优质平方差公式教案设计意图(通用13篇)

格式:DOC 上传日期:2023-11-04 09:08:09
优质平方差公式教案设计意图(通用13篇)
时间:2023-11-04 09:08:09     小编:LZ文人

教案是教师进行评价和反思的重要依据和参考。教案的设计要注重培养学生的创新精神和实践能力,提高教学的针对性和实效性。以下是小编为大家整理的教案范本,供大家参考。希望能够帮助到广大教师更好地编写教案,提高教学质量。教案的质量和准备程度直接关系到课堂教学的效果和学生的学习效果,所以我们应该认真对待每一堂课的教案编写工作,注重细节,保证教学的科学性和有效性。

平方差公式教案设计意图篇一

本节课是围绕“引导学生有效预习”的课题设计的,通过预设的问题引发学生思考,在学生的预习基础上回答相关的问题,产生对整式的乘法、提公因式法和公式法的对比。

让学生充分自主的对知识产生探究,同时利用数形结合的思想验证平方差公式;再通过质疑的方式加深对平方差公式结构特征的认识,有助于让学生在应用平方差公式行分解因式时注意到它的前提条件;通过例题练习的巩固,让学生把握教材,吃透教材,让学生更加熟练、准确,起到强化、巩固的作用,让学生领会换元的思想,达到初步发展学生综合应用的能力。

本节课是运用提公因式法后公式法的第一课时——用平方差公式法分解因式。它是整式乘法的平方差公式的逆向应用,它是解高次方程的基础,在教材中具有重要的地位。在教材的处理上以学生的自主探索为主,在原有用平方差公式进行整式乘法计算的知识的基础上充分认识分解因式。明确因式分解是乘法公式的一种恒等变形,让学生学会合情推理的能力,同时也培养了学生爱思考,善交流的良好学习惯。

(一)知识与技能

1.掌握运用平方差公式分解因式的方法。

2.掌握提公因式法、平方差公式分解因式的综合应用。

(二)过程与方法

1.经历探究分解因式方法的过程,体会整式乘法与分解因式之间的联系。

2.通过乘法公式:(a+b)(a-b)=a2-b2逆向变形,进一步发展观察、归纳、类比、概括等能力,发展有条理地思考及语言表达能力。

3.通过活动4,将高次偶数指数向下次指数的转达化,培养学生的化归思想。

4.通过活动1,发现并归纳出因式分解的又一方法:逆用整式乘法的平方差公式,得到a2-b2 =(a+b)(a-b)。

5.通过活动4,让学生自己发现问题,提出问题,然后解决问题,体会在解决问题的过程中与他人合作的重要性。

(三)情感与态度

1.通过探究平方差公式,让学生获得成功的体验,锻炼克服困难的意志,建立自己信心。

平方差公式教案设计意图篇二

本节课是围绕“引导学生有效预习”的课题设计的,通过预设的问题引发学生思考,在学生的预习基础上回答相关的'问题,产生对整式的乘法、提公因式法和公式法的对比。

让学生充分自主的对知识产生探究,同时利用数形结合的思想验证平方差公式;再通过质疑的方式加深对平方差公式结构特征的认识,有助于让学生在应用平方差公式行分解因式时注意到它的前提条件;通过例题练习的巩固,让学生把握教材,吃透教材,让学生更加熟练、准确,起到强化、巩固的作用,让学生领会换元的思想,达到初步发展学生综合应用的能力。

二、教材分析。

本节课是运用提公因式法后公式法的第一课时——用平方差公式法分解因式。它是整式乘法的平方差公式的逆向应用,它是解高次方程的基础,在教材中具有重要的地位。在教材的处理上以学生的自主探索为主,在原有用平方差公式进行整式乘法计算的知识的基础上充分认识分解因式。明确因式分解是乘法公式的一种恒等变形,让学生学会合情推理的能力,同时也培养了学生爱思考,善交流的良好学习惯。

三、学情分析。

四、教学目标。

(一)知识与技能。

2.掌握提公因式法、平方差公式分解因式的综合应用。

(二)过程与方法。

1.经历探究分解因式方法的过程,体会整式乘法与分解因式之间的联系。

2.通过乘法公式:(a+b)(a-b)=a2-b2逆向变形,进一步发展观察、归纳、类比、概括等能力,发展有条理地思考及语言表达能力。

3.通过活动4,将高次偶数指数向下次指数的转达化,培养学生的化归思想。

4.通过活动1,发现并归纳出因式分解的又一方法:逆用整式乘法的平方差公式,得到a2-b2=(a+b)(a-b)。

5.通过活动4,让学生自己发现问题,提出问题,然后解决问题,体会在解决问题的过程中与他人合作的重要性。

(三)情感与态度。

1.通过探究平方差公式,让学生获得成功的体验,锻炼克服困难的意志,建立自己信心。

平方差公式教案设计意图篇三

(l)(2)(3)(4)

学生活动:学生分组讨论,选代表解答.

练习三

甲的计算过程是:原式

乙的计算过程是:原式

丙的计算过程是:原式

丁的计算过程是:原式

(2)想一想,与相等吗?为什么?

与相等吗?为什么?

学生活动:观察、思考后,回答问题.

练习四

运用乘法公式计算:

(l)(2)

(3)(4)

(四)总结、扩展

这节课我们学习了乘法公式中的完全平方公式.

引导学生举例说明公式的结构特征,公式中字母含义和运用公式时应该注意的问题.

八、布置作业

p1331,2.(3)(4).

参考答案

略.

平方差公式教案设计意图篇四

1、使学生理解完全平方公式的意义,弄清完全平方公式的形式和特点;使学生知道把完全平方公式反过来就可以得到相应的因式分解。

2、掌握运用完全平方公式分解因式的`方法,能正确运用完全平方公式把多项式分解因式(直接用公式不超过两次)。

教学方法:对比发现法课型新授课教具投影仪。

教师活动:学生活动。

新课讲解:

(投影)我们把形如a2+2ab+b2与a2-2ab+b2叫做完全平方式,和平方差公式一样,我们也可以利用它把一些多项式因式分解。例如:

a2+8a+16=a2+2×4a+42=(a+4)2。

a2-8a+16=a2-2×4a+42=(a-4)2。

(要强调注意符号)。

首先我们来试一试:(投影:牛刀小试)。

1.把下列各式分解因式:

(1)x2+8x+16;;(2)25a4+10a2+1。

(3)(m+n)2-4(m+n)+4。

(教师强调步骤的重要性,注意发现学生易错点,及时纠正)。

2.把81x4-72x2y2+16y4分解因式。

(本题用了两次乘法公式,难度稍大,教师要鼓励学生大胆尝试,敢于创新)。

将乘法公式反过来就得到多项式因式分解的公式。运用这些公式把一个多项式分解因式的方法叫做运用公式法。

练习:第88页练一练第1、2题。

平方差公式教案设计意图篇五

1、了解完全平方公式的特征,会用完全平方公式进行因式分解.

2、通过整式乘法逆向得出因式分解方法的过程,发展学生逆向思维能力和推理能力.

3、通过猜想、观察、讨论、归纳等活动,培养学生观察能力,实践能力和创新能力.

学习建议教学重点:

平方差公式教案设计意图篇六

《平方差公式》是一节公式定理课,是各位老师非常熟悉的一个课题,对大家更熟悉,我深深感到一种压力。但是,无论如何,“新”、“实”是我追求的目标。为此,我作了如下努力:

1、把数学问题“蕴藏”在游戏中。

导入新课,是课堂教学的重要一环。“好的开始是成功的一半”,首先是一个智力抢答,学生通过抢答初步感知平方差公式,接下来,采用小组合作学习的方式,利用“四问”让学生进行试验操作,学生选择的字母有很多种,让它们都有其共性。由此,学生在探索中验证自己的猜想,同时也感受和认识知识的发生和发展的过程,得出(a+b)(a-b)=a2-b2.经过不断的尝试小组合作学习方式的教学,我发现也真正体会到,只要我们给学生创造一个自由活动的空间,学生便会还给我们一个意外的惊喜。

2、充分重视“自主、合作、探究”的教学方式的运用。

把探究的机会留给学生,让学生在动脑思考中构建知识,真正成为教学活动的主体。使他们在活动中进行规律的总结,并且通过交流练习、应用,深化了对规律的理解。学生对知识的掌握往往通过练习来达到目的。新授后要有针对性强的有效训练,让学生对所学知识建立初步的表象,以达到对知识的理解、掌握及应用,实现从感性认识到理性认识的升华。在此设计了三个层次的有效训练,让学生体会平方差公式的特点:第一层次是直接运用公式,第二层次是将式子进行适当变形后应用公式,第三个层次是平方差公式的灵活应用。通过做题学生归纳出平方差公式的运用技巧。

3、自置悬念,享受成功

以四人小组为单位,各小组出两道具有平方差公式的结构特征的题目,看谁出得有水平。学生每人都设计了题目,任意叫了四位学生在黑板上写,经评价结果都对了。这种方法,不仅令人耳目一新,而且把学生引入不协调——探究——发现——解决问题的一个学习过程,使学生获得思维之趣,参与之乐,成功之悦。

4、切实落在实效上

本节课在采用小组学习之后,为了让学生的巩固有效果,采用了学生上台讲解、作业实物投影的方式来进行,多种方式的选择,让学生暴露出自己的问题,然后通过生生互动、师生互动解决问题,实现问题及时处理,学习效果不错。

5、值得注意的是:

1、节奏的把握上

这一节我觉得不是很顺,尤其在从几何角度解释平方差公式、例2⑵的其他计算方法等问题上,花了不少时间,节奏把握的不是很好。

2、充分发挥学生的主体地位上

这节课上,我觉得学生的积极性不很高,回答问题没有激情,说明我背学生还不够,自己想象的比现实的好。

平方差公式教案设计意图篇七

平方差公式与完全平方公式是初中数学代数学知识方面应用最广泛的公式,也是学生代数运算的基础公式,在今后的数学学习过程中,更能体现其重要性,所以这两个公式的教学要求很高,需要每一名学生都必须熟练掌握这两个公式,并因此可以灵活运用公式进行因式分解和分解因式,解决很多代数问题。

如同勾股定理在全世界数学基础教学中地位显著,全世界各地数学教科书都要求学生掌握一样,平方差公式与完全平方公式也是全世界以致全国各地教科书都必讲必学的内容之一,作为整式的乘法公式,人教版教科书把平方差公式与完全平方公式安排在整式的乘法这一章的第二节,在第一节内容上先让学生掌握整式乘法的各项法则,当学生熟练掌握多项式与多项式的乘法后,再由此让学生来学生我们的乘法公式,本节内容分两部分,先介绍平方差公式,再介绍完全平方公式。

在学生熟练掌握多项式与多项式的乘法后,开始介绍平方差公式,教科书上是由找规律开始,让学生利用多项式乘法法则计算,从而发现平方差公式,由找规律得出公式的猜想,再介绍平方差公式的几何面积验证方法,来验证公式猜想的正确性,从而由代数探究及几何论证来得出平方差公式,得出公式后再来实际应用。

我一直严格要求自己,认真备教材,当然也认真备学生,使课堂教学符合学生的实际需要。学生基础较差,教学内容要求生动、易学易懂,让学生能在活动教学中进行简单探究从而掌握好基础知识。,我认真准备,仔细研读教材,精心制作出课件和教案,按教科书的教学顺序和过程,既安排学生计算上的运算探究猜想,又安排几何实践剪纸法,利用面积来验证公式。我从实际问题出发,给出动手操作的实际几何问题引出本课,得出平方差公式的猜想,让学生动手实践,数形结合得出平方差公式,在利用多项式的乘法法则计算验证,最后辨析、应用,让学生熟悉平方差公式,最后应用提高,给出实际生活中的一个问题,利用平方差公式计算较大的数字,让学生明白学习,平方差公式不但可以在实际生活中运用,而且还可以简便计算,激发学生对平方差公式学习的兴趣,从而很好地掌握好平方差公式。最后再进行小结,反馈。

平方差公式教案设计意图篇八

教学目标:

一、 知识与技能

1、 参与探索平方差公式的过程,发展学生的推理能力 2、 会运用公式进行简单的乘法运算。

二、 过程与方法

1、 经历探索过程,学会归纳推导出某种特种特定类型乘法并用简单的

数学式子表达出,即给出公式。

2、 在探索过程的教学中,培养学生观察、归纳的能力,发展学生的符

号感和语言描述能力。

三、 情感与态度

以探索、归纳公式和简单运用公式这一数学情景,加深学生的体验,增加学习数学和使用的信心。培养学生由观察-发现-归纳-验证-使用这一数学方法的逐步形成.

教学重点: 公式的简单运用

教学难点: 公式的推导

教学方法: 学生探索归纳与教师讲授结合

课前准备:投影仪、幻灯片

平方差公式教案设计意图篇九

学生已经掌握了多项式与多项式相乘,但是对于某些特殊的多项式相乘,可以写成公式的形式,直接写出结果,乘法公式应用十分广泛,也是本章重点内容之一。

平方差公式是第一个乘法公式,教学时,我是这样引入新课的,先计算下列各题,看谁做的又对又快?(1)(x+1)(x―1)=_____,(2)(m+2)(m―2)=_____,(3)(2x+1)(2x―1)=____,(4)(y+3z)(y―3z)=_____。激发学生的好胜心并为进一步探索新知搭建好有力的平台,然后我又让学生讨论交流上面几个等式左、右两边各有什么特点,你能用字母表示你发现的规律吗?你能用语言叙述这个规律吗?给学生充分的观察、分析、讨论交流的时间,老师应及时的给与必要的指导、鼓励和由衷的赞美,这一点我做的还很不够,今后要多多注意。

然后我有设计了这样一道题:下列多项式乘法中可以用平方差公式计算的是(1)(x+1)(1+x),(2)(2x+y)(y―2x),(3)(a―b)(―a+b),(4)(―a―b)(―a+b)帮助学生理解公式的特征,掌握公式的。特征是正确运用公式的关键,除了掌握公式的特征外还有必要理解公式中的字母a、b具有广泛的含义,几字母a、b可以表示具体的数、也可以表示单项式或多项式,由于学生的认知能力有一个过程,教学中应由易到难逐步安排学习这方面的内容。

平方差公式教案设计意图篇十

1会推导平方差公式,并能运用公式进行简单的计算.

2.经历探索平方差公式的过程,认识“特殊”与“一般”的关系,了解“特殊到一般”的认识规律和数学发现方法,平方差公式第一课时教学反思。

重点:公式的理解与正确运用(考点:此公式很关键,一定要搞清楚特征,在以后的学习中还继续应用)

难点:公式的理解与正确运用

教法:自主探究和合作交流

(1)(x+2)(x-2)(2)(1+2y)(1-2y)(3)(x+3y)(x-3y)

=x2-22=12-(2y)2=x2-(3y)2

学生分组讨论,交流,小组长回答问题。

师生共同总结归纳:

平方差公式:(a+b)(a-b)=a2-b2

即两数和与两数差的积,等于它们的平方差。

平方差公式特征:

(1)一组完全相同的项;

(2)一组互为相反数的项

2.例题

(1)(5+6x)(5-6x)(2)(-m+n)(-m-n)

3.公式应用

(1)(a+2)(a-2)(2)(-x+2y)(-x-3y)

两个学生板演,其余学生在练习本上自己独立完成

老师巡视,辅导学困生。

1.计算(1)(a+1)(a-1)(a2+1)(2)(a+b)(a-b)(a2+b2)

师生共同分析:此题特征,两次利用平方差公式,教学反思《平方差公式第一课时教学反思》。

学生在练习本上独立完成,同桌互相检查。

2.(ab)(-ab)=?能用平方差公式吗?它的a和b分别是什么?

学生分组讨论交流,独立完成运算。

1、(ab+8)(ab-8)2、(5m-n)(-5m-n)

3、(3x+4y-z)(3x-4y+z)4、(a+b)(a-b)(a2+b2)

1、什么是平方差公式?

2、运用公式要注意的.问题:

(1)平方差公式运用的条件是什么?

(2)公式中的a、b可以代表什么?

平方差公式(1)

一、检测导入

二、例题展示

三、拓展延伸

四、达标堂测

五、归纳小结

平方差公式:(a+b)(a-b)=a2-b2

即两数和与两数差的积,等于它们的平方差。

六、布置作业

p21:习题1.91、2

平方差公式教案设计意图篇十一

平方差公式的教学已经是好几次了,旧教材总是定向于代数方法,新课程理念同几何意义探究,这也是对教学者的一次挑战,通过教学,我从中领会到它所蕴含的新的教学理念,新的教学方式和方法。

1、在教学设计时应提供充分探索与交流的空间,使学生进一步经历观察,实验、猜测、推理、交流、反思等活动,我在设计中让学生从计算花圃面积入手,要求学生找出不同的计算方法,学生欣然接受了挑战,通过交流,给出了两种方法,继而通过观察发现了面积的求法与乘法公式之间的吻合,激发了学生学习兴趣的同时也激活了学生的思维,所以这个探究过程是很有效的。

2、我知道培养学生数形结合思想方法和能力的重要性,通过几何意义说明平方差方式的探究过程,学生可以切实感受到两者之间的联系,学会一些探究的基本方法与思路,并体会到数学证明的灵巧间法与和谐美是很有必要的。

3、加强师生之间的活动也是必要的。在活动中,通过我的组织、引导和鼓励下,学生不断地思考和探究,并积极地进行交流,使活动有序进行,我始终以平等、欣赏、尊重的态度参与到学生活动中,营造出了一个和谐,宽松的教学环境。

平方差公式教案设计意图篇十二

这节课学习的主要内容是运用平方差公式进行因式分解,学习时如果直接就给同学们讲把前面在整式的乘法中学习到的平方差公式反过来运用就形成了因式分解的平方差公式,然后就是反复的运用、反复的操练的话,学生学起来就会觉得没有味道,对数学有一种厌烦感,所以我就想到了运用逆向思维的方法来学习这节课的内容,而且非常不利于学生理解整式乘法和因式分解之间的互逆的关系。

在新课引入的过程中,首先让学生回忆了前面在整式的乘法中遇到的乘法公式,比如平方差公式、完全平方公式。然后,巧妙的'将刚才用平方差公式计算得出的三个多项式作为因式分解的题目请学生尝试一下。可以说,对新问题的引入,是采取了由浅入深的方法,使学生对新知识不产生任何的畏惧感。

在这节课中就明显出现了这个问题,许多学生容易产生的问题都集中在一起让学生解决,反而将学生搞得不清不楚。所以,通过这节展示课也让我学到了很多,比如,化解难点时要考虑到学生的思维障碍,不可操之过急,否则适得其反。

平方差公式教案设计意图篇十三

湖北口中学张衍生

教学内容:p108—110平方差公式例1例2例3

教学目的:1、使学生会推导平方差公式,并掌握公式特征。

2、使学生能正确而熟练地运用平方差公式进行计算。

教学重点:使学生会推导平方差公式,掌握公式特征,并能正确而熟

练地运用平方差公式进行计算。

教学难点:掌握平方差公式的特征,并能正确而熟练地运用它进行计

算。

教学过程:

一、复习引入

1、复述多项式与多项式的`乘法法则

2、计算(演板)

(1)(a+b)(a-b)(2)(m+n)(m-n)

(3)(x+y)(x-y)(4)(2a+3b)(2a-3b)

3、引入新课,由2题的计算引导学生观察题目特征,结果特征(引入新课,板书课题)

二、新课

1、平方差公式

由上面的运算,再让学生探究

现在你能很快算出多项式(2m+3n)与多项式(2m-3n)的乘积吗?引导学生把2m看成a,3n看成b写出结果.

(2m+3n)(2m-3n)=(2m)2-(3m)2=4m2-9n2

(a+b)(a-b)=a2-b2

向学生说明:我们把

(a+b)(a-b)=a2-b2(重点强调公式特征)

【本文地址:http://www.xuefen.com.cn/zuowen/7372119.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档