数学教学设计(通用20篇)

格式:DOC 上传日期:2023-11-04 15:30:05
数学教学设计(通用20篇)
时间:2023-11-04 15:30:05     小编:念青松

是一个时刻提醒我们保持目标和动力的机会。阅读时可以尝试多种阅读策略,提高阅读技巧。下面是一些优秀总结范文的选编,供大家参考和学习,提高写作能力。

数学教学设计篇一

1 学习方式:

对于全等三角形的研究,实际是平面几何中对封闭的两个图形关系研究的第一步。它是两个三角形间最简单,最常见的关系。它不仅是学习后面知识的基础,并且是证明线段相等、角相等以及两线互相垂直、平行的重要依据。因此必须熟练地掌握全等三角形的判定方法,并且灵活的应用。为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,使学生经历从现实世界抽象出几何模型和运用所学内容,解决实际问题的过程,真正把学生放到主体位置。

2 学习任务分析:

充分利用教科书提供的素材和活动,鼓励学生经历观察、操作、推理、想象等活动,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验。培养学生有条理的思考,表达和交流的能力,并且在以直观操作的基础上,将直观与简单推理相结合,注意学生推理意识的建立和对推理过程的理解,能运用自己的方式有条理的表达推理过程,为以后的证明打下基础。

3 学生的认知起点分析:

学生通过前面的学习已了解了图形的全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。另外,学生也具备了利用已知条件作三角形的基本作图能力,这使学生能主动参与本节课的操作、探究成为可能。

4 教学目标:

(1) 学生在教师引导下,积极主动地经历探索三角形全等的条件的过程,体会利用操作、归纳获得数学结论的过程。

(2) 掌握三角形全等的“边边边”、“边角边”、“角边角”、“角角边”的判定方法,了解三角形的稳定性,能用三角形的全等解决一些实际问题。

(3) 培养学生的空间观念,推理能力,发展有条理地表达能力,积累数学活动经验。

5 教学的重点与难点:

重点:三角形全等条件的探索过程是本节课的重点。从设置情景提出问题,到动手操作,交流,直至归纳得出结论,整个过程学生不仅得到了两个三角形全等的条件,更重要得是经历了知识的形成过程,体会了一种分析问题的方法,积累了数学活动经验,这将有利于学生更好的.理解数学,应用数学。难点:三角形全等条件的探索过程,特别是创设出问题后,学生面对开放性问题,要做出全面、正确得分析,并对各种情况进行讨论,对初一学生有一定的难度。

根据初一学生年龄、生理及心理特征,还不具备独立系统地推理论证几何问题的能力,思维受到一定的局限,考虑问题不够全面,因此要充分发挥教师的主导作用,适时点拨、引导,尽可能调动所有学生的积极性、主动性参与到合作探讨中来,使学生在与他人的合作交流中获取新知,并使个性思维得以发展。

6 教学过程

教学步骤

教师活动

学生活动

教学媒体(资源)和教学方式

复习过渡

引入新知

创设情景

提出问题

建立模型

探索发现

归纳总结

得出新知巩固运用

及其推广

反思小结

提炼规律

电脑显示,带领学生复习全等三角定义及其性质。

对学生分类中出现的问题,予以纠正,对学生提出的解决问题的不同策略,要给予肯定和鼓励,以满足多样化的学生需要,发展学生个性思维。

数学教学设计篇二

一、教学目标:

(1)学生在教师引导下,积极主动地经历探索三角形全等的条件的过程,体会利用操作、归纳获得数学结论的过程。

(2)掌握三角形全等的“边边边”、“边角边”、“角边角”、“角角边”的判定方法,了解三角形的稳定性,能用三角形的全等解决一些实际问题。

(3)培养学生的空间观念,推理能力,发展有条理地表达能力,积累数学活动经验。

二、教学的重点与难点:

重点:三角形全等条件的探索过程是本节课的重点。

从设置情景提出问题,到动手操作,交流,直至归纳得出结论,整个过程学生不仅得到了两个三角形全等的条件,更重要得是经历了知识的形成过程,体会了一种分析问题的方法,积累了数学活动经验,这将有利于学生更好的理解数学,应用数学。

难点:三角形全等条件的探索过程,特别是创设出问题后,学生面对开放性问题,要做出全面、正确得分析,并对各种情况进行讨论,对初一学生有一定的难度。

点拨、引导,尽可能调动所有学生的积极性、主动性参与到合作探讨中来,使学生在与他人的合作交流中获取新知,并使个性思维得以发展。

三、教学过程。

电脑显示,带领学生复习全等三角定义及其性质。电脑显示,小明画了一个三角形,怎样才能画一个三角形与他的三角形全等?我们知道全等三角形三条边分别对应相等,三个角分别对应相等,那麽,反之这六个元素分别对应,这样的两个三角形一定全等.但是,是否一定需要六个条件呢?条件能否尽可能少吗?对学生分类中出现的问题,予以纠正,对学生提出的解决问题的不同策略,要给予肯定和鼓励,以满足多样化的学生需要,发展学生个性思维。

按照三角形“边、角”元素进行分类,师生共同归纳得出:。

1、一个条件:一角,一边。

2、两个条件:两角;两边;一角一边。

3、三个条件:三角;三边;两角一边;两边一角。

按以上分类顺序动脑、动手操作,验证。

教师收集学生的作品,加以比较,得出结论:

只给出一个或两个条件时,都不能保证所画出的三角形一定全等。

下面将研究三个条件下三角形全等的判定。

(1)已知三角形的三个角分别为40°、60°、80°,画出这个三角形,并与同伴比较是否全等。

学生得出结论后,再举例体会一下。举例说明:

再如同是:等边三角形,边长不等,两个三角形也不全等。等等。

(2)已知三角形三条边分别是4cm,5cm,7cm,画出这个三角形,并与同伴比较是否全等。

板演:三边对应相等的两个三角形全等,简写为“边边边”或“sss”。

由上面的结论可知:只要三角形三边的长度确定了,这个三角形的形状和大小就确定了。实物演示:由三根木条钉成的一个三角形框架,它的大小和形状是固定不变的,三角形的这个性质叫三角形的稳定性。

举例说明该性质在生活中的应用。

类比着三角形,让学生动手操作,研究四边形、五边性有无稳定性。

图形的稳定性与不稳定性在生活中都有其作用,让学生举例说明。

题组练习(略)3、(对有能力的学生要求把实际问题抽象成数学问题,根据自己的理解写出推理过程。对一般学生要求口头表达理由,并能说明每一步的根据。)。

教师带领,回顾反思本节课对知识的研究探索过程,小结方法及结论,提炼数学思想,掌握数学规律。

在教师引导下回忆前面知识,为探究新知识作好准备。

议一议:

学生分小组进行讨论交流。受教师启发,从最少条件开始考虑,一个条件;两个条件;三个条件?经过学生逐步分析,各种情况渐渐明朗,进行交流予以汇总,归纳。

想一想:

对只给一个条件画三角形,画出的三角形一定全等吗。

画一画:

按照下面给出的两个条件做出三角形:

(1)三角形的两个角分别是:30°,50°。

(2)三角形的两条边分别是:4cm,6cm。

(3)三角形的一个角为30,一条边为3cm剪一剪:

把所画的三角形分别剪下来。比一比:

学生模仿上面的研究方法,独立完成操作过程,通过交流,归纳得出结论。鼓励学生自己举出实例,体验数学在生活中的应用.学生那出准备好的硬纸条,进行实验,得出结论:四边形、五边形不具稳定性。

学生练习。

学生在教师引导下回顾反思,归纳整理。

数学教学设计篇三

1、使学生在实践活动中体验到数学与日常生活的紧密联系,激发学生数学探求知识的兴趣,并运用所学的知识解决实际题。

2、结合“用数学”的过程对学生进行热爱自然、保护动物的教育。

重点体会知识的价值并运用所学的知识解决实际题。

难点运用所学的知识解决实际题。

一、创设情境

同学们,现在是什么季节?那咱们就到郊外去秋游吧。

二、合作探究(课件出示)

早上的太阳出来了,瞧,郊外的鲜花景色可真美啊,看远处还有几只可爱的猴子呢。

课件出示梅花鹿图

图中有9只梅花鹿,有3只慢慢离开了,还剩下几只梅花鹿?

请你看图说出图意,你是怎样算出图上的梅花鹿的?

你能独立列出算式吗?评价,你们认为谁说的好?

走过鹿林又来到小河边,看,河里有几只白鹅呢?

课件出示白鹅图

生说图意

全班交流

独立列式计算

评价:你认为他说的有道理吗?

三、课中操

同学们都是聪明的孩子,有美丽的小鸟和小梅花鹿都在为你们跳舞呢。

四、做一做

说出图意再列式。

既提高学生解决问题的能力,又培养学生的语言表达能力。

五、作业

数学教学设计篇四

1.通过实际的观察、比较,认识物体的正面、侧面和上面,能正确辨认从正面、侧面和上面观察到的物体的形状,并体验到从不同的位置观察到的物体的形状可能是不一样的。

2.在活动体验中学会观察方法,积累观察经验,发展数学思考,养成良好的合作、交流的习惯。

1.内容分析。

教材通过对生活中常见的一些长方体形状物体的观察,引导学生认识物体的正面、侧面和上面,在观察活动中体会:从不同的位置观察到的物体的形状可能是不一样的,最多只能看到长方体的三个面。练习活动中,通过对正方体的观察,体会到正方体的每个面的形状都是正方形,通过对拼搭后的物体的观察,感受视图的形状是随着观察角度而变化的,为下一段的学习作好铺垫。

2.学生实际。

二年级时,学生已接触过从物体的前、后、左、右等不同位置观察物体,初步掌握了观察物体的基本方法。但三年级学生的抽象思维能力还比较弱,要由只关注物体的一个面发展到同时观察两个面、三个面,还具有一定的难度。在表述自己的观察方法或结果时也会出现叙述不清的状况。

时间。

教学环节。

教师活动。

学生活动。

设计意图。

1、出示图书箱,引导学生:从你的位置观察,你能看到什么?

2、让学生在盒子上指认。

3、指名介绍。

活动一:认识物体的正面、侧面和上面。

1、观察图书箱,说说在自己的位置上能看到的,随机认识它的正面、侧面和上面。

2、找找自己带的盒子(长方体形状)的正面、侧面和上面。

3.交流中感悟“正面”的不同含义。

以学生熟悉的图书箱为观察对象,在看、说、指等一系列活动中,调动多种感官,协同认识物体的正面、侧面和上面,并初步感受到因为观察的位置或角度不同,看到的面的个数也是不同的。

25。

分钟。

明确观察要求,

指导观察方法,

2、教师巡视,注意收集不同的资源。

3、组织交流与评价。

随机引发思考:从一个位置观察,最多能看到长方体的几个面。

4、引导小结。

活动二、从不同位置观察盒子,体会观察结果的不同。

1、学生观察,记录观察结果。

2、交流观察结果,检验观察方法。

3、感悟小结。

这个大问题的设计是在学生前一次的初步观察体悟的基础上提出的,这样,每个学生都有独立观察,解决问题的时间与空间,而不同层次的学生所展示出来的“差异资源”又为互动生成提供了可能。使学生在活动中学会多角度观察物体的方法,建立初步的空间观念。

引导学生观察,鼓励学生不断挑战。

一、1、从正方体的三个面观察。

2、观察老师拼搭的两个正方体,想象后与视图连一连。

二、按要求摆图形。

通过这一环节,使学生初步体会正方体的每个面的形状都是正方形,通过想象与观察结合,学生初步感受图形与视图的联系,培养学生的空间想象能力,为后续的学习打下一定的基础。

1―2分钟。

学完这节课,你有什么收获?

学生交流,

自我评价。

数学教学设计篇五

一、巩固红黄蓝三原色的认识,学习按物体的大小、颜色进行分类,在游戏中发展数数能力。

二、乐意与同伴交流,乐意参与游戏,乐意体验共同活动的快乐。

1、大猫、小猫(蓝色、黄色)的胸卡若干。

2、红、黄、蓝小鱼若干、一大一小锅子各一。

3、小篓子人手各一。

一、开始部分:让幼儿自主选择角色,巩固黄蓝两种颜色的认识,并导入活动。

1、扮演角色:小朋友,我是猫妈妈,你们都是我的猫宝宝,妈妈这儿有许多小猫的胸卡,喜欢做蓝猫的就找蓝色的小猫卡片挂上,喜欢做黄猫的就找黄色的卡片挂上。挂好卡片赶紧找个圆点坐下来。

3、选择路线

师:宝宝们,你们长大了,能告诉妈妈你们有什么本领?好,今天妈妈在草地上晒了许多鱼干,想请你们帮妈妈去收鱼干,愿意吗?去草地有两条路,一条是黄色的,一条是蓝色的,我们的黄猫、蓝猫该走哪条路呢?赶快到路口排队。过渡:听着音乐小猫跟猫妈妈去草地。

师:宝宝们,跟着妈妈去草地吧,路上不能你推我挤,注意安全。我们一个跟着一个走。

二、基本部分

一)小猫收鱼干,巩固对三原色的认识,发展三以内的数数能力。

(1)师:宝宝们,草地到了,你们看妈妈晒的鱼干多吗?有些什么样的鱼干呢?(引导幼儿说出颜色不同)现在我们可以收鱼干啦!在草地上当心把小草踩坏了,也不能摘小草。小猫们爬一爬,找一找,一只小猫收一条鱼干。你收到的是什么颜色的鱼干呢?快把收到的鱼干放在口袋里吧。收到鱼干高兴吗?用动作表示一下:耶!

(2)请宝宝们爬一爬,找一找,收一条跟自己一样颜色的鱼干。并请小猫相互检查一下收的鱼干是否正确。

(3)请每只小猫去收一条红色的大鱼干。你收到了一条什么样的鱼干呢?

师:呀,还有些鱼干请猫阿姨给我们收吧,不早了,我们也该回家了。看看哪条路大,哪条路小?请黄猫在大一点的路上走,蓝猫在小一点的路上走(听音乐动作)

二)小猫数鱼干,感知三以内鱼干的数量。

(2)、你收到的红鱼干给妈妈看看,有几条呢?(让幼儿自己数数)你收到的黄鱼干给妈妈看看,有几条呢?(让幼儿数数)你收到了几条蓝鱼干?(目测)

三)小猫烧鱼,按大小给鱼干分类

(1)师:宝宝们,肚子饿吗?妈妈来烧鱼干给宝宝吃,好吗?你们看妈妈这儿有几只锅子?两只一样大吗?大鱼干应该放哪个锅子烧?小鱼干放哪个锅子?请你们把手中的鱼干一条一条放进锅里。大鱼干放在大锅里,小鱼干放在小锅里。

(2)幼儿放鱼,老师对幼儿的行为做即时的检验:是否放对了大鱼和小鱼。儿歌:小猫小猫要烧鱼,大鱼放在大锅里,小鱼放在小锅里。

师:呀,两只锅里现在变成许多鱼了。

三、结束部分

师:鱼儿烧好了,香喷喷的,真好吃啊!瞧!宝宝们想尝一尝吗?来跟着妈妈一起去洗手,吃鱼干喽!

游戏《卖鱼》

数学教学设计篇六

《梯形的面积》是冀教版小学数学五年级第六单元第四课时的教学内容。本课是在学习了平行四边形和三角形面积计算公式探索过程的基础上进行教学的。因此教材没有给出操作的材料和方法,而是直接给出一个梯形,提出“小组合用,探索梯形面积的计算方法”的要求,给学生提供小组合作的机会和更大的探索的空间,这一内容为后继教学“组合图形面积计算”作必要的铺垫。

学生已经认识了梯形,掌握了长方形、正方形、平行四边形和三角形面积的计算方法,同时学生已经有了平行四边形面积、三角形面积公式的探索过程的活动经验,了解了转化的数学思想,对于用两个完全一样的梯形拼成一个平行四边形,通过小组讨论及课前铺垫应该能够得能顺利完成。但对于选取从两腰的中点进行剪切、旋转的割补法学生未必能够想到,这应该是普遍存在的困难。

(一)教学目标。

1.知识与技能:经历小组合作探索梯形面积公式、交流及应用的过程;掌握梯形面积的计算公式。

2.数学思考:在参与操作、观察、实践等数学活动中,学会独立思考,能清晰表达自己的想法,体会转化的数学思想。

3.问题解决:会利用梯形面积的计算公式解决实际生活问题;学会与他人合作交流;体验解决问题方法的多样性,发展创新意识。

4.情感与态度:获得小组合作学习的愉快体验,培养学生的团队精神,感受面积公式推导过程的条理性。

(二)教学重点:将梯形转化成学过的图形,分析、推导梯形面积计算公式。

(三)教学难点:理解用一个梯形割补成长方形的推导方法。

针对学生的知识基础主要采用小组合作的学习方式,探索两个完全一样的梯形可以拼成一个平行四边形,学生自主分析总结得出梯形面积的计算公式,同时课件辅助推导过程。另外,对于割补的方法,如果学生不能呈现教师要采用课件演示。

数学教学设计篇七

学习对象分析:本班学生上册应掌握的知识基本掌握较好,尤其是分数计算方面准确率较高,但在实际应用类,如应用题,还有个别学生对题目难以理解,解题困难。大部分学生学习较主动,能自觉进行课后复习、课前预习,课堂上发言较积极,但有个别学生依赖性较强,思维能力和分析能力都较差,听课时较易分神,学习成绩较不理想。同时,本班同学学习习惯大多较好,课堂听课认真,作业基本上都能按时完成。只有少数学困生学习上仍有惰性,完成作业比较应付。

这一册教材包括下面一些内容:负数、圆柱与圆锥、比例、统计、数学广角、整理和复习等。圆柱与圆锥、比例和整理和复习是本册教材的重点教学内容。

(1)了解负数的意义,会用负数表示一些日常生活中的问题。

(2)理解比例的意义和基本性质,会解比例,理解正比例和反比例的意义,能够判断两种量是否成正比例或反比例,会用比例知识解决比较简单的实际问题;能根据给出的有正比例关系的数据在有坐标系的方格纸上画图,并能根据其中一个量的值估计另一个量的值。

(3)会看比例尺,能利用方格纸等形式按一定的比例将简单图形放大或缩小。

(4)认识圆柱、圆锥的特征,会计算圆柱的表面积和圆柱、圆锥的体积。

(5)能从统计图表准确提取统计信息,正确解释统计结果,并能作出正确的判断或简单的预测;初步体会数据可能产生误导。

(6)经历从实际生活中发现问题、提出问题、解决问题的过程,体会数学在日常生活中的作用,初步形成综合运用数学知识解决问题的能力。

(7)经历对“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题,发展分析、推理的能力。

(8)通过系统的整理和复习,加深对小学阶段所学的数学知识的理解和掌握,形成比较合理的、灵活的计算能力,发展思维能力和空间观念,提高综合运用所学数学知识解决问题的能力。

(9)体会学习数学的乐趣,提高学习数学的兴趣,建立学好数学的信心。

(10)养成认真作业、书写整洁的良好习惯。

3、教学重点。

(1)在熟悉的生活情境中初步认识负数,能正确的读、写正数和负数,知道0既不是正数也不是负数。

(2)认识圆柱和圆锥,掌握它们的基本特征。认识圆柱的底面、侧面和高。认识圆锥的底面和高。

(3)探索并掌握圆柱的侧面积、表面积的计算方法,以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。

(4)理解比例的意义和基本性质,会解比例。理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。

(5)认识正比例关系的图像,能根据给出的有正比例关系的数据在有坐标系的方格纸上画出图像,会根据其中一个量在图像中找出或估计出另一个量的值。

(6)了解比例尺,会求平面图的比例尺以及根据比例尺求图上距离或实际距离。

(7)会综合应用学过的统计知识,能从统计图中准确提取统计信息,能够正确解释统计结果。

(1)运用知识迁移,采用对比的教学方法,促使学生理解掌握比例、比例尺、正反比例的意义;解比例应用题,通过分析已学过的常见的数量关系,正确找出两种相关联的量,判断成哪种比例关系,再列出方程解答。

(2)充分利用电教媒体,通过演示,学生实验,操作,揭示规律,从而引导学生通过自主学习,合作交流,协作探究出多种方法来推导计算公式,培养学生解决问题的能力。

(3)做好小学数学相关知识的.归纳、整理工作,确实做到精讲多练,使学生实现真正意义上的自主建构。

(1)贯彻数学课标标准的精神,重视培养学生的数学学习兴趣、数学意识和实践能力,指导学生的学习方法。认真钻研教材,明确教学要求,全面提高教学质量。

(2)比例这一单元先教学正比例的量,接着教学成反比例的量,然后把两者放在一起进行联系、对比,最后再教学正反比例的应用题,使学生更好地理解正反比例有关系列概念并能正确判断,避免发生混淆;对于应用题,安排用不同的方法解同一道题目,既可以加深学生对比例的认识,又可以提高学生灵活运用各种知识的解题能力。

(3)圆柱及圆锥的教学从直观入手,通过对常见实物观察,使学生认识圆柱的形状,并从实物中抽象出圆柱几何图形,然后介绍圆柱各部分名称。通过课件演示及学生实验来教学圆柱的侧面积、表面积、体积及圆锥的体积。

(4)统计图教学时首先思考怎样才能清楚地看出一个统计表中有关数量间的百分比关系。紧接着让学生知道在表示有关数量之间的关系上,统计图比统计表更加形象具体;然后依次说明三种不同类型的统计图的特点和作用。最后在例题和练习中,让学生根据图表回答问题,使学生学会看统计图表、会根据图表中的数据分析问题,培养学生解决实际问题的能力并养成学生应用统计的思想分析思考问题的习惯。

(5)复习时重视基础知识的复习,注意知识间的联系。同时注意启发、引导学生主动地对所学知识进行整理和复习,形成知识网络。教师则加强反馈,注意面向全体,因材施教,及时补习学生的知识缺漏。

(1)根据班级学生实际和教材特点设计有层次性的练习。

(2)结合整理与复习,设计系统性较强的练习,帮助学生更好地掌握小学阶段的数学知识。

(3)课后作业尽量做到分层练习。

工程技术系。

xx年11月15日。

数学教学设计篇八

教材第67页例1、“做一做”和练习十五第1、2题。

1.根据等式的性质,使学生初步掌握解方程及方程检验的方法,并理解方程和方程的解的概念。

2.培养学生的分析能力及应用所学知识解决实际问题的能力。

3.帮助学生养成自觉检验的良好习惯。

理解并掌握解方程的方法。

实物投影及多媒体课件。

1.提问:什么是方程?等式有什么性质?

2.你会根据下面的图形列出方程吗?

3.填一填。

4.导入新课:前面两节课我们借助天平平衡,学习了方程的意义和等式的性质,今天这节课我们继续研究与方程有关的新知识。

1.方程的解与解方程的概念。

(1)理解“方程的解”和“解方程”的意义。

教师演示:先在左盘放上一个重100g的杯子,再往杯子里加入xg的水,天平失去平衡。

提问:怎样才能使天平保持平衡呢?

请学生到台前操作:天平右边的砝码加到250g时,天平平衡。

提问:你能根据天平两边物体质量的相等关系列出方程吗?

根据学生的回答,板书:100+x=250。

启发:怎样才能求出方程中未知数x的值呢?你有什么办法?把你的办法和小组的同学交流。

学生活动后,组织反馈。

方法一:根据加减法之间的关系。

方法二:根据数的组成。

因为100+150=250,所以x=150。

方法三:根据等式的性质。

讲解:当x=150时,100+x=250这个方程的左右两边相等,像这样使方程左右两边相等的未知数的值,叫做方程的解。求方程解的过程叫解方程。这节课我们就来学习解方程。(出示课题)。

(2)比较“方程的解”和“解方程”。

提问:方程的解与解方程到底有什么不同呢?

学生汇报。

(3)即时巩固。

完成教材第67页“做一做”第2小题。

(1)出示例1题图。

引导学生思考:根据在天平两边同时拿走相同的物品,天平仍然平衡的道理,即方程左右两边同时减去一个数,仍然相等。

追问:为什么要从方程两边同时减去3,而不是其他数?

结合学生的回答,教师板书:

x+3=9。

x+3-3=9-3。

x=6。

提问:解方程的过程就是这样的吗?还应该注意些什么呢?

讲解:求方程中未知数x的值时,要先写“解”,表示下面的过程是求未知数x的值的过程,再在方程的两边都减去3,求出方程中未知数x的值。写出这一过程时,要注意把等号对齐。(示范板书解方程的过程)。

解:x+3=9。

x+3-3=9-3。

x=6。

引导:x=6是不是正确的答案呢?我们可以通过检验来判断:把x=6代入原方程,看看左右两边是不是相等。

提问:如果等式的左右两边相等,说明什么?(说明答案是正确的)如果不相等呢?(说明答案是错误的)请同学们用这样的方法试着检验一下。(随学生的回答扼要板书检验过程)。

(2)即时巩固。

解下列方程,并检验。

x+4.5=9100+x=100。

师强调:解方程时注意等号要对齐,检验时过程要写清楚,养成检验的良好习惯。

1.完成课本第67页“做一做”第1题。

2.解下列方程,并检验。

提问:这节课你学习了什么?还有什么收获。

小结:通过刚才解方程的过程,我们知道了方程两边同时加上或减去一个相同的数,左右两边仍然相等。需要注意的是,在书写过程中写的都是等式,不是递等式。

完成课本练习十五的第1、2题。

数学教学设计篇九

以学校工作计划为指导,严格执行学校的各项教育、教学制度和要求,认真完成各项任务,提高教学质量,提高课堂效率,数学教研提倡严谨、科学、务实,以《初中数学新课程标准》为依据,全面推进素质教育。

1、因式分解的重点是因式分解的四种基本方法,难点是灵活应用这四种方法。

2、分式的重点是分式的四则运算,难点是分式四则混算、解分式方程以及列分式方程解应用题。

3、数的开方的重点是平方根、算术平方根的要领及求法,难点是算术根与实数的概念。

4、二次根式的重点是二次根式的化简与计算,难点是正确理解和运用公式

5、三角形的重点是三角形的性质,全等三角形的性质与判定,难点是推理入门。

6、四边形的重点是平行四边形的定义、性质和判定,难点是平行四边形与各种特殊平行四边形之间的联系和区别以及中心对称。

7、相似形的重点是相似三角形的判定定理和性质定理及平行线段之间比的相等关系。

1、加强教学技能,面向全体学生。由于学生在知识、技能方面的发展和兴趣、特长等不尽相同,所以要因材施教。在组织教学时,应从大多数学生的实际出发,并兼顾学习有困难的和学有余力的学生,对学习有困难的学生,要特别予以关心,及时采取有效措施,激发他们学习数学的兴趣,指导他们改进学习方法。

2、主动理性学习洋思教学经验,打造高效课堂。

3、改革作业结构减轻学生负担。将学生按学习能力分成几个层次,使每类学生都能在原有基础上提高。

4、课后辅导实行动态分层,及时辅导。

第一章《一元一次不等式和一元一次不等式组》约13课时2.233.8

第二章《分解因式》约6课时3.9----3.16

第三章《分式》分式约10课时3.17---3.30

第四章《相似图形》期中考试约20课时3.31---5.12

第五章《数据的收集与处理》约7课时5.12---5.26

第六章《证明一》你能肯定吗约9课时5.26---6.15.

期末复习约9课时6.16---7月

数学教学设计篇十

教学内容:

人教版教材六年级下册第67页及相关内容。

教学目标:

1.综合知识解决生活中常见的有关自行车里的数学问题。

2.经历“提出问题——分析问题——建立数学模型——求解——解释与运用”的问题解决的基本过程。

3.感受数学知识与日常生活的密切联系,体会学数学、用数学的乐趣,激发学习知识的热情。

教学难点:研究普通自行车的前、后齿轮数与它们的转数的关系。

教学准备:多媒体课件

教学过程:

一、揭示课题

今天我们来探究自行车里的数学。

二、研究普通自行车的速度与内在结构的关系

提出问题

自行车蹬一圈,走多远?

分析问题

方法一:直接测量(误差大)

方法二:计算法

解决问题

自行车行进原理

探究车轮转动的圈数与什么有关?

探究前齿轮转一圈,后齿轮转几圈

合作探究

前齿轮转动一个齿,后齿轮转动几个齿?前齿轮走过2个齿呢?5个齿呢?

你发现了什么规律?

汇报交流

前后齿轮转动的什么数是相等的?

结论:前齿轮齿数×前齿轮转数=后齿轮齿数×后齿轮转数

后齿轮转数=前齿轮齿数/后齿轮齿数

建立数学模型

自行车蹬一圈走的距离=前齿轮齿数/后齿轮齿数×车轮周长

运用知识

三、研究变速自行车能变出多少种速度

观察变速自行车

变速自行车一般有多个前齿轮多个后齿轮,例如这款变速自行车有2个前齿轮,6个后齿轮。

合作探究

出示书上表格,小组合作交流,并完成表格填写

思考:蹬同样的圈数,前、后齿数比是( )的组合使自行车走得最远,为

什么?

汇报交流

自行车蹬一圈走的距离= 齿数比 ×车轮的周长,当车轮周长一定时,前齿轮数齿数:后齿轮数齿数的比值最大时,自行车走的最远。

四、课堂小结师:同学们,通过今天的实践活动,你又有哪些新的收获呢?

数学教学设计篇十一

运用公式法dd完全平方公式(1)。

教学目标。

2.理解完全平方式的意义和特点,培养学生的判断能力.

3.进一步培养学生全面地观察问题、分析问题和逆向思维的能力.。

4.通过运用公式法分解因式的教学,使学生进一步体会“把一个代数式看作一个字母”的换元思想,数学教案-运用公式法。

教学重点和难点。

重点:运用完全平方式分解因式.

难点:灵活运用完全平方公式公解因式.

一、复习。

1.问:什么叫把一个多项式因式分解?我们已经学习了哪些因式分解的方法?

答:把一个多项式化成几个整式乘积形式,叫做把这个多项式因式分解.我们学过的因式分解的方法有提取公因式法及运用平方差公式法.

2.把下列各式分解因式:

(1)ax4-ax2(2)16m4-n4.

解(1)ax4-ax2=ax2(x2-1)=ax2(x+1)(x-1)。

(2)16m4-n4=(4m2)2-(n2)2。

=(4m2+n2)(4m2-n2)。

=(4m2+n2)(2m+n)(2m-n).

问:我们学过的乘法公式除了平方差公式之外,还有哪些公式?

答:有完全平方公式.

请写出完全平方公式.

完全平方公式是:

(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2.

这节课我们就来讨论如何运用完全平方公式把多项式因式分解.

二、新课。

和讨论运用平方差公式把多项式因式分解的思路一样,把完全平方公式反过来,就得到。

a2+2ab+b2=(a+b)2;a2-2ab+b2=(a-b)2.

这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方.式子a2+2ab+b2及a2-2ab+b2叫做完全平方式,上面的两个公式就是完全平方公式.运用这两个式子,可以把形式是完全平方式的多项式分解因式.

问:具备什么特征的多项是完全平方式?

答:一个多项式如果是由三部分组成,其中的两部分是两个式子(或数)的平方,并且这两部分的符号都是正号,第三部分是上面两个式子(或数)的乘积的二倍,符号可正可负,像这样的式子就是完全平方式.

问:下列多项式是否为完全平方式?为什么?

(1)x2+6x+9;(2)x2+xy+y2;

(3)25x4-10x2+1;(4)16a2+1.

x2+6x+9=(x+3).

(2)不是完全平方式.因为第三部分必须是2xy.

(3)是完全平方式.25x=(5x),1=1,10x=2・5x・1,所以。

25x-10x+1=(5x-1).

(4)不是完全平方式.因为缺第三部分.

答:完全平方公式为:

其中a=3x,b=y,2ab=2・(3x)・y.

例1把25x4+10x2+1分解因式.

分析:这个多项式是由三部分组成,第一项“25x4”是(5x2)的平方,第三项“1”是1的平方,第二项“10x2”是5x2与1的积的2倍.所以多项式25x4+10x2+1是完全平方式,可以运用完全平方公式分解因式.

解25x4+10x2+1=(5x2)2+2・5x2・1+12=(5x2+1)2.

例2把1-m+分解因式.

问:请同学分析这个多项式的特点,是否可以用完全平方公式分解因式?有几种解法?

答:这个多项式由三部分组成,第一项“1”是1的平方,第三项“”是的平方,第二项“-m”是1与m/4的积的2倍的相反数,因此这个多项式是完全平方式,可以用完全平方公式分解因式.

解法11-m+=1-2・1・+()2=(1-)2.

解法2先提出,则。

1-m+=(16-8m+m2)。

=(42-2・4・m+m2)。

=(4-m)2.

三、课堂练习(投影)。

1.填空:

(1)x2-10x+()2=()2;

(2)9x2+()+4y2=()2;

(3)1-()+m2/9=()2.

2.下列各多项式是不是完全平方式?如果是,可以分解成什么式子?如果不是,请把多。

项式改变为完全平方式.

(1)x2-2x+4;(2)9x2+4x+1;(3)a2-4ab+4b2;

(4)9m2+12m+4;(5)1-a+a2/4.

3.把下列各式分解因式:

(1)a2-24a+144;(2)4a2b2+4ab+1;

(3)19x2+2xy+9y2;(4)14a2-ab+b2.

答案:

1.(1)25,(x-5)2;(2)12xy,(3x+2y)2;(3)2m/3,(1-m3)2.

2.(1)不是完全平方式,如果把第二项的“-2x”改为“-4x”,原式就变为x2-4x+4,它是完全平方式;或把第三项的“4”改为1,原式就变为x2-2x+1,它是完全平方式.

(2)不是完全平方式,如果把第二项“4x”改为“6x”,原式变为9x2+6x+1,它是完全平方式.

(3)是完全平方式,a2-4ab+4b2=(a-2b)2.

(4)是完全平方式,9m2+12m+4=(3m+2)2.

(5)是完全平方式,1-a+a2/4=(1-a2)2.

3.(1)(a-12)2;(2)(2ab+1)2;

(3)(13x+3y)2;(4)(12a-b)2.

四、小结。

运用完全平方公式把一个多项式分解因式的主要思路与方法是:

1.首先要观察、分析和判断所给出的多项式是否为一个完全平方式,如果这个多项式是一个完全平方式,再运用完全平方公式把它进行因式分解.有时需要先把多项式经过适当变形,得到一个完全平方式,然后再把它因式分解.

2.在选用完全平方公式时,关键是看多项式中的第二项的符号,如果是正号,则用公式a2+2ab+b2=(a+b)2;如果是负号,则用公式a2-2ab+b2=(a-b)2.

五、作业。

把下列各式分解因式:

1.(1)a2+8a+16;(2)1-4t+4t2;

(3)m2-14m+49;(4)y2+y+1/4.

2.(1)25m2-80m+64;(2)4a2+36a+81;

(3)4p2-20pq+25q2;(4)16-8xy+x2y2;

(5)a2b2-4ab+4;(6)25a4-40a2b2+16b4.

3.(1)m2n-2mn+1;(2)7am+1-14am+7am-1;

4.(1)x-4x;(2)a5+a4+a3.

答案:

1.(1)(a+4)2;(2)(1-2t)2;

(3)(m-7)2;(4)(y+12)2.

2.(1)(5m-8)2;(2)(2a+9)2;

(3)(2p-5q)2;(4)(4-xy)2;

(5)(ab-2)2;(6)(5a2-4b2)2.

3.(1)(mn-1)2;(2)7am-1(a-1)2.

4.(1)x(x+4)(x-4);(2)14a3(2a+1)2.

1.利用完全平方公式进行多项式的因式分解是在学生已经学习了提取公因式法及利用平方差公式分解因式的基础上进行的,因此在教学设计中,重点放在判断一个多项式是否为完全平方式上,采取启发式的教学方法,引导学生积极思考问题,从中培养学生的思维品质.

2.本节课要求学生掌握完全平方公式的特点和灵活运用公式把多项式进行因式分解的方法.在教学设计中安排了形式多样的课堂练习,让学生从不同侧面理解完全平方公式的特点.例1和例2的讲解可以在老师的引导下,师生共同分析和解答,使学生当堂能够掌握运用平方公式进行完全因式分解的方法.

将本文的word文档下载到电脑,方便收藏和打印。

数学教学设计篇十二

学会估算方法。

利用估算方法解决实际问题。

黄豆,杯子,天平等。

一、引入。

师:你们看,这是什么?

生:黄豆。

师:你们想知道这些黄豆有多少粒吗?

想一想:用什么方法可以知道黄豆有多少粒。

二、小组讨论,确定方案。

师:你们可以用课桌上的工具。

(杯子,天平等)。

三、小组合作,实施方案。

四、汇报交流。

方案一:

先数一杯黄豆的数目,再看这些黄豆有多少杯,再用乘法计算即可。

方案二:

先测一把黄豆的.数目,再看这些黄豆有多少把,再用乘法计算即可。

方案三:

先测100粒黄豆的重量,算出一粒的重量,再称出总重量,再用除法计算即可。

五、小结。

数学在我们的生活中有着广泛的应用,请大家都要做留心观察的人。

数学教学设计篇十三

四年级上册“计数问题”

数线段的个数。

小学数学。

新课讲授。

讲授。

教学目标:学生通过观看视频会快速准备的数出线段(角)的个数。

教学对象:小学四年级学生。

教学资源与环境:

电子白板,录屏软件。

1。给出一个图,让学生先试着数线段,提出问题:怎样快速又补充不漏的数出来。进行基于问题的教学。

2,从一般到特殊,讲述数线段的技巧。

3,给出问题,学生应用学到的知识解决问题,检验是否达到教学目标。

预计上课时间长度:5分钟。

教学理念:创新。教学模式创新,运用技术创新,丰富教学策略,给学生创造一个富有乐趣,有益于学习的微课程。

数学教学设计篇十四

10月17和18日,我参加了在xx举办的国基教育大讲堂《数的认识》教学操作指南研讨会。2天时间由各地优秀数学教师:xxx几位大师展示高水平数学课,使我感受颇深,受益匪浅。针对这次活动,谈谈自己的感受。

总体感觉,教师们共同的优点就是:声音有亲和力,甜美,语言精炼,教师无论是教学反思,还是回答当场提出的问题,大多都能很淡定、很全面的给予解释,有条不紊。对课标吃得透,具有很高的数学素养。这都是很值得我学习的。

1、课件制作精美,动态的较多,更形象、直观的看出是平移还是旋转。鼓励孩子,只要你好好学习,你也可以完成这种任务,引起学生对研究数学的学习的一种责任感。

2、张xx老师的《百分数的认识》这节课:整节课气氛比较活跃,老师情绪高涨,说话幽默,能感染学生,她特别享受教的过程,投入,和孩子们融为一体,让学生很放松,孩子们得到了充分的展示。

3、杨xx老师《生活中的负数》倡导的课前预习、师生互动、自主性学习、讲了如何处理课堂生成与课程目标的关系〈每一环设计目的性要强,充分理解教材、预设要充分、你要放得开、收得拢〉。

4、许xx《认识分数》围绕“先分后数”这一分数实质巧妙的建立起整数、分数以及小数三者之间的联系。把各种数有机的串联起来,打通了各数之间的联系。短短的一节课,抛开了一般教学对分数的浅层的认识。从数,起源于数。出发,有落脚到分数也是用来数的。

5、吴xx老师《分数的初步认识》,为了达成数的概念的建立,理解数的意义,整个过程,她不惜时间,充分让孩子操作,试一试,想一想,折一折,说一说,帮助学生出不见分数的概念,初步理解分数的意义,整节课,学生的学习室快乐的,接纳新知是不知不觉的,概念的建立是学生独立操作获取的,概念意义的裂解是学生自己悟出来的。是帮助学生有形象到抽象架起桥梁的工程师。

听了两天的课,确实收获不少,看到了自己的差距,也被他们上课的那种激情所感染,在课中老师要先有情感,才能开启学生的思维。他们不只是授课,更是与学生心灵与心灵的沟通,以自己的那份热情唤起学生的求知欲。作为一名教师我们要学会反思,学人之长,补已之短;在反思时要上升到理论高度,用理论来指导实践,反过来深入理解理论,再指导教学。在教学时要学会质疑,在质疑中成长,逐渐形成自己独特的教学风格。

数学教学设计篇十五

这堂课给人的感觉是水到渠成,如沐春风,教师教得亲切,自然,活泼,学生学得轻松愉快,有以下优点值得我们学习:

1、教学设计新颖别致,整堂课不觉得在学,而觉得是一堂套圈的活动课,学生是参与者,教师是评委,在玩中学,比生硬的说理更让人信服,更富有感染力,哪个学生不好玩,不好动?这堂课满足了学生的兴趣,所以气氛也相当的活跃,无疑,教学设计是成功的。

2、教学流程生动,流畅,层次感强。如三次套圈,每次的目的都不同,第一次引出连加,第二次引出连加中的进位,教师并进行重难点引导,第三次是估算,也是在游戏中进行,为后来的环节打下基础,最后,用600元钱买价格不同的动物娃娃,够不够?将连加运用到生活中,一气呵成,环环相扣,层层铺垫,教学环节相当严谨。

3、学生真正成为了学习的主人。让学生动手实践,自主探究,合作交流,是新课标倡导的学习方式,这节课也把权力下放,教师只作点拔,成为活动的组织者,巧妙设疑,引导学生去发现问题,解决问题,拓展他们的解题思路,激活他们的思维,如套圈比赛,男女生竞争,提高了学生的主动参与的面和质量,让人觉得是学生在推波助澜,学生们自主合作完成了学习任务,有一点启发:只要教师放开你呵护的双手,就会发现,孩子也是一个发现者,研究者,探究者。

几点建议:

一、生活中处处有数学,能否多举几个例子;

二、在学生上台套圈时,能否交给台下的同学一些任务,如让他们算结果等;

三、课堂要有小结,但这堂课的小结过于匆忙,流于形式

数学教学设计篇十六

1、在掌握5的乘法口诀的基础上经历2的乘法口诀的编制过程,理解2的乘法口诀的意义,掌握最佳记忆方法,能熟练背诵2的乘法口诀。

2、在观察、操作、归纳等数学活动中,提升学生的数学表达、探索新知的能力,发展学生的数感。

3、在运用2的乘法口诀解决问题过程中,获得一些成功的体验,进一步形成独立思考、探究问题的意识。

经历归纳2的乘法口诀的过程,理解2的乘法口诀的意义。

熟记2的乘法口诀,并能灵活应用乘法口诀进行计算。

小棒、多媒体课件。

一、创设情境,提出问题。

预设:竿上4人转圈圈。

追问:接着往下编,你能提出什么问题?预设:3根竿上有几人?4根、5根呢?

谈话:下面我们就来解决“3根竿上有几人?4根、5根呢?”这个问题。

本环节以学生喜闻乐见的杂技表演顶竹竿为背景,与生活联系密切。指导学生观察情境图找出有用的数学信息,将信息以学生喜欢的儿歌对话的语言表达形式呈现,能自然而然地把学生引入有趣的数学学习中。学生在接着编儿歌的过程中会意识到,要想接着编,首先须知道3根、4根、5根竿上分别有几人,从而提出有价值的数学问题,有效地培养了学生的观察、发现、提取数学信息和提出数学问题的能力。

二、解决问题,探究方法。

1、借助学具,创编儿歌。

谈话:谁来说一说你认为3根竿、4根竿、5根竿上分别有几人?预设:3根杆上有6人,4根竿上有8人,5根竿上有10人。

谈话:大家都认为3根杆上有6人,4根竿上有8人,5根竿上有10人,是怎样得到的呢?先自己动手用小棒摆一摆、算一算,再把你的想法和小组成员交流一下。

学生动手操作,教师巡视指导。汇报交流:

(1)探究3根竿上有几人。

提问:“3根竿上有几个人?”哪个小组展示一下你们的方法?(板书:3根竿上个人)学生可能出现的方法有:预设1:摆小棒的方法。预设2:列加法算式2+2+2=6。预设3:列乘法算式3×2=6或2×3=6。

小结:同学们用自己的方法验证了刚才的猜想,3根竿上6个人(板书:6),表示3个2相加(板书:3个2相加),用乘法算式表示为3×2=6(板书:3×2=6)。

(2)探究4根竿上有几人。

提问:4根竿上有几人呢?哪个小组来展示一下你们的方法?(板书:4根竿上个人)学生可能出现的方法有:预设1:用小棒摆一摆。

预设2:列加法算式表示2+2+2+2=8。

预设3:列乘法算式2×4=8或4×2=8,表示4个2相加。

小结:我们运用不同的方法,都得出4根竿上有8人(板书:8),表示4个2相加(板书:4个2相加),用乘法表示为4×2=8(板书:4×2=8)。

(3)探究5根竿上有几人。

谈话:3根竿、4根竿上有几人的问题都解决了,哪个小组想来说一说5根竿上有几人,你们是用的什么方法?(板书:5根竿上个人)。

预设1:我们是用画圆的方法表示。预设2:列加法算式表示2+2+2+2+2=10。预设3:列乘法算式2×5=10或5×2=10,表示5个2相加。

小结:我们通过摆一摆、算一算得出5根竿上有10人(板书:10),表示5个2相加(板书:5个2相加),用乘法表示为5×2=10(板书:5×2=10)。

(4)探究2根、1根竿上各有几人。

提问:2根竿上几个人?2根竿就是几个2?能用加法算式和乘法算式表示吗?(板书:2根竿上个人)。

预设:第一个2表示每根竿上有2人,另一个2表示有2根竿子,2×2表示2个2相加。提问:1根竿上有几人?也就是几个2?用乘法算式怎样表示?预设:1根竿上有2个人,也就是1个2,乘法算式是1×2。

小结:2根竿上有4人(板书:4),表示2个2相加(板书:2个2相加),用乘法表示为2×2=4(板书:2×2=4)。1根竿上有2人(板书:2),表示1个2(板书:1个2),用乘法表示为1×2=2(板书:1×2=2)。

【设计意图】本环节教师给学生提供了充足的自主探究的空间,在摆一摆的过程中、通过借助直观教具,有利于学生在头脑中建立几乘2的直观表象。全班交流不同方法时,在说一说的过程中,既对学生的数学语言表达进行了一次锻炼,同时又在表达的过程中进一步加深了对几乘2乘法意义的理解。整个过程既培养了学生的操作、归纳、倾听能力,又提高了学生解决问题的能力,让学生在经历知识的产生过程中体验到学习数学的乐趣。

2、借助儿歌,创编2的乘法口诀。

预设:2根竿上4个人,3根竿上6个人,4根竿上8个人,5根竿上10个人。谈话:除了用小儿歌帮助记忆,你还能想到更简便的方法吗?学生可能回答:可以把儿歌编成乘法口诀。

谈话:1根竿上2个人,表示1个2,用乘法表示为1×2=2,谁能来编第一句?预设:一二得二(板书:一二得二)。

提问:2根竿上4个人,表示2个2相加,乘法算式:2×2=4,谁来接着编?预设:二二得四(板书:二二得四)。

谈话:剩下的你会编吗?先自己编一编,再把你的想法在组内交流一下。学生独立创编,教师巡视指导。汇报交流:

(1)创编3×2的口诀。

谈话:3根竿上6个人,表示什么?用乘法怎样表示?预设:表示3个2相加,列式3×2=6。追问:谁来编口诀?预设1:三二得六。预设2:二三得六。

小结:我们在编口诀时通常都是将较小的数放到前面,这样读起来朗朗上口。所以二三得六就是3×2的乘法口诀。(板书:二三得六)。

(2)创编4×2的口诀。

谈话:4根竿上8个人,表示4个2相加,乘法算式怎样列呢?它的口诀又是什么呢?预设1:4×2=8,口诀是四二得八。预设2:我编的口诀是二四得八。

预设3:选择二四得八。应该将小数放到前面。

小结:二四得八是4×2的乘法口诀(板书:二四得八)。(3)创编5×2的口诀。

谈话:5根竿上10个人,表示几个几相加?用乘法怎样列呢?可以怎样编口诀?预设1:5个2相加,乘法算式5×2=10,口诀是二五得十。预设2:我们的口诀是二五一十。

谈话:为了方便我们在解决5个2相加或2个5相加时都用同一句口诀。我们一起把刚才创编的成果读一读。

谈话:这就是我们这节课学习的新知识——2的乘法口诀(板书课题:2的乘法口诀)。【设计意图】本环节教师充分利用迁移规律以5的乘法口诀作为基础,在对几乘2的乘法意义理解的基础上,以简短精炼、朗朗上口的儿歌作为载体,将儿歌进行简化,从而抽象出2的乘法口诀。教学中教师先带领学生共同编制“一一得一”、“一二得二”两句乘法口诀,然后放手给学生提供自主探索的空间,充分发挥学生的主动性,学生通过交流捕捉对方的想法,完善自己的认识,在自主对比、选择中,使编制简洁的乘法口诀成为学生的学习需求。

3、背诵口诀,理解意义。

谈话:同学们来观察一下这5句口诀,你有什么发现?预设1:每句口诀里都有二。预设2:从下往上看每一句都比上一句多了2,从上往下看每一句都比上一句少了2。预设3:每一句都是表示几个2相加。

预设1:记住二三得六,再加上一个2就可以。或者记住二五一十,减去一个2也可以。小结:知道了二五一十,减去一个2,非常好。看来同学们发现了口诀里的小秘密,同时也掌握了记忆乘法口诀的小窍门。现在快速记忆口诀,看谁将2的口诀记得又快又准。

(学生自由记忆、背诵,同桌两人对答,师生对答)。

谈话:真了不起,相信通过这节课的学习,大家一定能将2的乘法口诀记住。

本环节教师采用多种形式引导学生理解、记忆2的乘法口诀,通过找规律,学生进一步发现每句口诀间的联系,更深刻地理解每句口诀的意义。教师利用了师生之间、生生之间对口令等多种方式调动学生的兴趣,学生学习积极性高,记得准确而深刻,为以后学习其他乘法口诀打下基础。

4、解决绿点问题“一共有多少个灯笼?”

谈话:台上一共有多少个红灯笼就是求什么?怎样列式?预设1:就是求4个2相加,列加法算式2+2+2+2=8。预设2:求4个2是多少,列乘法算式4×2=8或2×4=8。预设3:我用乘法口诀二四得八。

谈话:用口诀我们很快就可以算出4×2=。

8、2×4=8。想一想1×1=多少?表示什么?可以怎样编口诀?(板书:1×1=)。

预设:1×1=1,表示1个1相加,口诀是“一一得一”。(板书:1)小结:我们就用这句口诀“一一得一”。(板书:一一得一)。

本环节利用2的乘法口诀解决绿点问题,在解决问题的过程中既加深学生对2的乘法口诀的深层理解、又强化了对于2的乘法口诀的记忆,同时提升了学生的应用意识,使所学知识得到进一步巩固。

三、巩固练习,应用方法。

1、看图列式。

2、照样子填一填。

3、看口诀,写算式。

3、运用口诀解决问题。

4、找一找生活中用到的2的口诀。

谈话:你们能找到生活中还有哪些问题也可以用2的乘法口诀接解决吗?预设1:一名小朋友有2只眼睛,3名小朋友有几只眼睛?二三得六。预设2:教室里一盏灯有两根灯管,4盏灯有几根灯管?二四得八。

本环节的课堂练习具有层次性,先让学生借助直观图示列出加法、乘法算式,建立加法与乘法的联系,然后再次经历编写口诀的过程加强对乘法意义的理解,通过看口诀说算式的练习形式,使学生初步体会交换两个因数,结果不变的规律,第四道解决问题的题目,加深学生对乘法意义的理解,提高了学生运用乘法知识解决实际问题的能力。让学生找一找生活中哪些问题可以用2的乘法口诀来解决这个问题,体现了数学与生活的密切联系,通过此题,让学生感受数学来源于生活,服务于生活。

四、畅谈收获,总结提升。

谈话:同学们,一节课马上就要结束了,这节课你有什么收获呢?谁来跟大家分享一下?预设1:我学会了2的乘法口诀。预设2:我会自己编口诀了。预设4:我会用口诀解决问题。预设3:这节课我很快乐。

谈话:这节课我们通过解决情境中的问题编出了2的乘法口诀,希望同学们能用学到的口诀解决生活中更多的问题!

学生用自己的语言,总结自己的学习收获,锻炼了语言表达能力,教师适时评价,增强学生学好数学、用好数学的信心,帮助学生全面回顾梳理,养成全面回顾的习惯,利于学生知识体系的完整建构。

数学教学设计篇十七

生:1和0合起来变成了10,就比9大了。

师:你们真是聪明的孩子,今天我们就来认识10。(板书课题)。

1、10的数数。

生:有10只鸽子,10个人。(此处强调9个同学加上1个老师是10个人)。

师:鸽子、老师和同学的数量都可以用10来表示。那么生活中也有10的身影,大家快找找!

生:10个手指、10个脚趾等等。

师:同学们都是爱观察的孩子。请你用身边的学具表示出10好吗?比一比谁能摆的让大家一眼看出来是10个。

生:到前面摆一摆。一行5个,摆两行。

师:收学具,倒着数一数。现在桌面还有学具吗?用几来表示?

生:用0来表示。

2、教学10以内数的顺序。

生:还差0和10。

师:再来两名学生(学号是10的和最后一名学生)。请你们按从小到大的顺序排排队,加油!

生:学生拿着数卡站队。

师:我们一起来数数,他们站得对不对。

师:看着这些数,你们能提出什么问题呢?(可以老师先提问一个)。

生1:9的后面是谁?

生1:7和9中间是谁?

生:9小于10,10大于9。(板书)。

3、教学10的组成。

师:同学们这节课认真思考,积极发言,摘得了数学王国的智慧果子。大家来数数,一共有几个?(可以出示小黑板)。

生:一共10个。

师:如果把他们放到两个篮子里,该怎样分呢?同学们拿出10个小圆片代替苹果,不过这回同桌合作,一个人分,一个人写下来,比比哪桌合作的最好。

生:学生汇报,教师板书。

师:要想分的公平,应该选哪个方案呢?

生:5和5。

师:对歌游戏。我说3。

生:我说3,3、7组成10。(此处可以同桌练习,学生自己选伙伴练习)。

三、课后总结。

师:其实生活中还有许多数藏在我们周围,只要你用心观察,就会发现他们。

数学教学设计篇十八

1、使学生借助具体内容,初步体会集合的数学思想方法。

2、运用集合的思想方法解决一些简单的数学问题或实际问题。

3、使学生在学习活动中获得成功的体验,提高学生学习数学的兴趣。

教学重、难点:

1、初步体会集合的思想方法。

2、运用集合图来表示事物。

教具准备:展示题

一、激趣引入

师:同学们喜欢参加什么课外兴趣小组?

1、师根据学生回答逐步引导出学生对自己的兴趣既喜欢又喜欢或者只喜欢

师:刚才和同学们聊了你们喜欢的兴趣小组,今天我们在数学广角中继续研究这方面的问题。(板书:数学广角)

二、互动探究

1、出示例题

三(1)班参加语文、数学课外小组的学生名单

语文杨明李芳刘红陈东王爱华张伟丁旭赵军

数学杨明李芳刘红王志明于丽周晓陶伟卢强朱小东

师:同学们从例题当中得到了那些信息?

师:参加语文和数学兴趣小组的一共有多少人?

1、教师根据学生的回答相机板书人数。

17人、16人、15人、14人……

师:这么简单的一个问题为什么会出现好几个答案?

师:我们一起来演示了看看你能发现什么。

2、教师请学生把名字条放到相应的小组里。出现了多余的三个,怎么办?用什么好办法能解决这个问题?请学生讨论思考并动手试一试。

语文小组数学小组

杨明、李芳、刘红

3、师生一起互动解决问题后,把得到的信息板书在黑板上。

4、介绍韦恩图。

5、教师手指韦恩图每个部分让生说出这个部分表示的意思并相机板书。

喜欢语文

喜欢数学

只喜欢语文

只喜欢数学

既喜欢语文又喜欢数学

6、根据这些板书信息尝试列式。

7、学生汇报列式教师相机板书。

8+9-3=14(人)

5+3+6=14(人)

……

8、同学们现在知道参加两个兴趣小组的共多少人了吗?

9、学生选择自己喜欢的计算方法相互说算理。

10、回看学生最初汇报的语文和数学兴趣小组的人数并评价。

11、对比韦恩图和统计表请学生评价。

三(1)班参加语文、数学课外小组的学生名单

语文杨明李芳刘红陈东王爱华张伟丁旭赵军

数学杨明李芳刘红王志明于丽周晓陶伟卢强朱小东

语文小组数学小组

教师小结:原来的统计表只能看出喜欢语文和喜欢数学的同学

而韦恩图不仅能看出喜欢语文和喜欢数学的同学还能看出只喜欢语文和只喜欢数学以及既喜欢语文又喜欢数学的同学。

三、运用知识解决问题

1、完成书上110页练习二十四第一题和第二题。

四、总结

师:今天上了这节课你有什么收获?

五、课外延伸

师:听说过学以致用这个词语吗?就是说学了知识要把它运用到解决周围的问题当中,今天朱老师就给大家一个学以致用的机会。

作业:运用韦恩图的知识调查本班同学喜欢的两个体育运动项目交给老师以备运动会的时候用。

数学广角

数学教学设计篇十九

苏教版国标本小学数学第十一册p62例5和练习十二t1—3。

1、使学生联系对“求一个数的几分之几是多少”的已有认识,学会列方程解答“已知一个数的几分之几是多少求这个数”的简单实际问题。

2、进一步体会分数乘、除法的内在联系,加深对分数表示的数量关系的理解。

3、培养学生解决实际问题的能力。

学会列方程解答“已知一个数的几分之几是多少求这个数”的简单实际问题。

体会分数乘、除法的内在联系,加深对分数表示的数量关系的理解。

本课要使学生在探索解决问题方法的过程中,进一步培养独立思考、主动与他人合作交流、自觉检验等习惯,获得一些成功的体验,增强学好数学的信心。

一、导入。

1、出示例5中两瓶果汁图,估计一下,大、小两瓶果汁之间有什么关系?出示:小瓶的果汁是大瓶的。

提问:这句话表示什么?你能说出等量关系式吗?

如果大瓶里的果汁是900毫升,怎么求小瓶果汁里的果汁?自己算算看。

如果知道小瓶里的果汁,怎么求大瓶中的果汁呢?

2、揭示课题:简单的分数除法应用题。

学生猜测大、小两瓶果汁之间的数量关系。

学生口答,教师根据学生的回答进行板书:大瓶里的果汁×=小瓶里的果汁。

二、教学新知。

2、教学“试一试”

1、出示例5。

提问:你想怎么解决这个问题?

2、讨论交流:你是怎么想、怎么算的?

如果学生用除法计算,教师可引导讨论:为什么可以用除法计算?依据是什么?

引导学生讨论:用方程解答是怎么想的,依据是什么?

3、引导检验:=900是不是原方程的解呢,怎么检验?

(1)出示题目。

(2)讨论:这里中的两个分数分别表示什么意思?

这题中的数量关系式是什么?

一盒牛奶的升数×=喝了的升数。

(3)这题可以怎么解答,自己独立完成,并指名板演。

(4)交流:你是怎么解决这个问题的?

学生读题。

学生反馈解题方法。学生的方法可能有两种:

(1)用除法计算。

600÷。

(2)用方程解答。

解:设大瓶里有果汁x升。

×=600。

学生在教材中完成解方程的过程,并指名板演。

学生反馈说明检验的方法。

学生读题,理解题意。

学生回答,根据学生的回答教师板书:

学生小结解题的方法和策略。

三、巩固练习。

1、完成“练一练”。

鼓励学生用两种方法进行解答。

2、完成练习十二t1。

(1)读题,画出题目中的关键句。

(2)学生说一说“一桶油用去”和“黑兔是白兔的”各表示什么意思?

(3)引导学生说出并在书上写出数量关系式。

3、小结解题策略。

学生独立解答,之后进行交流汇报。

画出题目中的关键句。

说一说各表示什么意思?

独立解答,并指名板演。

四、小结。

全课总结:这节课学习了什么?你有什么收获?

五、作业。

练习十二t2、3。

学生练习。

数学教学设计篇二十

1、使学生在实践活动中体验到数学与日常生活的紧密联系,激发学生数学探求知识的兴趣,并运用所学的知识解决实际题。

2、结合“用数学”的过程对学生进行热爱自然、保护动物的教育。

重点体会知识的价值并运用所学的知识解决实际题。

难点运用所学的知识解决实际题。

同学们,现在是什么季节?那咱们就到郊外去秋游吧。

早上的太阳出来了,瞧,郊外的鲜花景色可真美啊,看远处还有几只可爱的猴子呢。

课件出示梅花鹿图。

图中有9只梅花鹿,有3只慢慢离开了,还剩下几只梅花鹿?

请你看图说出图意,你是怎样算出图上的梅花鹿的?

你能独立列出算式吗?评价,你们认为谁说的好?

走过鹿林又来到小河边,看,河里有几只白鹅呢?

课件出示白鹅图。

生说图意。

全班交流。

独立列式计算。

评价:你认为他说的有道理吗?

同学们都是聪明的孩子,有美丽的小鸟和小梅花鹿都在为你们跳舞呢。

说出图意再列式。

既提高学生解决问题的能力,又培养学生的语言表达能力。

【本文地址:http://www.xuefen.com.cn/zuowen/7424775.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档