直观提出问题,引导学生由浅入深的探索,设计实验让学生进行验证,感悟其中所蕴涵的思想方法。

学法指导为把学习的主动权还给学生,教师鼓励学生采用动手实践,自主探索、合作交流的学习方法,让学生亲自感知体验知识的形成过程。

勾股定理活动课教案篇十

1、知识与技能目标:探索并理解直角三角形的三边之间的数量关系,通过探究能够发现直角三角形中两个直角边的平方和等于斜边的平方和。

2、过程与方法目标:经历用测量和数格子的办法探索勾股定理的过程,进一步发展学生的合情推理能力。

3、情感态度与价值观目标:通过本节课的学习,培养主动探究的习惯,并进一步体会数学与现实生活的紧密联系。

勾股定理活动课教案篇十一

教学目标:

1、知识与技能目标:理解和掌握勾股定理的内容,能够灵活运用勾股定理进行计算,并解决一些简单的实际问题。

2、过程与方法目标:通过观察分析,大胆猜想,并探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。

3、情感、态度与价值观目标:了解中国古代的数学成就,激发学生爱国热情;学生通过自己的努力探索出结论获得成就感,培养探索热情和钻研精神;同时体验数学的美感,从而了解数学,喜欢几何。

教学重点:

引导学生经历探索及验证勾股定理的过程,并能运用勾股定理解决一些简单的实际问题。

教学难点:

用面积法方法证明勾股定理

课前准备:

多媒体ppt,相关图片

教学过程:

(一)情境导入

1、多媒体课件放映图片欣赏:勾股定理数形图,1955年希腊发行的一枚纪念邮票,美丽的勾股树,国际数学大会会标等。通过图形欣赏,感受数学之美,感受勾股定理的文化价值。

已知一直角三角形的两边,如何求第三边?

学习了今天的这节课后,同学们就会有办法解决了

(二)学习新课

勾股定理活动课教案篇十二

教学目标:

1、知识与技能目标:理解和掌握勾股定理的内容,能够灵活运用勾股定理进行计算,并解决一些简单的实际问题。

2、过程与方法目标:通过观察分析,大胆猜想,并探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。

3、情感、态度与价值观目标:了解中国古代的数学成就,激发学生爱国热情;学生通过自己的努力探索出结论获得成就感,培养探索热情和钻研精神;同时体验数学的美感,从而了解数学,喜欢几何。

教学重点:

引导学生经历探索及验证勾股定理的过程,并能运用勾股定理解决一些简单的实际问题。

教学难点:

用面积法方法证明勾股定理

课前准备:

多媒体ppt,相关图片

教学过程:

(一)情境导入

1、多媒体课件放映图片欣赏:勾股定理数形图,1955年希腊发行的一枚纪念邮票,美丽的勾股树,国际数学大会会标等。通过图形欣赏,感受数学之美,感受勾股定理的文化价值。

勾股定理活动课教案篇十三

一、整个课堂设计完整、结构紧凑、逻辑严密、前后呼应,准备得比较充分,能引导学生循序渐进,思路很清晰,讲解也很到位。

二、不搞题海战术,精讲精练,举一反三、触类旁通。题型设计选题有针对性、典型性、层次性,亦有梯度,两位老师都设计了分层练习,作业分层设计精巧,适合满足不同层次学生的要求。

三、两位老师引入新课都很自然,两位老师都能从学生的实际水平出发,面向全体学生,因材施教,分层次开展教学工作,全面提高学习效率。

教师在整个教学过程中老师敢于让学生探索、体验,给了学生以最大的自由运用和探索规律的开阔的地带。特别是新塘三中的曾老师在教学中,通过教师有序的导、学生积极的学习参与、体验、讨论与交流,培养学生具有主动、负责、开拓、创新的个性特征和科学的思维方式。将知识与技能,过程与方法,情感态度和价值观完美结合。在整个教学活动中始终面对全体学生,让每一个学生都有收获,都得到成功的体验,充分体现了全面育人的新课标精神。建议新塘二中老师尽量少讲,让学生多思,多想,多做。......

勾股定理活动课教案篇十四

从知识结构上看,勾股定理揭示了直角三角形三条边之间的数量关系,为后续学习解直角三角形提供重要的理论依据,在现实生活中有着广泛的应用。

从学生认知结构上看,它把形的特征转化成数量关系,架起了几何与代数之间的桥梁;

勾股定理又是对学生进行爱国主义教育的良好素材,因此具有相当重要的地位和作用。

根据数学新课程标准以及八年级学生的认知水平我确定如下学习目标:知识技能、数学思考、问题解决、情感态度。其中【情感态度】方面,以我国数学文化为主线,激发学生热爱祖国悠久文化的情感。

(二)重点与难点

为变被动接受为主动探究,我确定本节课的重点为:勾股定理的探索过程。限于八年级学生的思维水平,我将面积法(拼图法)发现勾股定理确定为本节课的难点,我将引导学生动手实验突出重点,合作交流突破难点。

勾股定理活动课教案篇十五

(一)知识与技能目标:

1、掌握勾股定理及其证明

2、会利用勾股定理进行直角三角形的简单计算。

3、了解有关勾股定理的历史知识

(二)过程与方法目标

经历课前预习和课上观察、分析、归纳、猜想、验证并运用实践的过程,了解数学知识的生成与发展过程。通过了解勾股定理的几个著名证法(赵爽证法、欧几里得证法等),使学生感受数学证明的灵活、优美与精巧,感受勾股定理的丰富文化内涵。使学生自主学习能力和分析问题解决问题的能力得到提高。培养与人合作的意识。

(三)情感、态度和价值观

1、通过自主学习培养学生探究、发现问题的能力,体验获取数学知识的过程。

2、通过小组合作、探索培养学生的团队精神,以及不畏艰难,实事求是的学习态度和严谨的数学学习习惯。

3、通过了解有关勾股定理的中西历史知识,激发学生的爱国热情,培养学生的民族自豪感。

【本文地址:http://www.xuefen.com.cn/zuowen/7567629.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档