教资勾股定理教案(汇总16篇)

格式:DOC 上传日期:2023-11-04 15:12:12
教资勾股定理教案(汇总16篇)
时间:2023-11-04 15:12:12     小编:碧墨

教案是教师在备课过程中制定的一种具体指导教学活动的书面计划,它起着指导和规范教学的作用,帮助教师有条不紊地开展课堂教学。教案的编写需要综合考虑学科内容、学生素质、教学目标等方面因素,并且要灵活调整和改进,以适应不同课堂和学生的需求。教案还可以促使教师思考教学过程中的问题和教学效果,从而不断提高自己的教学水平。教案应考虑学生的学习难点和容易出错的地方,提供相应的辅导措施。以下教案范文能够引导学生主动参与学习,发展学生的自主学习能力。

教资勾股定理教案篇一

教学目标1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法.

2.会综合运用平行四边形的判定方法和性质来解决问题

教学重点:平行四边形的判定方法及应用

教学难点:平行四边形的判定定理与性质定理的灵活应用

二.探

阅读教材p44至p45

利用手中的学具——硬纸板条,通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:

(1)你能适当选择手中的硬纸板条搭建一个平行四边形吗?

(2)你怎样验证你搭建的四边形一定是平行四边形?

(3)你能说出你的做法及其道理吗?

(4)能否将你的探索结论作为平行四边形的一种判别方法?你能用文字语言表述出来吗?

(5)你还能找出其他方法吗?

从探究中得到:

平行四边形判定方法1两组对边分别相等的四边形是平行四边形。

平行四边形判定方法2对角线互相平分的四边形是平行四边形。

证一证

平行四边形判定方法1两组对边分别相等的四边形是平行四边形。

证明:(画出图形)

平行四边形判定方法2一组对边平行且相等的四边形是平行四边形。

证明:(画出图形)

三.结

两组对边分别相等的四边形是平行四边形。

对角线互相平分的四边形是平行四边形。

四.用

教资勾股定理教案篇二

教学目标:

1、知识目标:

(1)掌握勾股定理;

(2)学会利用勾股定理进行计算、证明与作图;

(3)了解有关勾股定理的历史。

2、能力目标:

(1)在定理的证明中培养学生的拼图能力;

(2)通过问题的解决,提高学生的运算能力

3、情感目标:

(1)通过自主学习的发展体验获取数学知识的感受;

(2)通过有关勾股定理的历史讲解,对学生进行德育教育。

教学重点:勾股定理及其应用

教学难点:通过有关勾股定理的历史讲解,对学生进行德育教育。

教学用具:直尺,微机

教学方法:以学生为主体的讨论探索法

教学过程:

1、新课背景知识复习

(1)三角形的三边关系

(2)问题:(投影显示)

直角三角形的三边关系,除了满足一般关系外,还有另外的特殊关系吗?

2、定理的获得

让学生用文字语言将上述问题表述出来。

勾股定理:直角三角形两直角边的平方和等于斜边的平方。

强调说明:

(1)勾――最短的边、股――较长的直角边、弦――斜边

(2)学生根据上述学习,提出自己的问题(待定)

3、定理的证明方法

方法一:将四个全等的直角三角形拼成如图1所示的正方形。

方法二:将四个全等的直角三角形拼成如图2所示的正方形。

方法三:“总统”法、如图所示将两个直角三角形拼成直角梯形。

以上证明方法都由学生先分组讨论获得,教师只做指导、最后总结说明

4、定理与逆定理的应用

5、课堂小结:

(1)勾股定理的内容

(2)勾股定理的作用

已知直角三角形的两边求第三边

已知直角三角形的一边,求另两边的关系

6、布置作业:

a、书面作业p130#1、2、3

b、上交作业p132#1、3

教资勾股定理教案篇三

【知识与技能】

理解并掌握勾股定理的逆定理,会应用定理判定直角三角形;理解勾股定理与勾股定理逆定理的区别与联系;理解原命题和逆命题的概念,知道二者的关系及二者真假性的关系。

【过程与方法】

经历得出猜想、推理证明的过程,提升自主探究、分析问题、解决问题的能力。

【情感、态度与价值观】

体会事物之间的联系,感受几何的魅力。

【重点】勾股定理的逆定理及其证明。

【难点】勾股定理的逆定理的证明。

(一)导入新课

复习勾股定理,分清其题设和结论。

提问学生画直角三角形的方法(可用尺类工具),然后要求不能用绳子以外的工具。

出示古埃及人利用等长的3、4、5个绳结间距画直角三角形的方法,以其中蕴含何道理为切入点引出课题。

(二)讲解新知

请学生思考3,4,5之间的关系,结合勾股定理的学习经验明确

出示数据2.5cm,6cm,6.5cm,请学生计算验证数据满足上述平方和关系,并画出相应边长的三角形检验是否为直角三角形。

学生活动:同桌两人一组,将三边换成其他满足上述平方和关系的数据,如4cm,7.5cm,8.5cm,画出相应边长的三角形检验是否为直角三角形。

教资勾股定理教案篇四

本节课探究体验贯穿始终,展示交流贯穿始终,习惯养成贯穿始终,情感教育贯穿始终,文化育人贯穿始终。

采用“七巧板”代替教材中“毕达哥拉斯地板砖”利用我国传统文化引入课题,赵爽弦图证明定理,符合本节课以我国数学文化为主线这一设计理念,展现了我国古代数学璀璨的历史,激发学生再创数学辉煌的愿望。

教资勾股定理教案篇五

从知识结构上看,勾股定理揭示了直角三角形三条边之间的数量关系,为后续学习解直角三角形提供重要的理论依据,在现实生活中有着广泛的应用。

从学生认知结构上看,它把形的特征转化成数量关系,架起了几何与代数之间的桥梁;

勾股定理又是对学生进行爱国主义教育的良好素材,因此具有相当重要的地位和作用。

根据数学新课程标准以及八年级学生的认知水平我确定如下学习目标:知识技能、数学思考、问题解决、情感态度。其中【情感态度】方面,以我国数学文化为主线,激发学生热爱祖国悠久文化的情感。

(二)重点与难点

为变被动接受为主动探究,我确定本节课的重点为:勾股定理的探索过程。限于八年级学生的思维水平,我将面积法(拼图法)发现勾股定理确定为本节课的难点,我将引导学生动手实验突出重点,合作交流突破难点。

教资勾股定理教案篇六

勾股定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a2+b2=c2.

即直角三角形两直角的平方和等于斜边的平方.

因此,在运用勾股定理计算三角形的边长时,要注意如下三点:

(2)注意分清斜边和直角边,避免盲目代入公式致错;

2.学会用拼图法验证勾股定理

如,利用四个如图1所示的直角三角形三角形,拼出如图2所示的三个图形.

请读者证明.

请同学们自己证明图(2)、(3).

3.在数轴上表示无理数

二、典例精析

解:由勾股定理,得

132-52=144,所以另一条直角边的长为12.

所以这个直角三角形的面积是×12×5=30(cm2).

例2如图3(1),一只蚂蚁沿棱长为a的正方体表面从顶点a爬到

顶点b,则它走过的最短路程为

a.b.c.3ad.分析:本题显然与例2属同种类型,思路相同.但正方体的

各棱长相等,因此只有一种展开图.

解:将正方体侧面展开

教资勾股定理教案篇七

一、创设问属情境,引入新课

师生行为学生分组讨论,交流总结;教师引导学生回忆.

师:那么,一个三角形满足什么条件,才能是直角三角形呢?

生:有一个内角是90°,那么这个三角形就为直角三角形.

生:如果一个三角形,有两个角的和是90°,那么这个三角形也是直角三角形.

二、讲授新课

是不是三角形的三边只要有两边的平方和等于第三边的平方,就能得到一个直角三角形呢?

活动3下面的三组数分别是一个三角形的三边长?

教资勾股定理教案篇八

1.理解勾股定理的逆定理的证明方法和证明过程;

2.掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一个三角形是直角三角形;

二数学思考

1.通过勾股定理的逆定理的探索,经历知识的发生发展与形成的过程;

2.通过三角形三边的数量关系来判断三角形的形状,体验数形结合法的应用.

三解决问题

通过勾股定理的逆定理的证明及其应用,体会数形结合法在问题解决中的作用,并能运用勾股定理的逆定理解决相关问题.

四情感态度

2.在探究勾股定理的逆定理的证明及应用的活动中,通过一系列富有探究性的问题,渗透与他人交流合作的意识和探究精神.

教资勾股定理教案篇九

即直角三角形两直角的平方和等于斜边的平方.。

因此,在运用勾股定理计算三角形的边长时,要注意如下三点:

(2)注意分清斜边和直角边,避免盲目代入公式致错;

如,利用四个如图1所示的直角三角形三角形,拼出如图2所示的三个图形.。

请读者证明.。

请同学们自己证明图(2)、(3).。

132-52=144,所以另一条直角边的长为12.。

所以这个直角三角形的面积是×12×5=30(cm2).。

例2如图3(1),一只蚂蚁沿棱长为a的正方体表面从顶点a爬到。

顶点b,则它走过的最短路程为()。

a.b.c.3ad.分析:本题显然与例2属同种类型,思路相同.但正方体的。

各棱长相等,因此只有一种展开图.。

解:将正方体侧面展开。

教资勾股定理教案篇十

一、整个课堂设计完整、结构紧凑、逻辑严密、前后呼应,准备得比较充分,能引导学生循序渐进,思路很清晰,讲解也很到位。

二、不搞题海战术,精讲精练,举一反三、触类旁通。题型设计选题有针对性、典型性、层次性,亦有梯度,两位老师都设计了分层练习,作业分层设计精巧,适合满足不同层次学生的要求。

三、两位老师引入新课都很自然,两位老师都能从学生的实际水平出发,面向全体学生,因材施教,分层次开展教学工作,全面提高学习效率。

教师在整个教学过程中老师敢于让学生探索、体验,给了学生以最大的自由运用和探索规律的开阔的地带。特别是新塘三中的曾老师在教学中,通过教师有序的导、学生积极的学习参与、体验、讨论与交流,培养学生具有主动、负责、开拓、创新的个性特征和科学的思维方式。将知识与技能,过程与方法,情感态度和价值观完美结合。在整个教学活动中始终面对全体学生,让每一个学生都有收获,都得到成功的体验,充分体现了全面育人的新课标精神。建议新塘二中老师尽量少讲,让学生多思,多想,多做。......

教资勾股定理教案篇十一

随着社会的发展,新课程改革的不断深入,数学课已不仅是一些数学知识的学习,更重要的是体现知识的认知发展过程。教育的目的是培养具有独立思考能力、具有实践精神和创新能力的人。一堂好课应该是学生最大限度参与的课。《数学课程标准》中指出学生的数学学习应当是现实的、有意义的、富有挑战性的,内容要有利与学生主动进行观察、实验、猜想、验证、推理与交流。内容的呈现应采取不同的表达方式,以满足多样化的学习需求。数学活动不能单纯的依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。

八年级数学勾股定理教案(教材、学情分析与处理)

本节知识是在学生掌握了直角三角形的三个性质:直角三角形两锐角互余和30°所对的直角边等于斜边的一半以及在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角为30°的基础上展开的。勾股定理是直角三角形的一个非常重要的性质,它揭示了一个直角三角形三边的数量关系,可解决直角三角形的许多有关的计算,是初三解直角三角形的主要依据之一,中考中的四边形和圆等综合题中也经常出现。贯穿了整个几何学习,更是数形结合的重要典范。更重要的是学生在探索定理的过程中,无论是课前准备和课上交流以及课下活动都让学生充分感受到学习、思考的重要性,与人合作的重要性以及数学在实际生活中的重要作用,是进行爱国教育的重要题材!

本节课的教育对象是初二下的学生,共性是思维活跃,参与意识较强。而且一般家庭都有电脑,对教师布置的网上作业也颇感兴趣,并能制作简单课件。形成了一定的数学学习习惯。

教资勾股定理教案篇十二

1、知识目标:

(2)会应用勾股定理的逆定理判定一个三角形是否为直角三角形;

(3)知道什么叫勾股数,记住一些觉见的勾股数.

2、能力目标:

(1)通过勾股定理与其逆定理的比较,提高学生的辨析能力;

(2)通过勾股定理及以前的知识联合起来综合运用,提高综合运用知识的能力.

3、情感目标:

(1)通过自主学习的发展体验获取数学知识的感受;

(2)通过知识的纵横迁移感受数学的辩证特征.。

教学用具:直尺,微机。

教学方法:以学生为主体的讨论探索法。

教资勾股定理教案篇十三

教学目标:

1、知识与技能目标:理解和掌握勾股定理的内容,能够灵活运用勾股定理进行计算,并解决一些简单的实际问题。

2、过程与方法目标:通过观察分析,大胆猜想,并探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。

3、情感、态度与价值观目标:了解中国古代的数学成就,激发学生爱国热情;学生通过自己的努力探索出结论获得成就感,培养探索热情和钻研精神;同时体验数学的美感,从而了解数学,喜欢几何。

教学重点:

引导学生经历探索及验证勾股定理的过程,并能运用勾股定理解决一些简单的实际问题。

教学难点:

用面积法方法证明勾股定理

课前准备:

多媒体ppt,相关图片

教学过程:

(一)情境导入

1、多媒体课件放映图片欣赏:勾股定理数形图,1955年希腊发行的一枚纪念邮票,美丽的勾股树,国际数学大会会标等。通过图形欣赏,感受数学之美,感受勾股定理的文化价值。

已知一直角三角形的两边,如何求第三边?

学习了今天的这节课后,同学们就会有办法解决了

(二)学习新课

教资勾股定理教案篇十四

勾股定理是揭示三角形三条边数量关系的一条非常重要的性质,也是几何中最重要的定理之一。它是解直角三角形的主要依据之一,同时在实际生活中具有广泛的用途,“数学源于生活,又用于生活”正是这章书所体现的主要思想。教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际操作,使学生获得较为直观的印象;通过联系比较、探索、归纳,帮助学生理解勾股定理,以利于进行正确的应用。

本节教科书从毕达哥拉斯观察地面发现勾股定理的传说谈起,让学生通过观察计算一些以直角三角形两条直角边为边长的小正方形的面积与以斜边为边长的正方形的面积的关系,发现两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积,从而发现勾股定理,这时教科书以命题的形式呈现了勾股定理。关于勾股定理的证明方法有很多,教科书正文中介绍了我国古人赵爽的证法。之后,通过三个探究栏目,研究了勾股定理在解决实际问题和解决数学问题中的应用,使学生对勾股定理的作用有一定的认识。

一、知识与技能

1、探索直角三角形三边关系,掌握勾股定理,发展几何思维。

2、应用勾股定理解决简单的实际问题

3学会简单的合情推理与数学说理

二、过程与方法

引入两段中西关于勾股定理的史料,激发同学们的兴趣,引发同学们的思考。通过动手操作探索与发现直角三角形三边关系,经历小组协作与讨论,进一步发展合作交流能力和数学表达能力,并感受勾股定理的应用知识。

三、情感与态度目标

通过对勾股定理历史的了解,感受数学文化,激发学习兴趣;在探究活动中,学生亲自动手对勾股定理进行探索与验证,培养学生的合作交流意识和探索精神,以及自主学习的能力。

四、重点与难点

1、探索和证明勾股定理

2、熟练运用勾股定理

一、创设情景,揭示课题

1、教师展示图片并介绍第一情景

以中国最早的一部数学著作——《周髀算经》的开头为引,介绍周公向商高请教数学知识时的对话,为勾股定理的出现埋下伏笔。

周公问:“窃闻乎大夫善数也,请问古者包牺立周天历度.夫天不可阶而升,地不可得尺寸而度,请问数安从出?”商高答:“数之法出于圆方,圆出于方,方出于矩,矩出九九八十一,故折矩以为勾广三,股修四,径隅五。既方其外,半之一矩,环而共盘.得成三、四、五,两矩共长二十有五,是谓积矩。故禹之所以治天下者,此数之所由生也。”

2、教师展示图片并介绍第二情景

毕达哥拉斯是古希腊著名的数学家。相传在2500年以前,他在朋友家做客时,发现朋友家用地砖铺成的地面反映了直角三角形的某种特性。

二、师生协作,探究问题

1、现在请你也动手数一下格子,你能有什么发现吗?

2、等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有这样的特点呢?

3、你能得到什么结论吗?

三、得出命题

勾股定理:如果直角三角形的两直角边长分别为a、b,斜边长为c,那么,即直角三角形两直角边的平方和等于斜边的平方。解释:由于我国古代把直角三角形中较短的直角边称为勾,较长的边称为股,斜边称为弦,所以,把它叫做勾股定理。

四、勾股定理的证明

第一种方法:边长为 的正方形可以看作是由4个直角边分别为 、,斜边为 的直角三角形围在外面形成的。因为边长为 的正方形面积加上4个直角三角形的面积等于外围正方形的面积,所以可以列出等式 ,化简得 。

第二种方法:边长为 的正方形可以看作是由4个直角边分别为 、,斜边为 的

角三角形拼接形成的(虚线表示),不过中间缺出一个边长为 的正方形“小洞”。

因为边长为 的正方形面积等于4个直角三角形的面积加上正方形“小洞”的面积,所以可以列出等式 ,化简得 。

这种证明方法很简明,很直观,它表现了我国古代数学家赵爽高超的证题思想和对数学的钻研精神,是我们中华民族的骄傲。

五、应用举例,拓展训练,巩固反馈。

勾股定理的灵活运用勾股定理在实际的生产生活当中有着广泛的应用。勾股定理的发现和使用解决了许多生活中的问题,今天我们就来运用勾股定理解决一些问题,你可以吗?试一试。

六、归纳总结

2、方法归纳:数方格看图找关系,利用面积不变的方法。用直角三角形三边表示正方形的面积观察归纳注意画一个直角三角形表示正方形面积,再次验证自己的发现。

七、讨论交流

让学生发表自己的意见,提出他们模糊不清的概念,给他们一个梳理知识的机会,通过提示性的引导,让学生对勾股定理的概念豁然开朗,为后面勾股定理的应用打下基础。

我们班的同学很聪明。大家很快就通过数格子发现了勾股定理的规律。还有什么地方不懂的吗?跟大家一起来交流一下。请同学们课后在反思天地中都发表一下自己的学习心得。

教资勾股定理教案篇十五

(一)知识与技能目标:

1、掌握勾股定理及其证明

2、会利用勾股定理进行直角三角形的简单计算。

3、了解有关勾股定理的历史知识

(二)过程与方法目标

经历课前预习和课上观察、分析、归纳、猜想、验证并运用实践的过程,了解数学知识的生成与发展过程。通过了解勾股定理的几个著名证法(赵爽证法、欧几里得证法等),使学生感受数学证明的灵活、优美与精巧,感受勾股定理的丰富文化内涵。使学生自主学习能力和分析问题解决问题的能力得到提高。培养与人合作的意识。

(三)情感、态度和价值观

1、通过自主学习培养学生探究、发现问题的能力,体验获取数学知识的过程。

2、通过小组合作、探索培养学生的团队精神,以及不畏艰难,实事求是的学习态度和严谨的数学学习习惯。

3、通过了解有关勾股定理的中西历史知识,激发学生的爱国热情,培养学生的民族自豪感。

教资勾股定理教案篇十六

课标内容:1、初步了解半导体的一些特点,了解半导体材料的发展对社会的影响。2、初步了解超导体的一些特点,了解超导体对人类生活和社会发展可能带来的影响。3、通过实验探究电流、电压和电阻的关系,理解欧姆定律,并能进行简单计算。

l经历改变电路中电流大小的各种尝试,初步体会改变电流大小的两类途径。l初步形成电阻的概念,知道电阻是表示导体对电流阻碍作用的物理量。会读写电阻的单位。l经历探究影响电阻大小因素的活动,会用“转化”的思想寻找比较电阻大小的.正确方法;会有意识地用“变量控制”的思想去寻找合适的导线、设计恰当的电路、统筹规划合理的实验步骤。l进一步体会变量控制法并能认同教材中有关变量控制的介绍。l知道影响金属电阻大小的因素,了解长度、横截面积与电阻大小的定性关系,体会到电阻的大小由导体自身决定,直到电阻是导体的一种属性。l初步了解半导体的一些特点,了解半导体材料的发展对社会的影响。

文件大小:15k文件格式:rar下载地址:击本地免费下载地址。

【本文地址:http://www.xuefen.com.cn/zuowen/7418539.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档