优质小学五年级数学教案(通用15篇)

格式:DOC 上传日期:2023-11-03 15:18:34
优质小学五年级数学教案(通用15篇)
时间:2023-11-03 15:18:34     小编:GZ才子

在教案中,教师可以明确教学目标,安排学习任务和评价方式。编写教案时,教师应该注意课堂教学的安排和教学资源的准备,以及学生的学习条件和环境。这些教案范例中涵盖了多种教学策略和方法,适用于不同类型的学生。

小学五年级数学教案篇一

书第54——55页,有趣的测量及试一试第1、2题。

1.知识与技能:结合具体活动情境,经历测量石头的试验过程,探索不规则物体体积的测量方法。

2.过程与方法:在实践与探究过程中,尝试用多种方法解决实际问题。

3.情感、态度与价值观:在观察、操作中,发展学生空间观念。

用多种方法解决实际问题。

探索不规则物体体积的测量方法。

不规则石头、长方体或正方体透明容器、水。

一、导入新课。

老师出示准备好的不规则石快。

师:这个石块是什么形状的?(不规则)。

什么是石块的体积?

你有什么困难?

二、教学新知。

1.测量石块的体积。

(1)小组讨论方案。

师:我们不能直接用公式计算出石块的体积,可以怎么办呢?你有什么好的方法吗?

(2)小组制定方案。

(3)实际测量。

方案一:找一个长方体形状的容器,里面放一定的水,量出水面的高度后把石头沉入水中再一次量出水面的高度。这时计算一下水面升高了几厘米,用“底面积×高”计算出升高的体积。也可以分别计算放入石头前的体积与放入石头之后的总体积之差。

师:为什么升高的那部分水的体积就是石块的体积?

方案二:将石头放入盛满水的容器中,并将溢出的水倒入有刻度的量杯中,然后直接读出的水的体积,就是石头的体积。

师:为什么会有水溢出来?

这两种方案实际上都是把不规则的石头的体积转化成了可测量计算的水的体积。让学生说出“石块所占空间的大小就是石块的体积”。

1.实际应用。

(1)读题,理解题意。

(2)分析:你是怎么想的?

(3)学生尝试独立解答。

(4)集体反馈,订正。

让学生运用在探索活动中得到测量的方法,即“升高的水的体积等于土豆的体积”,然后用“底面积×高”的方法计算。2×1.5×0.2=0.6(立方分米)。

三、课堂小结。

学习了这节课,同学们有什么感受和体会?有什么提高?

1.书第55页第2题。

本题引导学生开展测量不规则物体体积的活动。一粒黄豆比较,先测量100粒黄豆的体积,再计算出一粒黄豆的体积。

2.学生再找一些实物,测量出体积。

板书设计:

有趣的测量。

方案一:

方案二:

“底面积×高”的方法计算。

2×1.5×0.2=0.6(立方分米)。

小学五年级数学教案篇二

(1)理解小数乘法的意义和计算法则,会根据实际需要求积的近似数,会计算小数连乘、乘加、乘减,并根据整数乘法的运算定律计算小数乘法。

(2)提高学生计算、估算的能力及观察、分析、判断的能力。

(3)培养学生认真书写、认真计算及时检验的好习惯。

第一课时。

教学内容:小数乘整数。

教学目标:

(1)理解小数乘以整数的意义,掌握小数乘以整数的计算法则,正确地进行计算。

(2)通过运用迁移的方法学会新知识,培养类推的能力。

(3)培养学生认真观察、善于思考的学习习惯,渗透转化的数学思想。

重点:

(1)理解小数乘以整数的意义和计算法则。

(2)熟练掌握小数乘以整数的计算方法,能够正确地进行计算。

难点:

理解计算法则的算理。

教学过程:

一、复习辅垫。

1.读题列式,并说一说各算式所表示的意义。

4个13是多少?18个20是多少?

(概括:整数乘法表示求几个相同加数的和的简便运算。)。

小学五年级数学教案篇三

1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

2尝试用不同的方法解决“鸡兔同笼”问题,使学生体会假设法和代数法德一般性。

3在解决问题的过程中培养学生的逻辑思维能力。

感受古代数学问题的趣味性。

用不同的方法解决问题。

课件。

一、激趣导入。

师:咱班同学家里有养鸡的吗?有养兔的吗?既养鸡又养兔的有吗?把鸡和兔放在同一个笼子里养的有吗?在我国古代就有人把鸡和兔放在同一个笼子里养,正因为这样,在我国历才出现了一道非常有名的数学问题,是什么问题呢?你们想知道吗?这节课我们就共同来研究大约产生于一千五百年前,一直流传至今的“鸡兔同笼”问题。

二、探索新知。

1(课件示:书中112页情境图)。

师:同学们看这就是《孙子算经》中的鸡兔同笼问题。

这里的“雉”指的是什么,你们知道吗?这道题是什么意思呢?谁能试着说一说?

生:试述题意。(笼子里有鸡和兔,从上面数有35个头,从下面数有94只脚。问鸡兔各几只?)。

师:从题中你发现了那些数学信息?

生:笼子里有鸡和兔共35只,脚一共有94只。

生:这题中还隐含着鸡有2只脚,兔有4只脚这两个信息。

师:根据这些数学信息你们能解决这个问题吗?这道题的数据是不是太大了?咱们把它换成数据小一点的相信同学们就能解决了。

2、出示例一(课件示例一)。

师:谁来读读这个问题。

谁能流利的读一遍?

请同学们轻声读题,看看题里告诉我们什么信息,要解决什么问题?

生:读题。

师:现在就请你来解决这个问题,你想怎样解决?把你的想法和小组内的同学说一说。

生:我想我能猜出来。一次猜不对,多猜几次就能猜对。

师:按你的意思就是随意的猜,为了不重复,不遗漏,我们可以列表按顺序推算。(板书:列表法)。

师:还有其他方法吗?

生:我想用方程法也能解决。(板书:方程法)。

生:要是笼子里光有鸡或光有兔就好算了,可这笼子里却有两种动物,我还没想好怎么算。

师:那我们就不妨按笼子里只有鸡或只有兔来思考,假设笼子里全是鸡或全是兔,看脚数会有什么变化,说不定从中你们就能找到解题的思路呢。(板书:假设法)。

师:还有别的方法吗?那这些方法行不行呢?下面就请同学们以小组为单位,对你们感兴趣的方法进行尝试验证一下吧。

生:在小组内尝试各种方法。

师:经过上面的研究学习,你们都尝试运用了哪种方法呢?下面以小组为单位进行汇报。

生1:我们小组用列表法找到了答案,有3只鸡,5只兔。

生:很麻烦。

师:是啊,那要花费很长时间。哪个小组还想汇报?

生:我们小组用方程法计算的。(生说计算过程,师板书过程。)。

生:说数量关系。(鸡脚数+兔脚数=26只脚)。

师:根据这个数量关系你能想到另两个数量关系吗?

生:叙述另外两个数量关系。(26只脚—鸡脚数=兔脚数,26只脚—兔脚数=鸡脚数)。

根据这两个数量关系你又能列出哪两个方程呢?

生:汇报师板书两方程。

师:除了可以设兔有x只,还可以怎样设?

生:还可以设鸡有x只。那兔就有(8—x)只。

师:对,那根据什么数量关系你又能列出怎样的方程呢?

生:汇报,根据鸡脚数+兔脚数=26只能列出方程2x+4(8—x)=26。

根据26只脚—鸡脚数=兔脚数能列出26—2x=4(8—x)。

根据26只脚—兔脚数=鸡脚数能列出26—4(8—x)=2x。

师:同学们看根据不同的数量关系我们能列出这么多的方程,但是同学们要注意用方程法解决问题时必须要找准数量关系。

师:除了这两种方法,假设法有运用的吗?

生:汇报。

我们小组是把笼子里的动物都看做鸡。(板书:全看作鸡)。

鸡就有8—5=3只。(生说师板书计算过程)。

师:这位同学说的你们听明白了吗?结合算式进行明理。明确每一步算式各表示什么意义。

师:这种方法都明白了吗?结合课件图画进行解释质疑。

生:16只。

师:实际上笼子里有26只脚,怎么会少了10只脚呢?(课件显示)。

生:每只兔子少算2只脚。

师:一共少算10只脚,每只兔子少算2只脚,所以有5只兔子,3只鸡了。

生:试做。

师:刚才已经假设都是兔的同学,再按假设全是鸡的情形算一算。

生:练做。

师:谁来说说假设全是兔该怎么算?

生:假设笼子里都是兔,就应有脚8×4=32只,比实际多了32—26=6只。一只鸡多算2只脚,4—2=2只。就能算出共有鸡6÷2=3只。兔就有8—3=5只。(生说师板书计算过程。)。

师:你们也都算上了吗?师解释:要是都是兔的话,就有32只脚,而实际有26只脚,为什么会多出6只脚呢?(课件示)。

生:每只鸡多算2只脚。

师:一共多算6只脚,每只鸡算2只,所以有3只鸡,5只兔。

师:还有运用其他方法的吗?

生汇报:列表法适合于数据小的问题,数据大了就不适用了。

方程法思路很简捷,但解方程比较麻烦。假设法,写起来简便,但思路很繁琐。

师:那以后我们再解决鸡兔同笼问题时就要根据具体情况灵活选择计算方法。

三、巩固练习。

师:现在就请你来解决那道数据较大的问题你们能解决吗?

生:独立解答后全班交流。

师:哪位同学愿意说说你是怎么解决这个问题的?

生:汇报不同的算法。(学生边汇报边把计算方法展示在实物展台上)。

师:刚才我们用自己的办法解决了这个问题,你们想知道古人是怎么解决这个问题的吗?我们一起来看一看。(课件示)。

师:古人的办法很巧妙吧?如果大家对这种解法感兴趣,课后可以再研究。

四、全课总结。

师:通过这节课的学习你有什么收获?

生:我学会用……方法解决“鸡兔同笼”问题。

师:今天通过大家的自主探索,找到了多种解决“鸡兔同笼”问题的方法。方程法和假设法应用得都比较广泛。生活中我们还会遇到类似“鸡兔同笼”的问题,比如有些租船问题,钱币问题等。下节课我们就应用这些方法去解决那些实际问题。

板书设计:

鸡兔同笼。

列表法。

方程法假设法。

解:设有兔x只,鸡就有2(8—x)只。全看作鸡。

4x+2(8—x)=268×2=16(只)。

2x+16=2626—16=10(只)。

x=54—2=2(只)。

8—5=3(只)10÷2=5(只)。

答:有5只兔,3只鸡。8—5=3(只)。

26—4x=2(8—x)全看作兔。

26—2(8—x)=4x8×4=32(只)。

2x+4(8—x)=2632—26=6(只)。

26—2x=4(8—x)4—2=2(只)。

26—4(8—x)=2x6÷2=3(只)。

8—3=5(只)。

小学五年级数学教案篇四

教学内容:教科书第七页的例五及“做一做”,练习二的第1-4题。

教学目的:使学生懂得求积的近似值的必要性,掌握用“四舍五入”法取积的近似值,并能根据实际需要与题目要求正确地求积的近似值。

教具准备:小黑板准备以下的表格:

保留一位小数。

保留两位小数。

保留整数。

1.283。

5.904。

2.876。

教学过程。

1、口算。

0.840.3220.812.5。

7.80.013.20.2&nb。

sp;0.080.08。

9.30.018.42+5.84.8-0.48。

选其中几题讲一讲算式的意义。

2、出示小黑板。

说明按要求用“四舍五入”法求出每位小数的近似值。指名让学生回答,并说一说是怎样用“四舍五入”法求一个小数的近似值的。

1、引入新课。

师:在实际生活中,小数乘法乘得的积往往不需要保留很多的小数位数,这时可根据需要,用“四舍五入”法保留一定的小数位数,求出积的近似值。今天我们就来学习求积的近似值的方法。(板书课题:积的近似值)。

2、教授新课。

出示例5。指名读题,说计算方法,列式。

问:这道题的数量关系是什么?(单价数量=总价)。

指名学生板演:

0.9249.2=45.264(元)。

问:1)人民币的最小单位是什么?(分)。

2)以元为单位的小数表示`分`的是哪个数位?(百分位)。

3)现在我们算出的积有几位小数?(三位小数)。

教师说明:“在收付现款时,通常只算到`分`。然后问:4)要精确到分该怎么办?(保留两位小数)。

5)那么最后的结果应该是多少?(45.26元)。

教师板书:。

0.9249.245.26(元)。

答:应付菜款45.26元。

3、小结。

在实际生活中,小数乘法乘得的积往往不需要保留很多的.小数位数,这时可根据需要或题目要求取近似值,取近似值的一般方法是保留一位小数,就看第二位小数是几,要保留两位小数,就看第三位小数是几......然后按“四舍五入”法取舍。

例如:3.9523.95(保留两小数或精确到百分位)。

3.9524.0(保留一位小数或精确到十分位)。

3.9524(保留整数或精确到个位)。

1.教科书第七页“做一做”的第一题。

提示:求付款的题目没有要求保留小数位数时,都要以元为单元保留两位小数。

对于第2题,由于这道题只有两位小数,不必再求近似数。在以后做题时,一定要根据题目的要求或实际情况来判断。

2.练习二的第1-4题。

第1、2题的第一小题。

小学五年级数学教案篇五

1、复习:果园里有梨树42棵,桃树的棵数是梨树的3倍。梨树和桃树一共有多少棵?(板演)。

2、根据下列句子说出数量之间的相等关系。

杨树和柳树一共120棵。

杨树比柳树多120棵。

杨树比柳树少120棵。

3、出示线段图:梨树:

桃树:

从图上你可以知道什么?如果梨树的棵树用x表示,桃树的棵数怎样表示?

4、出示条件:母鸡的只数是公鸡的5倍。

5、在括号里填上含有字母的式子。(练习二十一第1题)。

6、交流:板演,你是根据怎样的数量关系来解答的?

7、导入:在四年级时我们学习了列方程解应用题,谁来说一说列方程解应用题的步骤是怎样的?今天这节课,我们继续来学习列方程解应用题。(出示课题)。

(1)齐读。

(2)这道题已知什么条件,要求什么问题?边问边画出线段图。

(3)“梨树和桃树各有多少棵”是什么意思?

这道题要求的.数量有两个,你认为用什么方法做比较简便?

(4)下面我们就以小小组为单位进行讨论:这道题用方程来做,学生讨论。

(5)交流。

(6)通过讨论和同学们的交流,你们会解这道题了吗?请做在自己的作业本上。一生板演,其余齐练。

校对板演。还可以怎样求桃树的棵树?

(7)方程解好了,下面要做什么了?你准备怎样检验?(把问题作为已知数进行检验,)生说,师板书,齐答。

2、教学想一想。

现在我们把第一个条件改一下,变成“果园里的桃树比梨树多84棵”,你能列方程解答吗?(出示改编题)。

一生板演,其余齐练。

集体订正。提问:设未知数时你是怎样想的?你是根据什么来列方程的?

3、请同学们比较这两道题,在解答上有什么相同的地方?又有什么不同的地方?为什么会不同?因此,你认为列方程解应用题的关键是什么?(找出数量之间的相等关系。)。

4、小结。

从刚才的两道题可以看出,如果两个数量有倍数关系,就可以把1份的数看做x,几份的数就是几x;把两部分相加就是它们的和,两部分相减就是它们的差。我们可以根据数量之间的相等关系,列方程来解答。

1、练一练。校对:你是根据哪个条件说出数量之间的相等关系的?

2、只列式不计算。

一个自然保护区天鹅的只数是丹顶鹤的2.2倍。

(1)已知天鹅和丹顶鹤一共有96只,天鹅和丹顶鹤各有多少只?

(2)已知天鹅的只数比丹顶鹤多36只,天鹅和丹顶鹤各有多少只?

3、选择正确的解法。

明明家鸡的只数是鸭的3倍,鸡和鸭一共56只,鸡和鸭各有多少只?

(1)解:设鸡和鸭各有x只。x+3x=56。

(2)解:设鸡有x只,鸭有3x只。x+3x=56。

(3)解:设鸭有x只,鸡有3x只。x+3x=56。

商店里苹果的重量是梨的3.6倍,苹果比梨多26千克。苹果和梨各有多少千克?

(1)解:设梨有x千克,苹果有3.6x千克。3.6x-x=26。

(2)解:设梨有x千克,苹果有3.6x千克。3.6x+x=26。

老师有个疑问,想请你们帮我解决:为什么今天学的应用题用方程来做比较好,而复习题用算术方法做比较好呢?说明同学们掌握得不错。

练习二十一/2—5。

小学五年级数学教案篇六

1. 引导学生利用转化的思想和方法探索异分母分数加减法的计算方法。

并能正确地进行计算,培养学生检验的学习习惯。

2.培养学生积极动脑、自主探索的精神。

3.感受数学与生活的密切联系,激发学生对数学学习的兴趣和应用数学的意识。

运用转化思想探索异分母分数加、减法的计算方法,正确进行计算。

生1:我们要从身边的小事做起,不随地吐痰,不乱扔果皮纸屑。

生2:我们要保护环境,不随便扔垃圾。

生3:

师:对,我们要从身边的小事做起,不能随便扔垃圾,但是我们日常生活能产生很多的生活垃圾,我们应该怎样处理呢?我们可以对垃圾分类处理。一般情况我们把生活垃圾分为四类(课件出示例1的垃圾分布图),其中纸张和废金属可以回收再利用,从而节约能源,减少环境污染。

(一)学习异分母分数加法

(1)采集信息

师:从这个表上你都了解到了哪些信息?

指名23名学生回答。

(2)处理信息

师:根据这些信息,你能提出哪些数学问题?

生1:纸张和食品残渣一共占生活垃圾的几分之几?

师:我们一起列式解答。

学生口答,教师板书。

师:你能说说计算过程吗?

指名回答。

师:还能提出什么问题?

生1:提出废金属和纸张占生活垃圾的几分之几?

生2:危险垃圾比食物残渣多多少?

生3:食品残渣和危险垃圾一共占几分之几?

(教师根据需要在黑板上板书。)

(3)探索方法

师:现在我们先来解决废金属和纸张占生活垃圾的几分之几?你能自己列出算式吗?

要求学生独立思考,列式计算。

师:这个加法算式和我们以前学习的分数加法有什么不同?

生:以前我们学习的分数加法分母都是相同的,今天学习的加法分母不同。

师:这就是今大我们要学习的异分母分数加、减法。

小学五年级数学教案篇七

1、理解质数和合数的概念,并能判断一个数是质数还是合数,会把自然数按因数的个数进行分类。

2、通过自主探究、合作交流的方法,理解质数和合数的意义,经历概念的形成过程。

3、培养学生自主探索、独立思考、合作交流的能力,充分展示数学的魅力。

重点难点

重点:初步学会准确判断一个数是质数还是合数。

难点:区分奇数、质数、偶数、合数。

教具学具

投影仪。

教学过程

一、创设情境,激趣导入

学生质疑:什么是质数。教师引入本节课内容,板书:质数和合数。

二、探究体验,经历过程

1、认识质数与合数。

师:找因数--找出1到20的各个数的因数,看一看它们的因数的个数有什么特点?

学生分组进行,找出之后进行分类。

生:老师,我发现这些数的因数有的只有1个,有的有2个,有的有3个,还有的有4个或更多。

师:很好,我们可以把它们分类,大家把分类结果填在表中。

投影展示学生的分类结果。

师:一个数,如果只有1和它本身两个因数,这样的数叫做质数。如2、3、5、7都是质数。一个数,除了1和它本身还有别的因数,这样的数叫做合数。如4、6、15、49都是合数。1既不是质数也不是合数。

师:再举出几个质数和合数的例子,举得完吗?说明了什么?(质数和合数都有无数个)

想一想:最小的质数(合数)是几?的呢?

师:所以按照因数个数的多少,自然数又可以分为哪几类呢?

课件出示:可以把非0自然数分为质数和合数以及1,共三类。

2、制作质数表。

投影出示例1。

师:怎样找出100以内的质数呢?

生1:可以把每个数都验证一下,看哪些是质数。

三、课末总结,梳理提升

这节课我们学习了质数和合数的概念,知道了1既不是质数也不是合数。在利用所学知识进行判断时,我们要抓住质数与合数的本质特点,从因数的个数入手进行判断。在对整数进行分类时,要明确分类标准,不能把质数和合数与奇数和偶数混淆。

小学五年级数学教案篇八

北师大版数学五年级上册第一单元第10~11页《找因数》 学情分析:

在四年级的学习中,学生已经接触了解一些因数和积的概念。学习本单元的前三个课时后,学生已基本建立因数、倍数、奇数和偶数的概念。这些为学生能顺利学习和掌握本课时的学习内容作好前期准备。

“用小正方形拼长方形”对于学生来说,并不陌生。本课教材设计以“用小正方形拼长方形”做为学生学习活动的开始,让学生在理解“用12个小正方形拼成一个长方形,有哪几种拼法?”的前提下开始学习活动,是基于学生已有的知识经验展开的。在此基础上,引导并指导学生小组活动,让学生在小组中把自己的操作过程和思考的过程表达清楚。学生在思考“有几种拼法”时,一般会用乘法进行思考:几乘几等于12,然后再一对一对地找出1与12、2与6、3与4等12的因数。这一安排是借助“拼小正方形”的活动,让学生通过形象的排列特点,理解抽象地找因数的方法。在学生操作的基础上再组织学生交流,交流的重点是学生思考的过程,体会用“想乘法算式”找一个数的因数的方法。在学生交流的过程中,引导学生关注“有序思考”的方法,并逐步体会一个数的因数个数是有限的。最后,在设计找因数的练习题时,可以让学生独立尝试,反馈时注意学生能否有序思考。

1、在用小正方形拼长方形的活动中,体会找一个数的因数的方法,提高有序思考问题的能力。

2、在1—100的自然数中,能运用多种方法,正确写出指定自然数的所有因数。

3、经历探索找一个数的因数的活动过程,培养有条理思考的习惯和能力,发展初步的推理能力。

教学重点:在用小正方形拼长方形的活动中体会找一个数的因数的方法。 教学难点:提高学生有序思考的能力。

教具:投影、课件

学具:12个1平方厘米的小正方形。

师:同学们喜欢做拼图游戏吗?

用你们课前准备好的的12个小正方形拼成一个长方形,比一比,谁的拼法多?边摆边做好记录。

1、学生:用12个小正方形自由拼(画)长方形

(教师巡视,指导个别有问题的学生,搜集学生中出现的问题.)

2、引导学生合作交流中总结出找一个数的因数的基本方法。

(学生独立写出算式并汇报)

学生观察算式,找出因数一样的算式。引导学生说出能用3种方法表示,这三种方法是:1×12=12 2×6=12 3×4=12,并指明算式一样时选择其中一种说出来。

板书:12=1×12=2×6= 3×4

师:同学们观察一下,12的因数有哪几个?

(学生说出12的因数有:1、12 、2、6、3、4。)

师:拼长方形与找因数有什么关系呢?

(指名学生说一说)

师:根据刚才的操作交流,请同学们说一说怎样找一个数的因数呢? (学生思考片刻后汇报,可以组内交流。)

引导学生说出:用乘法思路想,看哪两个数相乘得12,然后一对一对找出来。

3、引导得出“有序思考”的方法。

(学生独立思考后小组讨论,得出结论,再自由发言。)

根据学生发言小结:

找一个数的因数,要用“有序思考”的方法,即用乘法依次一对一对地找,这样有顺序的给一个数找因数,好处就是不重复也不遗漏。

师:请同学们按顺序说出12的因数。(学生汇报)

板书:12的所有因数有:1、2、3、4、、6、12。

基础练习

1、课本第9页试一试:分别找出9和15的全部因数。

学生独立思考分别找出9和15的因数;教师巡视指导,关注学生是否注意“有序思考”。

组织学生交流汇报,指明按从小到大,一个一个有序地说,以免遗漏。

2、 学生独立在书中完成第9页的练一练的第1、2、3题。

(投影展示1、2、3题,让学生说一说,集体评价。)

变式练习

1、16的因数有:( )

36的因数有:( )

一个数的最最小的因数是( ),最大的因数是( ),一个数的因数的个数是( )。

2、一个数的最大因数是17,这个数是( ),它的最小的因数是( ),17的因数是( ),一共有( )个。

一个数的最小倍数是17,这个数是( ),它( )最大的倍数,17的倍数的个数是( )。

拓展提高练习

师:同学们能不能利用找因数的方法来解决装球问题呢?请同学们先独立思考,然后小组内交流一下。

汇报:一共有几种装法呢?

思考:这种装球法与找因数有什么关系呢?

这节课你学会了什么呢?

学生汇报后师总结:同学们说得很好,这节课我们学会了找因数的方法,并能利用找因数的方法解决很多实际问题:在我们的生活中存在着很多数学奥秘,就看我们能不能发现,并应用所学知识去解决。

小学五年级数学教案篇九

教材的意图不仅仅是要求学生掌握本节课的基本知识和基本技能,更重要的是要教给学生探索知识的方法和策略,鼓励学生在教师的引导下自主探索和研究数学知识,这样做的意义就在于将学生的独立思考、展开想象、自主探索、交流讨论、分析判断等探索活动贯穿于课堂教学的全过程,使学生不断获得和积累数学活动经验,培养学生的学习兴趣和学习能力。

1、突出动手操作的学习方式。

通过把正方体盒子剪开得到展开图的活动,引导学生直观认识正方体的展开图。通过学生沿着不同的棱来剪,得到不同的展开图,让学生充分感知正方体不同的展开图,体会到从不同的角度去思考和探究问题,会有不同的结果。

2、渗透转化思想,发展空间观念。

引导学生先通过想象折叠的过程和折叠后的图形来帮助学生建立表象,再通过动手“折一折”的活动来验证猜想。让学生在反复展开和折叠的过程中体验立体图形与平面图形相互转化的过程,建立展开图中的面与长方体和正方体中的面的对应关系,渗透转化和对应的数学思想,发展空间观念,培养学生多角度探究问题的能力和空间思维能力。

教师准备ppt课件,长方体和正方体模型。

学生准备长方体和正方体盒子。

激趣引入,明确目标。

1、通过动手剪一剪、折一折,体验正方体展开与折叠之间的对应关系,加深对长方体、正方体的认识。

2、会根据长方体、正方体的特点或动手操作等方法判断某一图形折叠后能否围成长方体或正方体。

设计意图:师交代学习目标的作用,让学生明确这节课要做什么,学会什么。

合作交流,探究新知。

活动一展开。

提出活动要求:把一个正方体盒子沿着棱剪开,得到一个展开图。

1、教师做示范并指导学生操作。

第一:必须沿着棱剪;第二:正方体的每个面至少有一条棱与其他面相连。

2、学生动手剪,教师指导有困难的学生,并把剪得好的正方体展开图展示在黑板上。

3、小组交流剪出的不同形状的展开图。

4、全班交流:观察黑板上的这些不同形状的展开图,你发现了什么?

5、教师小结:同一个正方体,剪法不同得到的展开图也不同,共有11种不同的展开图。(课件出示正方体的11种展开图)。

设计意图:让学生经历展开的过程,有利于培养学生的空间观念,同时也让学生感悟到同一个正方体展开的结果是多样的。

活动二折叠。

提出活动要求:同桌合作,把同桌的展开图重新折叠成正方体。

1、同桌各自交换展开图,动手折一折。

2、找规律。(课件出示正方体的11种展开图)。

师:观察这11种展开图,找一找有什么规律。

预设。

生1:有6种中间是4个正方形的,两侧分别有1个正方形,形状不同。

生2:有3种中间是3个正方形的,两侧分别有2个和1个正方形。

生3:有1种中间是2个正方形的,两侧分别有2个正方形。

生4:有1种两行各有3个正方形的。

小学五年级数学教案篇十

1、知道单位”1”可以是一个物体,也可以是多个物体。认识分数单位,理解分数是分数单位的累积。理解分数的意义,体会分数表示的部分与整体的关系。

2、运用直观教学手段,经历分一分、画一画、折一折、比一比等活动,理解分数的意义,培养学生的动手操作的能力和抽象概括能力,形成从不同角度思考问题的意识。

3、学生在轻松和谐的氛围中主动参与、充分体验,感受数学与生活的密切联系,发展学生的数感。

小学阶段对于分数的研究大致分为5个阶段:低年级的平均分和除法、倍的认识、三年级的分数初步认识、五年级的分数再认识、分数的计算、六年级的比。从这些安排来看可以看出五年级的分数再认识是小学阶段一次系统的学习分数,这部分内容是在学生已对分数有了初步的认识的基础上,教材安排的一次理论上的概括。它不仅是前面所学知识的归纳、总结,更是对分数认识上由感性上升到理性的开始,是学习分数四则运算和应用的重要前提。

重点:

知道单位”1”可以是一个物体,也可以是多个物体。认识分数单位,理解分数是分数单位的累积。

难点:

运用直观教学手段,经历分一分、画一画、折一折、比一比等活动,理解分数的意义,培养学生的动手操作的能力和抽象概括能力,形成从不同角度思考问题的意识。

活动1【导入】。

一、沟通“1”、整数、分数的联系,度量中感受分数的产生和意义。

师:同学们学习过整数吗?如果用这张红色的纸条表示1,那么你能想办法表示出2吗?3怎样表示呢?我们发现有几个这样的“1”就可以用几来表示。

师:老师这里还有一张纸条(更长的纸条),你知道它表示几吗?(用1作为标准去量发现有不足1的)。

师:这段不足1的长度怎样表示呢?(用分数表示)。

在测量、分物或计算时,往往不能正好得到整数的结果,这时常用分数来表示。

师:猜一猜,这段不足1的长度是这个标准的几分之几呢?

老师给每个组的同学都提供了一些学具,请利用手中的学具验证你们的猜想。

预设1:两张绿色纸条拼成一个红色纸条,绿色纸条是红色纸条的。

预设2:红色纸条对折,不足1的部分是红色纸条的。

预设3:两张桔色的纸条。一张桔色的纸条是红色纸条的,两个就是。

我们发现我们只要找到不足1的部分与标准之间的关系,就可以用分数表示了。

活动2【讲授】。

二、分物中体会单位“1”可以是多个物体。

师:刚才我们找到了,生活中其他的地方有没有呢。

大米。

1000克。

拿出小片子,请你分别表示出它们的。

我们表示的都是,可是为什么对应的数量却都不相同呢?

回顾一下找的过程,你对分数又有了哪些新的体会?

师小结:除了可以把一个物体或一个图形平均分找到分数,也可以把多个图形或多个物体看作整体通过平均分找到分数。大家平均分的一个物体、一个图形、一个计量单位、一个整体,可以用自然数“1”表示,通常叫做单位“1”

活动3【讲授】。

三、分物中认识分数单位,深入体会分数的意义。

师:刚才同学们准确的找到了这些糖的,下面同学们可以自由地利用这些糖来表示你喜欢的分数。

合作建议:

独立思考:想一想、画一画,用这些糖还能表示出哪些分数。

小组讨论:在小组内说一说你找到的分数所表示的意义。

预设:

观察这两个分数你有什么发现吗?

相同点:都是把6块糖平均分成6份。

不同点:取的份数不同。

联系:2个是。

师:你会表示吗?

师:我们发现有几个就是六分之几。

师:你会表示吗?

师:那么有几个就是三分之几。

像、这样的表示一份的分数就叫做分数单位。而像、、这样的分数,我们可以理解为它们都是由分数单位不断累积而成的。

师:有些同学还找到了一样的分数,对吗?

师:表示了这么多分数,谁能来说说分数的意义。

活动4【导入】。

四、巩固练习。

1、填一填。

2、猜一猜。

师:请你对自己今天课堂学习的表现和收获进行评价。这里有10颗星星,你认为你可以得到几颗呢?请在纸上进行涂色。

师:谁再来说说你自己评了几颗星,同学们想一想他获得了全部星星的几分之几?

师:同学们想不想知道我给大家今天的学习情况评几颗星呢?

出示。

师:你知道这是几分之几吗?

有的同学在为没有得到全部的星星而感到遗憾,其实没有点亮的那半颗星才是我今天送给大家最宝贵的礼物,不满足是进步的首要条件,在陈老师心里你们每个人拥有着无限的潜能,我永远期待着你们更精彩的表现。

小学五年级数学教案篇十一

书第54――55页,有趣的测量及试一试第1、2题。

1.知识与技能:结合具体活动情境,经历测量石头的试验过程,探索不规则物体体积的测量方法。

2.过程与方法:在实践与探究过程中,尝试用多种方法解决实际问题。

3.情感、态度与价值观:在观察、操作中,发展学生空间观念。

用多种方法解决实际问题。

探索不规则物体体积的测量方法。

不规则石头、长方体或正方体透明容器、水。

一、导入新课

老师出示准备好的不规则石快。

师:这个石块是什么形状的?(不规则)

什么是石块的体积?

你有什么困难?

二、教学新知

1.测量石块的体积

(1)小组讨论方案

师:我们不能直接用公式计算出石块的体积,可以怎么办呢?你有什么好的方法吗?

(2)小组制定方案

(3)实际测量

方案一:找一个长方体形状的容器,里面放一定的水,量出水面的高度后把石头沉入水中再一次量出水面的高度。这时计算一下水面升高了几厘米,用“底面积×高”计算出升高的体积。也可以分别计算放入石头前的体积与放入石头之后的总体积之差。

师:为什么升高的那部分水的体积就是石块的体积?

方案二:将石头放入盛满水的容器中,并将溢出的水倒入有刻度的量杯中,然后直接读出的水的体积,就是石头的体积。

师:为什么会有水溢出来?

这两种方案实际上都是把不规则的石头的体积转化成了可测量计算的水的体积。让学生说出“石块所占空间的大小就是石块的体积”。

1.实际应用

(1)读题,理解题意。

(2)分析:你是怎么想的?

(3)学生尝试独立解答。

(4)集体反馈,订正。

让学生运用在探索活动中得到测量的方法,即“升高的水的体积等于土豆的体积”,然后用“底面积×高”的方法计算。2×1.5×0.2=0.6(立方分米)

三、课堂小结

学习了这节课,同学们有什么感受和体会?有什么提高?

1.书第55页第2题。

本题引导学生开展测量不规则物体体积的活动。一粒黄豆比较,先测量100粒黄豆的体积,再计算出一粒黄豆的体积。

2.学生再找一些实物,测量出体积。

板书设计:

有趣的测量

方案一:

方案二:

“底面积×高”的方法计算。

2×1.5×0.2=0.6(立方分米)

小学五年级数学教案篇十二

第2课时整数四则混合运算(含有小括号的三步计算)

教学内容:

教材第71、72页。

教学目标

1、学生掌握三步混合运算(含有小括号的)运算顺序,提高计算的正确率。

2、提高分析解决实际问题的能力,能根据一些常见的基本数量关系式进行分析、列式。

教学重难点:

体会小括号有改变原来运算顺序的作用,理解含有小括号的混合运算的运算顺序。

教学过程:

一、混合运算的运算顺序复习:

1、学生练习:300-120+25×4

强调混合运算顺序。

二、添上括号,新课引入

计算300-(120+25×4)

提问:这道算式有什么特点?算式里有小括号,应该怎样计算?

明确:这题含有小括号,那第一步就应该算小括号里的;其他的步骤还轮不到算,只能把它们移下来。如果小括号里既有乘、除法,又有加、减法,也要先算乘、除法,再算加、减法。

学生尝试计算,教师巡视,并指名板演。

指名说说,你是按怎样的顺序计算的。

计算时要注意什么?

强调混合运算的三个等级:(1)小括号;(2)乘或除;(3)加或减。

小结:混合运算一定要先观察算式的特点,考虑它的运算顺序,然后再开始计算。

三、练习

1、完成“练一练”。

先让学生说说每一道题的运算顺序,再独立完成计算。组织反馈与交流。

2、做练习十一第5题。

(1)先出示左边的一组题,比较第一、二小题,说一说它们有什么相同和不同的地方;再比较第二、三小题,说一说小括号的位置有什么变化,运算顺序有什么不同。

学生独立完成,反馈评价。

(2)出示右边的一组题,让学生在小组里进行比较和交流。

学生独立完成计算,反馈评价。

3、做练习十一第6题。

先让学生独立完成计算,再说说每道题的运算顺序,以及计算的过程和结果

4、做练习十一第7题。

学生自由读题,说说题目中的条件和问题。

整理条件和问题,在小组里讨论题目中的数量关系。

列综合算式解答。

反馈不同的解题方法。

说说分析数量关系的思考过程和列式的依据。

四、课堂总结

通过今天的学习,你有什么收获呢?

教学反思:

四则运算

教学内容:

加、减法的意义和各部分间的关系p2p3

教学目标:

1、通过观察比较,进一步理解加、减法的意义,掌握加、减法之间的关系。

2、在经历探索发现加与减的互逆关系及加、减法各部分之间的关系的过程中,培养学生的比较、概括、归纳、判断推理能力。

3、运用加、减法的关系解决简单的实际问题。

教学重点:

进一步理解加、减法的意义,掌握加、减法之间的关系。

教学难点:

理解并掌握加法与减法之间的互逆关系。

教学准备:

实物投影、课件

教学过程:

一、导入新授

加法和减法是一对好朋友,他们之间有什么秘密呢?今天就来研究加、减法的意义和各部分之间的关系。板书课题。

二、探索发现

1、探究加、减法的意义。

(1)教学加法的意义

出示教材p2例1主题图

学生独立思考后独立列式:814+1142=1956(千米)并展示线段图。

结合加法算式,说一说加法算式的意义。

教师总结:把两个数合并成一个数的运算,叫做加法。

你知道加法各部分名称吗?

教师总结:相加的两个数叫做加数,加得的数叫做和。

(2)教学减法的意义

小学五年级数学教案篇十三

课本第76页。

1、掌握小数四则混合运算的顺序,能正确地进行计算。

2、经历计算、猜想、验证等数学活动过程,初步理解和掌握整数加法、乘法的'运算律对小数加法、乘法同样适用。

3、能运用运算律进行简便计算,掌握简便计算的方法,培养简便计算的意识。

正确计算小数四则混合运算,应用运算律进行简便计算。

运用乘法的运算律进行小数乘法的简便运算。

课件

一、复习导入,揭示课题。(4分钟左右)

1、回忆一下,我们学过的整数四则混合运算的运算顺序是怎样的?乘法运算律有哪些?请用字母表示出来。

总结:

(1)同一级符号从左往右依次计算;

(2)既有加减,又有乘除,先算乘除,再算加减;

(3)有小括号的,先算小括号里面的。

乘法交换律ab=ba

乘法结合律a(bc)=(ab)c

乘法分配率a(b+c)=ab+ac

2、明确课题。

今天就一起来学习“小数四则混合运算”。

1、明确例14中的数学信息及所需要解决的问题。

2、自学。

导学单(时间:5分钟)

(1)看图,根据题意列出综合算式。

(2)你是按照怎样的顺序进行计算的?为什么可以这样计算?

(3)比较两种解法,哪一种更简便?

(4)计算并比较三组算式。

点拨:先分别算出种茄子和辣椒的面积;或先算出这块长方形菜地的长是多少米。

点拨:小数四则混合运算的顺序和整数相同。

总结:“先算出这块菜地的长,再算它的面积”相对简便些。

3、小组交流。

交流内容

(1)小数四则混合运算的顺序是怎样的?

(2)三道算式的圆圈里能填等号吗?为什么?

(3)整数加、乘法的运算律,对小数加、乘法也都适用吗?

4。集体交流。

导学要点:整数加法、乘法的运算律对小数加、乘法同样适用。而且,应用运算律常常能使计算过程比较简便。

(一)适应练习。

1。整合“练一练”第1题和练习十四的第2题,先说出各题的运算顺序,再计算。

点拨:“练一练”第1题的(1)可以先同时计算乘除法,再算加法;练习十四第2题的最后一题,算式中既有中括号又有小括号,先算小括号里的,再算中括号里的。

2。整合“练一练”第2题和练习十四的第2题,用简便方法计算。

点拨:0。25×36=0。25×4×9

运用了什么运算律?

2。4×1。02=2。4×(1+0。02)

运用了什么运算律?

(二)口答练习。

1、练习十四第1题中的6道题。

提醒:

(1)数位对齐;

(2)从个位算起;

(3)不要忘加小数点。

(三)整合练习。

1、练习十四第4题。

提示:要求这四名同学完成接力赛的总时间,只要把表中的四个数据相加就可以了;而求这四个数连加的和时,可以应用加法的交换律和结合律使计算简便。

2、练习十四第5题。

点拨:

(2)0.25×0.35×400先算每棵向日葵可榨油的千克数,再算400棵向日葵可榨油的总千克数。

(四)创编练习。

简便计算:7.3×9.9 0.125×8.8

提醒:7.3×9.9=7.3×(10-0.1)

0.125×8.8=0.125×8×1.1或

0.125×8.8=0.125×(8+0.8)

通过这节课的学习你学到了什么知识?

教学反思:

苏教版四年级上册《整数四则混合运算练习课》数学教案

苏教版四年级上册《整数四则混合运算练习课》数学教案

第七单元整数四则混合运算

第3课时整数四则混合运算练习课

教学内容:

教材第73页。

学生进一步掌握三步混合运算的运算顺序,逐步形成计算技能,经历分析数量关系的过程,巩固解决问题的策略,培养数学思维能力和解决问题的能力。

教学重难点:

掌握三步混合运算的运算顺序,巩固解决问题的策略。

教学过程:

1、揭示课题。

这节课我们继续来练习混合运算,完成练习十一上的练习。(板书课题)

2、口算:

720÷90 484÷2 450÷50

28+42 3×48 40÷2

360×2 65-17 56+8

3、计算下面各题。指名说说混合运算的运算顺序是怎样的?

完成练习十一第9题。

学生独立计算,提醒自觉验算。

4、练习十一第10题。

说说每组中两道算式的相同和不同的地方,再判断哪道算式的得数大。

通过计算检验。

1、练习十一第11、12题。

学生独立解答。

反馈交流各自的解题思路。说说是怎样整理题目中的条件和问题的,怎样分析数量关系的。

2、练习十一第13题。

先让学生独立完成估算,并说说是怎样估算的。

再列式算出结果,并把它与估算的结果比较。

3、练习十一第14题。

学生读题,独立解答。

反馈解题思路。

引导思考“你还能提出什么问题”。

学生提出问题并解答。

通过今天的练习,你有什么收获呢?

四则混合运算

这一单元的目标是这样定的:

1、使学生掌握含有两级运算的运算顺序,正确计算三步式题。

2、让学生经历探索和交流解决实际问题的过程中,感受解决问题的一些策略和方法,学会用两、三步计算的方法解决一些实际问题。

3、使学生在解决实际问题的过程中,养成认真审题、独立思考等学习习惯。

从教参的教学目标定位来看,应该是既注重两级运算的运算顺序教学,又要重视解决问题的一些策略。然而结合我们学生的学习实际情况来看,两样都已初步的感受过,但又不是很深入,如:四则运算的计算顺序包括带括号的计算顺序都在平时的练习中曾经碰到过,但不是很多(但有的学生在家长的帮助下对于先乘除后加减的运算顺序了然于胸了)。所以是不是把四则混合运算顺序作为重点来教我真的曾不止一次的怀疑过。让我怀疑动摇的还有一个原因就是学生解决问题的能力太差,新课程一线教师都清楚现在学生解决问题能力的欠缺。所以,这一次四则运算知识的教学也正是加强学生解决问题能力训练的一次好机会,与我有这种相同想法的教师还真不少,认为还是有必要侧重解决问题的策略教学。

在教学式题过程中,我要求学生用先算,再算,最后算来口述式题的运算顺序,减少运算顺序的错误,同时也加强学生语言表达能力。写作业时还要求学生根据式题的运算顺序用简单的画顺序线,以增强运算顺序的形象感。如:第11页例题5:先说出各题的运算顺序,再计算。

(1)42+6(12-4)

(2)42+612-4

口述顺序是:先算括号里的减法,再算口述顺序是:先算乘法,再算加法。最后

括号外的乘法,最后算括号外的加法。算减法。

而在教两三步计算解决简单的数学实际问题时,我先要求学生口述解题思路,让其明白列综合算式应先算什么,再算什么,最后算什么,把抽象的、明理的东西搞得的尽可能的形象,从而更接近于小学生的实际。

只有多巩固练习,就能熟能生巧,做到四则运算式题的顺序无误,列综合算式条理清晰,学生分析问题、解决问题的能力得到了提高,更大的收获是差生做式题的计算减少了不必要的错误。

小学五年级数学教案篇十四

已学的相关内容:分数意义的初步理解;简单分数的大小比较;同分母分数的加减计算。

本单元的主要内容:分数的再认识;真分数和假分数;分数与除法的关系;分数基本性质;公因数、最大公因数;约分;公倍数与最小公倍数;通分、分数大小比较。

1、在具体情境中进一步理解分数,体会分数的相对性。

教材通过创设具体的问题情境,丰富学生对分数的认识,进一步理解分数,体会分数的相对性。分数相对性就是结合具体情境使学生感受分数对应的“整体”不同,它所对应部分的大小或具体数量的多少是不一样的。在教学中,对学生来说,不需要出现“分数相对性”这样的专门术语,只要学生能结合具体情境体会就可以了。为了进一步加深学生对分数的理解,教材安排了“拿铅笔”等多个情境活动,教学时,教师要联系这样的实际情境,引导学生借助直观展开充分的交流。

在进一步认识分数的基础上,教材又安排真分数与假分数的认识,在“分饼”活动中具体体会真分数与假分数的产生过程及其实际含义,真分数与假分数的概念教材都只给出了描述性定义,要让学生自己说说真分数与假分数的特点。对于带分数的概念教材用介绍的方法,与真分数、假分数分开处理,有利于学生理解假分数与带分数的关系,避免造成错觉。

2、在观察比较中发现分数与除法的关系,探索假分数与带分数的互化方法。

除法计算不能整除时,除得的商可以用分数来表示。理解分数与除法的关系,是表示除法结果的需要,也是假分数与带分数互化的基础。教材通过具体情境引出除法算式,并根据分数的意义表示出结果,然后引导学生比较几个算式,探索发现分数与除法的关系。根据分数与除法的关系,让学生用分数表示两数相除的商或把分数表示成两数相除的形式。在此基础上引导学生探索假分数与带分数的互化方法。因为带分数的计算在学生的后继学习和生活实践中应用不是很多,所以学生只要能理解互化的方法并会正确进行互化即可,在速度及熟练程度上不要作过高要求。

3、经历知识的形成过程,探索分数的基本性质。

分数基本性质是约分和通分的基础,而约分、通分又是分数四则计算的重要基础,因此,理解分数基本性质显得尤为重要。而分数与除法的关系以及除法中商不变的规律与这部分知识紧密联系,是学习这部分内容的基础。

探索分数基本性质,关键是让学生在活动中主动地观察和发现,在讨论交流的基础上归纳规律。教材安排了两个学习活动让学生寻找相等的分数,分别是“用分数表示图中的阴影部分”和“在折纸活动中找到与3/4相等的分数”,通过两个活动使学生初步体验分数的大小关系,为观察、发现分数基本性质提供丰富的学习材料。然后,引导学生观察这两组相等的分数,寻找分子、分母的变化规律,并展开充分的交流,在此基础上,归纳分数基本性质。

4、在探索活动中理解公因数与公倍数的含义,掌握约分与通分的方法。

本册教材对公因数、公倍数的知识与约分、通分的知识进行了整合。在分数单元学习约分、通分前,安排学习公因数和公倍数等知识,这样有利于学生感受数学知识之间的联系。同时,根据课程标准要求,本册教材对知识掌握的要求进行了适当的限制,如求最大公因数是两个数限制在100以内、,求最小公倍数是两个数限制在10以内等。为了帮助学生体会“公倍数”的实际意义,教材还安排了“找最小公倍数”等实际情境,引导学生在解决实际问题的过程中,理解和体会“公倍数”的实际意义。在探索和掌握找公因数、找公倍数的方法的基础上,学习约分和通分。

“整体----部分-----整体”观察策略。对观察对象的整体先作初步的了解,发现这一类现象可能存在着某种规律,然后分出个部分,分别作进一步的观察,发现存在于各部分中的基本规律,进而再研究各部分间的联系,发现共同的结构,提出假设。

(1)整体观察。发现这几组分数的分子、分母都起了变化,而分数的大小不变。这里可能存在某中规律。

(2)部分观察。先引导学生对其中一组数==,从左向右观察,并组织学生讨论:一个分数的分子、分母怎样变化,分数的大小不变?为了让学生能正确地运用数学语言表达,可以把这组分数改写成下式让学生练习:

得出:分数的分子、分母都乘以一个相同的数(0除外),分数的大小不变。

接着,引导学生从右向左观察,并练习:

得出:分数的分子、分母都除以一个相同的数(0除外),分数的大小不变。

在让学生观察其他几组分数,能得出同样的规律。

(3)整体观察。引导学生从整体上观察这组例证,概括得出结论后,让学生阅读课本,要求能运用商不变性质说明分数的基本性质,并说明为什么要“零除外”。

小学五年级数学教案篇十五

1、比较系统地理解自然数、整数、分数、小数、百分数的意义。

2、自然数、整数、分数、小数、百分数的联系和区别。

3、对各种数进行分类,体验分类的原则与方法。

4、掌握十进制计数法。

教学重点:在已有知识经验的基础上,加深对各种数的意义的理解。

教学难点:分类,形成系统,理解数与数之间的联系与区别。

教学关键:数的意义的理解。

教学准备:多媒体课件

同学们,在小学阶段,我们认识了很多的数,你能说说我们已经学习了哪几种数吗?(教师板书各种数)

1、用数表示数轴上的各点,唤醒学生对数的认识。

(1)教师先确定“0”的位置,然后由学生分别指出1、2、-1、-2所在的点各用什么数表示。

(2)引导学生发现规律。

从这条线上,你能发现什么规律?

(3)请学生指出、0.3、1、2、2.9所在的点各用什么数表示。

能不能说说为什么这些点要用分数或小数表示?

你还发现了什么?

(4)请学生在上面的这些数中分别找出黑板上板写的各种数。

我们还学过哪些分数?分数的个数是怎样的?分数可以分成哪几类?

我们还学过哪些小数?它们的个数是怎样的?小数可以分成哪几类?

我们还学过哪些自然数?它们的个数是怎样的?

我们还学过哪些正数?它们的个数是怎样的?

我们还学过哪些负数?它们的个数是怎样的?

除了这些数,我们还学习过那些数?(引出百分数)

2、归纳分类

学生汇报。

(1)(2)

在分类的时候,我们要注意什么?

1、整数和分数之间有什么联系和区别?(负整数不在讨论的范围)(举例说明)

联系:(1)它们都有各自的计数单位。

(2)整数可以转化成分母是“1”的分数形式。

区别:(1)分数是把单位“1”平均分成若干份,表示这样的一份或几份的数,分数用来表示不满“1”的数,整数则是表示几个“1”。

(2)它们的计数单位不同。

2、整数和小数之间有什么联系和区别?(举例说明)

联系:进制相同,都采用十进制计数法。(填写数位顺序表)

区别:(1)小数是把单位“1”平均分成10、100、1000......份,表示这样的一份或几份的数,小数用来表示不满“1”的数,整数则是表示几个“1”。

(2)它们的计数单位不同。

3、分数和小数之间有什么联系和区别?(举例说明)

联系:(1)小数是分数的一种特殊的表现形式,都用来表示不满“1”的数量。

(2)分数和小数可以互相转化。

区别:它们的计数单位不同。

4、分数与百分数之间有什么联系和区别?(举例说明)

联系:百分数是一种特殊的分数。

区别:分数可以表示数量,后面可以加单位,分数也可以表示两个数之间的倍数关系,分数还可以表示两个数相除,分数的分母可以是零以外的任何一个整数。百分数则一般只用来表示两个数之间的倍数关系,分母是固定不变的。

1、将下面的数填在适当的()里。

(1)冰城哈尔滨,一月份的平均气温是()摄氏度。

(2)五(4)班喜欢运动的同学占全班同学总数的()。

(3)杨老师的身高()米。

(4)某市今年参加马拉松比赛的人数是()。

2、在括号里填上合适的数。

(1)270.46=2×()+7×()+4×()+6×()

(2)2:()=0.4===()%

(3)一个数由7个组成,这个数是(),它的倒数是()。

(4)把4千克葡萄干平均分成8包,每包是()千克,每包占总数的()。

同学们,这节课我们系统的复习了小学阶段我们所学过的各种数,这些数为我们的学习和生活奠定了基础,你们知道没有数之前人类是怎样来表示数量的多少的吗?如果现在没有了这些数,我们的生活会是怎样的?除了这些数你还知道那些数?数的知识浩瀚无比,你们要努力学习,打好基础,将来有更多的数等待你的发现和创造。

【本文地址:http://www.xuefen.com.cn/zuowen/7271499.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档