高二数学教案人教版(精选8篇)

格式:DOC 上传日期:2023-11-04 20:38:06
高二数学教案人教版(精选8篇)
时间:2023-11-04 20:38:06     小编:琉璃

作为一位兢兢业业的人民教师,常常要写一份优秀的教案,教案是保证教学取得成功、提高教学质量的基本条件。那么问题来了,教案应该怎么写?那么下面我就给大家讲一讲教案怎么写才比较好,我们一起来看一看吧。

高二数学教案人教版篇一

理解并掌握双曲线的几何性质,并能从双曲线的标准方程出发,推导出这些性质,并能具体估计双曲线的形状特征。

二、预习内容

1、双曲线的几何性质及初步运用。

类比椭圆的几何性质。

2。双曲线的渐近线方程的导出和论证。

观察以原点为中心,2a、2b长为邻边的'矩形的两条对角线,再论证这两条对角线即为双曲线的渐近线。

三、提出疑惑

同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中

课内探究

1、椭圆与双曲线的几何性质异同点分析

2、描述双曲线的渐进线的作用及特征

3、描述双曲线的离心率的作用及特征

4、例、练习尝试训练:

例1。求双曲线9y2—16x2=144的实半轴长和虚半轴长、焦点坐标、离心率、渐近线方程。

解:

解:

5、双曲线的第二定义

1)。定义(由学生归纳给出)

2)。说明

(七)小结(由学生课后完成)

将双曲线的几何性质按两种标准方程形式列表小结。

作业:

1。已知双曲线方程如下,求它们的两个焦点、离心率e和渐近线方程。

(1)16x2—9y2=144;

(2)16x2—9y2=—144。

2。求双曲线的标准方程:

(1)实轴的长是10,虚轴长是8,焦点在x轴上;

(2)焦距是10,虚轴长是8,焦点在y轴上;

曲线的方程。

点到两准线及右焦点的距离。

高二数学教案人教版篇二

2、2、3直线的参数方程

学习目标

1.了解直线参数方程的条件及参数的意义;

2.初步掌握运用参数方程解决问题,体会用参数方程解题的简便性。

学习过程

复习:

1、若由共线,则存在实数,使得,

2、设为方向上的,则=︱︱;

3、经过点,倾斜角为的直线的普通方程为。

探究新知(预习教材p35~p39,找出疑惑之处)

1、选择怎样的参数,才能使直线上任一点m的坐标与点的坐标和倾斜角联系起来呢?由于倾斜角可以与方向联系,与可以用距离或线段数量的大小联系,这种方向有向线段数量大小启发我们想到利用向量工具建立直线的参数方程。

如图,在直线上任取一点,则=,

而直线

的单位方向

向量

=(,)

因为,所以存在实数,使得=,即有,因此,经过点

,倾斜角为的直线的参数方程为:

2.方程中参数的几何意义是什么?

应用示例

例1.已知直线与抛物线交于a、b两点,求线段ab的长和点到a,b两点的距离之积。(教材p36例1)

解:

例2.经过点作直线,交椭圆于两点,如果点恰好为线段的中点,求直线的方程.(教材p37例2)

解:

反馈练习

1.直线上两点a,b对应的参数值为,则=()

a、0b、

c、4d、2

2.设直线经过点,倾斜角为,

(1)求直线的参数方程;

(2)求直线和直线的交点到点的距离;

(3)求直线和圆的两个交点到点的距离的和与积。

本节小结

1.本节学习了哪些内容?

答:1.了解直线参数方程的条件及参数的意义;

2.初步掌握运用参数方程解决问题,体会用参数方程解题的简便性。

学习评价

一、自我评价

你完成本节导学案的情况为()

a.很好b.较好c.一般d.较差

课后作业

1.已知过点,斜率为的直线和抛物线相交于两点,设线段的`中点为,求点的坐标。

2.经过点作直线交双曲线于两点,如果点为线段的中点,求直线的方程

3.过抛物线的焦点作倾斜角为的弦ab,求弦ab的长及弦的中点m到焦点f的距离。

高二数学教案人教版篇三

圆锥曲线的定义反映了圆锥曲线的本质属性,它是无数次实践后的高度抽象、恰当地利用xx解题,许多时候能以简驭繁。因此,在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,再一次强调定义,学会利用圆锥曲线定义来熟练的解题”。

我所任教班级的学生参与课堂教学活动的积极性强,思维活跃,但计算能力较差,推理能力较弱,使用数学语言的表达能力也略显不足。

1、深刻理解并熟练掌握圆锥曲线的定义,能灵活应用xx解决问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。

2、通过对练习,强化对圆锥曲线定义的理解,提高分析、解决问题的能力;通过对问题的不断引申,精心设问,引导学生学习解题的一般方法。

3、借助多媒体辅助教学,激发学习数学的兴趣、

教学重点

1、对圆锥曲线定义的理解

2、利用圆锥曲线的定义求“最值”

3、“定义法”求轨迹方程

教学难点:

巧用圆锥曲线xx解题

开门见山,提出问题

例题:

(1)已知a(-2,0),b(2,0)动点m满足|ma|+|mb|=2,则点m的轨迹是()。

(a)椭圆(b)双曲线(c)线段(d)不存在

(2)已知动点m(x,y)满足(x1)2(y2)2|3x4y|,则点m的轨迹是()。

(a)椭圆(b)双曲线(c)抛物线(d)两条相交直线

定义是揭示概念内涵的逻辑方法,熟悉不同概念的不同定义方式,是学习和研究数学的一个必备条件,而通过一个阶段的'学习之后,学生们对圆锥曲线的定义已有了一定的认识,他们是否能真正掌握它们的本质,是我本节课首先要弄清楚的问题。

为了加深学生对圆锥曲线定义理解,我以圆锥曲线的定义的运用为主线,精心准备了两道练习题。

估计多数学生能够很快回答出正确答案,但是部分学生对于圆锥曲线的定义可能并未真正理解,因此,在学生们回答后,我将要求学生接着说出:若想答案是其他选项的话,条件要怎么改?这对于已学完圆锥曲线这部分知识的学生来说,并不是什么难事。但问题(2)就可能让学生们费一番周折——如果有学生提出:可以利用变形来解决问题,那么我就可以循着他的思路,先对原等式做变形:(x1)2(y2)2这样,很快就能得出正确结果。如若不然,我将启发他们从等式两端的式子|3x4y|入手,考虑通过适当的变形,转化为学生们熟知的两个距离公式。

在对学生们的解答做出判断后,我将把问题引申为:该双曲线的中心坐标是,实轴长为,焦距为。以深化对概念的理解。

高二数学教案人教版篇四

本节内容为人教版高一数学必修3模块第一章算法初步第1.1.2节第一课时,

主要包括程序框图的图形符号、算法的程序框图表示、算法的的逻辑结构等三部分内容。

算法就是解决问题的步骤,算法也是数学及其应用的重要组成部分,是计算机科学的基础,利用计算机解决问需要算法,在日常生活中做任何事情也都有算法,当然我们更关心的是计算机的算法,计算机可以解决多类信息处理问题,直接写出解决该问题的程序是困难的,因此,我们要首先研究解决问题的算法,再把算法转化为程序,所以算法设计是使用计算机解决具体问题的一个极为重要的环节。

通过对解决具体问题的过程与步骤的分析,体会算法的思想,了解算法的含义。理解程序框图的三种基本逻辑结构:顺序结构、条件结构、循环结构。进一步体会算法的另一种表达方式。

本章节的重点是体会算法的思想,通过模仿、操作、探索,通过设计程序框图解决实际生活问题的过程。通过解决具体问题,理解三种基本逻辑结构中顺序和条件结构,经历将具体问题用程序框图来表示,在实际问题中能设计相关程序框图解决实际问题。

关于本节内容,相对学生来说,全是新知识,因它涉及到计算机科学相关内容,也是数学及其应用的重要组成部分。大部分学生并没有学习过程序框图的设计,在编写程序方面基本上都是“零起点”,而且认为程序框图设计是一件困难的事情,因此本课的举例和任务都适当降低难度,让学生能在实践中体会成功的喜悦,领略程序设计之算法程序框图表示的乐趣。另一方面要充分利用课外资料和实例,设置问题情景,激发学生的学习兴趣,通过建构模型,化抽象为具体,教师在整个学习过程中进行指导、启发、补充与完善。

(一)知识与技能

2、理解并掌握算法的三种基本逻辑结构,培养学生分析问题、解决问题的能力;

3、培养学生在实际现实生活中,能正确运用相关逻辑结构分析、解决实际问题;

(二)过程与方法

2、在具体问题的解决过程中理解程序流程图的三种基本逻辑结构之顺序结构、条件结构,寻找解决实际问题的规律与方法。

(三)情感态度与价值观

1:通过本节的学习,使学生对计算机的算法语言有一个基本的了解,明确算法的要求,认识计算机是人类征服自然的一种有力工具,进一步提高探索、认识世界的能力。

2:培养学生迎难而上,战胜困难的大无畏精神,克服畏难情绪,培养严谨的思维习惯、塑造认真、细致的做事态度。

教学重点:程序框图的图形符号、算法的基本逻辑结构及应用

教学难点:算法的条件结构在实际生活中的运用

3、竞争机制策略:据本章节中部分内容,合理设置分组竞争,小组赛形式激发学生高涨的.学习热情,不仅引导学生将所学知识应用于解决实际问题,且培养学生团队合作探究精神。

任务驱动法、启发引导式、小组合作探究学习法、模仿建构学习法

多媒体课件、生活中具体实例、同步学案

课时1

教学程序教师组织与引导学生活动设计意图

发放“任务”纸质

1、把任务学案发给学生

2、查阅、收集有关实际生活中实例,用于本节教学

1、预习

2、查阅相关资料学生是学习主体,自主合作、探究式学习

回顾旧知,引入新课

改进:生活中的问题,描述解决步骤(1)算法的描述:要交换两杯不同液体的方法、步骤;(自然语言描述法,复习)

穿插经典算法在教学中,激趣导学

1:鸡兔同笼、2:谁在说谎

(2)你还知道有什么渠道能使算法描述得更直观、高效、准确吗?引导学生看书自学

学生思考、回答,

学生看书自学本节程序框图相关知识:程序框图图形符号

激发学生对本节课内容的关注

探究不同程序框图符号表示的不同含义,初步探讨程序框图的画法

重点部分强记据教材设疑,并逐一提出下列问题:

(1)程序框图共有哪些图形符号?

改进:同学们,你们所常见的图形有哪些??学生回答

现在,从这些常用图形中,我们选出几中种来用于表示“算法”中的含义

(2)不同符号所表示的什么含义?

(3)具体应用,实例列举,老师在黑板上“补”画“长方形面积”流程图

(4)要求学生结合上述老师所讲实例,模仿“补充”画出,改进:

a:圆的面积、周长的流程图(老师完成)

b:正方形面积、周长的流程图(师生共同完成)

c:三角形面积、周长的流程图(学生自己完成)

d:求学生语、数、英三科成绩平均分的程序框图(学生自己完成)

(5)例3.已知三角形三边长,求三角形面积的程序框图(老师提示公式,学生自己理解)

(6)判别整数n是否为质数后面学

老师引导学生说出程序框图特征并作简要归纳学生看书掌握

学生联系实际,回答

看书自学,回答

看书自学,回答

听讲,学习

学生根据图形特点,找记忆方法

讨论、交流、模仿、经历

学生思考、讨论并画图

反复练习,巩固、加强记忆

学生自己设计

对照课本,检查正误

学生总结归纳程序框图特点

学生仿做

学生仿做

学生理解

s=p*r^2培养自学能力

明确每种图形符号的不同含义及不同应用

培养学生模仿学习与制作流程图的能力

培养学生善于总结归纳的习惯

重点突破

框图符号

重、难点攻克条件结构

总结过渡并提出问题:

改进:联系实际生活,结合课本,自主探究:算法的逻辑结构应有几种

(1)如何用框图符号来表示算法?

(2)算法有几种基本逻辑结构?

(3)你会用框图符号表示算法的顺序结构了吗?(前面刚讲,总结归纳)

(4)你会用框图符号表示条件结构吗?

老师列举并画实例流程图:

引导学生带着问题边看书边在练习本将几种结构画出来,加强看书效果

例4:老师启发学生,师生共同完成三数为边是否组成三角形程序框图

补充:1:求绝对值的程序框图:

2:y=

引导学生思考设计分段函数的流程图,运用条件结构

教师引导学生列举生活中实例

学生看书

同桌间自主探究、理解掌握

讨论回答问题

学生思考、模仿、探究着画流程图,和课本对照判正误

学生模仿、思考、讨论与交流

设计相应流程图

同学上台展示自己的流程图,其它学同指正其正误

学生对比条件与顺序结构的框图,总结归纳条件结构的框图的绘制任务驱动,

创设学习情景

层层深入

引领学生纵向学习

模仿,思考,对照,学生有所思有所悟,

体验学习成功的快乐

突出学生学习的主体

培养学生的逻辑思维能力

教师对学生的讲解进行补充和完善,小结本节内容。学生交流生活中实例及框图解决办法。

课堂小结引导学生总结本节课的知识要点

并谈谈本节课的收获与提高及改进学生回顾总结本节所学梳理本节课的知识主干

布置课后作业作业:p20习题1.1

a组1,3课后完成巩固、反馈学习效果

参阅经典算法:穿插在教学中,激趣导学

2:谁在说谎

*运行结果

zhangsantoldalie(张三说假话)

lisitoldatruch.(李四说真话)

wangwutoldalie.(王五说假话)

九、板书设计

1.1.2程序框图及算法的基本逻辑结构

一、程序框图

1:程序框图又名_______

二:算法的基本逻辑结构

2:请你表示出条件结构和循环结构的框图形式:

3:请仿照写出求长方形的面积的框图,类似正方形面积框图、圆面积、三角形面积等程序框图(顺序结构)

4:设计给定三角形任意三边长a,b,c,试表示出三角形面积相应程序框图

(对照p9例3,检查正误)

三:算法的条件框图

1:试画条件结构框图的2种形式

2:例4会了吗?试试看

3:试设计求绝对值的程序框图

小结作业:p20,习题:1.1a组1,3两题

改进效果:经过斟酌改进实践后的算法,方式更适宜中学生个性特点,更易被中学生接受,效果更好。

高二数学教案人教版篇五

1.理解平面直角坐标系的意义;掌握在平面直角坐标系中刻画点的位置的方法。

2.掌握坐标法解决几何问题的步骤;体会坐标系的作用。

体会直角坐标系的作用。

能够建立适当的直角坐标系,解决数学问题。

新授课

启发、诱导发现教学。

多媒体、实物投影仪

一、复习引入:

情境1:为了确保宇宙飞船在预定的轨道上运行,并在按计划完成科学考察任务后,安全、准确的返回地球,从火箭升空的时刻开始,需要随时测定飞船在空中的位置机器运动的轨迹。

情境2:运动会的开幕式上常常有大型团体操的表演,其中不断变化的背景图案是由看台上座位排列整齐的人群不断翻动手中的一本画布构成的。要出现正确的背景图案,需要缺点不同的画布所在的位置。

问题1:如何刻画一个几何图形的位置?

问题2:如何创建坐标系?

二、学生活动

学生回顾

刻画一个几何图形的位置,需要设定一个参照系

1、数轴它使直线上任一点p都可以由惟一的实数x确定

2、平面直角坐标系

在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。它使平面上任一点p都可以由惟一的实数对(x,y)确定。

3、空间直角坐标系

在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。它使空间上任一点p都可以由惟一的实数对(x,y,z)确定。

三、讲解新课:

1、建立坐标系是为了确定点的位置,因此,在所建的坐标系中应满足:

任意一点都有确定的坐标与其对应;反之,依据一个点的'坐标就能确定这个点的位置

2、确定点的位置就是求出这个点在设定的坐标系中的坐标

四、数学运用

例1选择适当的平面直角坐标系,表示边长为1的正六边形的顶点。

变式训练

变式训练

2、在面积为1的中,建立适当的坐标系,求以m,n为焦点并过点p的椭圆方程

例3已知q(a,b),分别按下列条件求出p的坐标

(1)p是点q关于点m(m,n)的对称点

(2)p是点q关于直线l:x-y+4=0的对称点(q不在直线1上)

变式训练

用两种以上的方法证明:三角形的三条高线交于一点。

思考

通过平面变换可以把曲线变为中心在原点的单位圆,请求出该复合变换?

五、小结:本节课学习了以下内容:

1.平面直角坐标系的意义。

2.利用平面直角坐标系解决相应的数学问题。

高二数学教案人教版篇六

1.会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。

2.能根据几何结构特征对空间物体进行分类。

3.提高学生的观察能力;培养学生的空间想象能力和抽象括能力。

【教学重难点】

教学重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。

教学难点:柱、锥、台、球的结构特征的概括。

【教学过程】

1.情景导入

教师提出问题,引导学生观察、举例和相互交流,提出本节课所学内容,出示课题。

2.展示目标、检查预习

3、合作探究、交流展示

(2)组织学生分组讨论,每小组选出一名同学发表本组讨论结果。

在此基础上得出棱柱的主要结构特征。

(1)有两个面互相平行;

(2)其余各面都是平行四边形;

(3)每相邻两上四边形的公共边互相平行。概括出棱柱的概念。

(3)提出问题:请列举身边的棱柱并对它们进行分类

(4)以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的`概念,分类以及表示。

(5)让学生观察圆柱,并实物模型演示,概括出圆柱的概念以及相关的概念及圆柱的表示。

(6)引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。

(7)教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。

4.质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。

(1)有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明)

(2)棱柱的任何两个平面都可以作为棱柱的底面吗?

(4)棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?

(5)绕直角三角形某一边的几何体一定是圆锥吗?

高二数学教案人教版篇七

1.理解平面直角坐标系的意义;掌握在平面直角坐标系中刻画点的位置的方法。

2.掌握坐标法解决几何问题的步骤;体会坐标系的作用。

体会直角坐标系的作用。

能够建立适当的直角坐标系,解决数学问题。

新授课

启发、诱导发现教学.

多媒体、实物投影仪

一、复习引入:

情境1:为了确保宇宙飞船在预定的轨道上运行,并在按计划完成科学考察任务后,安全、准确的返回地球,从火箭升空的时刻开始,需要随时测定飞船在空中的位置机器运动的轨迹。

情境2:运动会的开幕式上常常有大型团体操的表演,其中不断变化的背景图案是由看台上座位排列整齐的人群不断翻动手中的一本画布构成的。要出现正确的背景图案,需要缺点不同的画布所在的位置。

问题1:如何刻画一个几何图形的位置?

问题2:如何创建坐标系?

二、学生活动

学生回顾

刻画一个几何图形的位置,需要设定一个参照系

1、数轴 它使直线上任一点p都可以由惟一的实数x确定

2、平面直角坐标系

在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。它使平面上任一点p都可以由惟一的实数对(x,y)确定。

3、空间直角坐标系

在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。它使空间上任一点p都可以由惟一的实数对(x,y,z)确定。

三、讲解新课:

1、建立坐标系是为了确定点的位置,因此,在所建的坐标系中应满足:

任意一点都有确定的坐标与其对应;反之,依据一个点的坐标就能确定这个点的位置

2、确定点的位置就是求出这个点在设定的坐标系中的坐标

四、数学运用

例1 选择适当的平面直角坐标系,表示边长为1的正六边形的顶点。

变式训练

变式训练

2在面积为1的中,,建立适当的坐标系,求以m,n为焦点并过点p的椭圆方程

例3 已知q(a,b),分别按下列条件求出p 的坐标

(1)p是点q 关于点m(m,n)的对称点

(2)p是点q 关于直线l:x-y+4=0的对称点(q不在直线1上)

变式训练

用两种以上的方法证明:三角形的三条高线交于一点。

思考

通过平面变换可以把曲线变为中心在原点的单位圆,请求出该复合变换?

五、小 结:本节课学习了以下内容:

1.平面直角坐标系的意义。

2. 利用平面直角坐标系解决相应的数学问题。

六、课后作业:

高二数学教案人教版篇八

【自主梳理】

1.对数:

(1)一般地,如果,那么实数叫做________________,记为________,其中叫做对数的_______,叫做________.

(2)以10为底的对数记为________,以为底的对数记为_______.

(3),.

2.对数的运算性质:

(1)如果,那么,

.

(2)对数的换底公式:.

3.对数函数:

一般地,我们把函数____________叫做对数函数,其中是自变量,函数的定义域是______.

4.对数函数的图像与性质:

a10

图象性

质定义域:___________

值域:_____________

过点(1,0),即当x=1时,y=0

x(0,1)时_________

x(1,+)时________x(0,1)时_________

x(1,+)时________

在___________上是增函数在__________上是减函数

【自我检测】

1.的定义域为_________.

2.化简:.

3.不等式的解集为________________.

4.利用对数的换底公式计算:.

5.函数的奇偶性是____________.

6.对于任意的,若函数,则与的大小关系是___________________________.

【例1】填空题:

(1).

(2)比较与的大小为___________.

(3)如果函数,那么的最大值是_____________.

(4)函数的奇偶性是___________.

【例2】求函数的定义域和值域.

【例3】已知函数满足.

(1)求的解析式;

(2)判断的奇偶性;

(3)解不等式.

课堂小结

1..略

2.函数的定义域为_______________.

3.函数的值域是_____________.

4.若,则的取值范围是_____________.

5.设则的大小关系是_____________.

6.设函数,若,则的取值范围为_________________.

7.当时,不等式恒成立,则的取值范围为______________.

8.函数在区间上的值域为,则的最小值为____________.

9.已知.

(1)求的定义域;

(2)判断的奇偶性并予以证明;

(3)求使的的.取值范围.

10.对于函数,回答下列问题:

(1)若的定义域为,求实数的取值范围;

(2)若的值域为,求实数的取值范围;

(3)若函数在内有意义,求实数的取值范围.

四、纠错分析

错题卡题号错题原因分析

【自主梳理】

1.对数

(1)以为底的的对数,,底数,真数.

(2),.

(3)0,1.

2.对数的运算性质

(1),,.

(2).

3.对数函数

,.

4.对数函数的图像与性质

a10

图象性质定义域:(0,+)

值域:r

过点(1,0),即当x=1时,y=0

x(0,1)时y0

x(1,+)时y0x(0,1)时y0

x(1,+)时y0

在(0,+)上是增函数在(0,+)上是减函数

1.2.3.

4.5.奇函数6..

【例1】填空题:

(1)3.

(2).

(3)0.

(4)奇函数.

【例2】解:由得.所以函数的定义域是(0,1).

因为,所以,当时,,函数的值域为;当时,,函数的值域为.

【例3】解:(1),所以.

(2)定义域(-3,3)关于原点对称,所以

,所以为奇函数.

(3),所以当时,解得

当时,解得.

【本文地址:http://www.xuefen.com.cn/zuowen/7527033.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档