实用人教版七年级数学教案(通用12篇)

格式:DOC 上传日期:2023-11-03 05:16:06
实用人教版七年级数学教案(通用12篇)
时间:2023-11-03 05:16:06     小编:FS文字使者

教案的编写应该充分考虑学生的学习特点和实际情况,使之符合教学内容的要求。在编写教案时,教师要善于利用多种教育资源和技术手段,拓宽教学渠道,提高教学效果。一份好的教案范文可以为教师提供一种参照和借鉴。

人教版七年级数学教案篇一

1知识与技能:

使学生理解和掌握整十数除整十数、几百几十数(商一位数)的口算方法,能正确地进行计算。

2过程与方法:

通过观察、操作、讨论的活动,使学生经历探究口算方法的全过程。

3情感态度与价值观:

让学生感受数学与生活的联系,培养学生用数学知识解决简单实际问题的能力。

教学重难点

1教学重点:

掌握用整十数除的口算方法。

2教学难点:

理解用整十数除的口算算理。

教学工具

多媒体设备

教学过程

1复习引入

口算。

20×3=7×50=6×3=

20×5=4×9=8×60=

24÷6=8÷2=12÷3=

42÷6=90÷3=3000÷5=

2新知探究

1.教学例1

有80面彩旗,每班分20面,可以分给几个班?

(1)提出问题,寻找解决问题的方法。

师:从中你能获取什么数学信息?

师:怎样解决这个问题?

(2)列式80÷20

(3)学生独立探索口算的方法

师:怎样算80÷20呢,请同学们先自己想一想、算一算,再说给同桌听一听。

学生汇报:

预设学生可能会有以下两种口算方法:

a.因为20×4=80,所以80÷20=4这是想乘算除

b.因为8÷2=4,所以80÷20=4这是根据计数单位的组成

为什么可以不看这个“0”?(80÷20可以想“8个十里面有几个二十?”)

这样我们就把除数是整十数的转化为我们已经学过的表内除法。

(4)师小结:

同学们有的用乘法算除法的,也有用表内除法来想的,都很好,那么你喜欢哪种方法呢?

把你喜欢的方法说给同桌听。

(5)检查正误

师:我们分的结果对不对?请同学们看屏幕(课件演示分的结果)

(6)用刚学会的方法再次口算,并与同桌交流你的想法

40÷2020÷1060÷3090÷30

(7)探究估算的方法

出示:83÷20≈80÷19≈

师:你能知道题目要求我们做什么吗?你怎么知道的?你是怎样计算的?和同学们交流一下。

生:求83除以20、80除以19大约得多少,从题目中的约等号看出不用精确计算。

师:谁想把你的方法跟大家说一说。

预设:83接近于80,80除以20等于4,所以83除以20约等于4。

19接近于20,80除以20等于4,所以80除以19约等于4。

2.教学例2

(1)创设情境引出问题

师:谁会解决这个问题?

150÷50

(2)小组讨论口算方法

(3)你是怎么这样快就算出的呢?

a.因为15÷5=3,所以150÷50=3。

b.因为3个50是150,所以150÷50=3。

这一题跟刚才分彩旗的口算方法有不同吗?

都是运用想乘算除和表内除法这两种方法来口算的。

师:在解决分彩旗和刚才的问题中,我们共同探讨了除法的口算方法,(板题:口算除法)口算时,可以用自己喜欢的方法来口算。

口算练习:150÷30240÷80300÷50540÷90

3.估算

(1)探计估算的方法

师:你能知道题目要求我们做什么吗?

你能估吗?请先估算,再把你的估算方法与同伴交流,看看能否互相借鉴。

(2)谁想把你的方法跟大家说一说。

(3)总结方法:把被除数和除数都看作与原数比较接近的整十数再用口算方法算。

(4)判断估算是否正确:122÷60=2349÷50≈8为什么不正确?

3巩固提升

1.独立口算

观察每道题,怎样很快说出下面除法算式的商?

如果估算的话把谁估成多少。

2.算一算、说一说。

(1)除数不变,被除数乘几,商也乘几。

(2)被除数不变,除数乘几,商反而除以几。

3.解决问题

(1)一共要寄240本书,每包40本。要捆多少包?

你能找到什么条件、问题。你会解决吗?

240÷40=6(包)

答:要捆6包。

(2)这个小朋友也是一个爱看书的好孩子,她在看一本故事书。

出示条件:一共有120个小故事,每天看1个故事。

问题:看完这本书大约需要几个月?

问:要求看完这本书大约需要几个月?必须要知道哪些条件,你会求吗?

120÷30=4(个)

答:看完这本书大约需要4个月。

课后小结

这节课你有什么收获?还有什么问题?

本节课学习了整十数除整十数、几百几十数(商一位数)的口算方法,能正确地进行计算。

板书

口算除法

有80面彩旗,每班分20面,可以分给几个班?

80÷20=

人教版七年级数学教案篇二

1、让学生生自主探索小数的加、减法的计算方法,理解计算的算理并能正确地进行加、减法。

2、使学生体会小数加减运算在生活、学习中的广泛应用,体会数学的工具性作用。

3、激发学生学习小数加减法的兴趣,涌动长大后也要为国争光的豪情,提高学习的主动性和自觉性。

教学重难点。

教学重点:用竖式计算小数加减法。

教学难点:理解小数点对齐的算理。

教学工具。

多媒体课件。

教学过程。

(一)情景引入。

师:同学们,你们还记得吗?整数的加减法是怎样计算的?让我们用一道习题回顾一下。

(呈现多媒体,学生自主完成习题并总结计算算理)。

师:同学们你们可真棒,那么今天我们学习小数的加减法(引出课题并板书)。

(二)例题讲解。

(1)小丽买了下面两本书,一共花了多少钱?

(2)《数学家的故事》比《童话选》贵多少钱?

生:好的。

(展示小丽遇到的问题(1),并让学生列出算式)。

师:根据咱们总结的整数加减法的算理,想一想这个式子怎么计算呢?

(让学生大胆的去尝试,小组讨论,并列出竖式)。

师:你们发现小数加减法计算时需要注意什么?

生1:注意数位对齐。

生2:注意小数点要对齐。

生3:……。

老师小结:小数点要对齐,得数的小数点也要对齐。

师:小丽啊还有一个问题让我们看一看(展示问题(2))。

(让学生自主解决,并再回忆需要注意什么?)。

完成后学生给予总结,完成小数加减法的时候需要注意什么?

(三)习题巩固。

课本72页做一做。

课后小结。

学生谈一谈本节课你学到了什么?

给出总结:计算小数加、减法,先把各数的小数点对齐(也就是把相同数位上的数对齐),再按照整数加、减法的法则进行计算,最后在得数里对齐横线上的小数点点上小数点。

课后习题。

一、计算。

1.5-0.5=1-0.9=2.3+0.6=0.9+0.8=。

1.9-0.8=3.5-2.4=0.36+0.65=0.96-0.32=。

二、竖式计算。

20.87-3.65=3.25+1.73=。

18.77+3.14=23.5-2.8=。

三、解决问题。

1、小红买文具,买钢笔用去6.7元,买文具盒用去9.8元,一共用去多少钱?

板书。

计算小数加、减法,先把各数的小数点对齐(也就是把相同数位上的数对齐),再按照整数加、减法的法则进行计算,最后在得数里对齐横线上的小数点点上小数点。

人教版七年级数学教案篇三

1、大于0的数叫做正数(positivenumber)。

2、在正数前面加上负号“-”的数叫做负数(negativenumber)。

3、整数和分数统称为有理数(rationalnumber)。

4、人们通常用一条直线上的点表示数,这条直线叫做数轴(numberaxis)。

5、在直线上任取一个点表示数0,这个点叫做原点(origin)。

6、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值(absolutevalue)。

7、由绝对值的定义可知:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

8、正数大于0,0大于负数,正数大于负数。

9、两个负数,绝对值大的反而小。

10、有理数加法法则

(1)同号两数相加,取相同的符号,并把绝对值相加。

(2)绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。

(3)一个数同0相加,仍得这个数。

11、有理数的加法中,两个数相加,交换交换加数的位置,和不变。

12、有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

13、有理数减法法则

减去一个数,等于加上这个数的相反数。

14、有理数乘法法则

两数相乘,同号得正,异号得负,并把绝对值向乘。

任何数同0相乘,都得0。

15、有理数中仍然有:乘积是1的两个数互为倒数。

16、一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。

17、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。

18、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

19、有理数除法法则

除以一个不等于0的数,等于乘这个数的倒数。

20、两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。

21、求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power)。在an中,a叫做底数(basenumber),n叫做指数(exponeht)

22、根据有理数的乘法法则可以得出

负数的奇次幂是负数,负数的偶次幂是正数。

显然,正数的任何次幂都是正数,0的任何次幂都是0。

23、做有理数混合运算时,应注意以下运算顺序:

(1)先乘方,再乘除,最后加减;

(2)同级运算,从左到右进行;

(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

24、把一个大于10数表示成a×10n的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学计数法。

25、接近实际数字,但是与实际数字还是有差别,这个数是一个近似数(approximatenumber)。

26、从一个数的左边的第一个非0数字起,到末尾数字止,所有的数字都是这个数的有效数字(significantdigit)

短时间提高数学成绩的方法

1、查查在知识方面还能做那些努力。关键的是做好知识的准备,考前要检查自己在初中学习的数学知识是否还有漏洞,是否有遗忘或易混的地方;其次是对解题常犯错误的准备,再看一下自己的错误笔记,如果你没有错题本,那可以把以前的做过的卷子找出来。翻看修改的部分,那就是出错的地方、争取在答卷时,不犯或少犯过去曾犯过的错误。也就是错误不二犯。

2、一定要对自己、对未来充满信心,心态问题是影响考试的最重要的原因。走进考场就要有舍我其谁的霸气。要信心十足,要相信自己已经读了一千天的初中,进行了三百多天的复习,做了三千至四千道初中数学题,养兵千日,用兵一时,现在是收获的时候,自己会取得好成绩的。

3、看完书后,把课本放起来,做习题,通过做习题来再一次检查自己哪些地方做的不够好,如果碰到不会的地方,可以再看课本,这样以来,相信会给你留下深刻的印象。

数学学习方法

1、基础很重要

是不是感觉数学都能考满分的同学,连书都不用看,其实数学学霸更重视基础。,数学公式,几何图形的性质,函数的性质等,都是数学学习的基础,甚至可以说基础的好坏,直接决定中考数学成绩的高低。

李现良表示,班里某位同学来找自己讲题,其实题目并不难,但这位同学就是因为一些最基础的知识没有掌握透彻,导致做题的时候没有思路。基础不牢、地动山摇,一个小小的知识漏洞可能导致你在整一个题中都没有思路,非常危险。

2、错题本很重要

在所有科目中,数学这个科目最重要错题本学习法。李现良同学也特别提倡大家整理错题,李现良对于错题本有一些小窍门,那就是平时如果坚持整理错题,最终会导致自己错题本很多很厚,我们可以定期复习,对于一些彻底掌握的,可以做个标记,以后就不用再次复习,这样错题本使用起来就会效率更高。

3、做题要多反思

数学学习要大量做题去巩固,但做题不要只讲究数量,更要讲究质量,遇到经典题,综合性高的题目时,每道题写完解答过程后,需要进行分析和反思,多问几个为什么,这样才能把题真正做透。

4、把数学知识形成体系

数学学霸李现良表示,课本上的知识都是零散的,建议大家自己画思维导图把知识串起来,画思维导图的过程,就是不断理解,让知识变成结构的过程。

人教版七年级数学教案篇四

多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。

及时了解、掌握常用的数学思想和方法

中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。

人教版七年级数学教案篇五

我们七年级数学备课组认真做好各项工作,现根据学校和上级有关部门工作计划,特制定本学期的备课组工作计划如下:

一.指导思想:

基于学习任务及小组合作学习的课堂,落实新课改,体现新理念,培养学生自主学习。以“面向全体学生,共同提高教学质量”为指导思想,同时在教学中渗透情感教育。树立本组团队合作意识。加强教学常规建设和课题研究,积极开展校本研究,进一步提高我们组数学整体的教学水平。

二.工作要点

1.切实加强教学常规管理,积极开展小组合作学习的课堂,提高课堂教学效率。

2.认真开展集体备课和课题研究活动,加强备课组团队合作意识,充分发挥学科骨干教师的示范作用。

3.深化数学教学研究,提升数学教师科研素养,积极撰写教学论文。

4.立足课堂,在有效教学策略上深入实践与研究。

三.具体措施

1.加强理论学习,提升教师素质。

进一步认真学习《课程标准》,领会教材编写意图的特点,认真分析教学内容,目标,重难点,严格执行新课程标准的指导思想,提出具体可行的教学方法,继续开展教科研活动,积极参与校本课程的研发工作,提高教科研能力。

2.加大课堂教学改革力度,做到“有效教学”。

探索适合学生实践的教学方式,把“基于学习任务及小组合作学习的课堂,”的教学模式作为本学期课堂教学研究,实现课堂教学理念的更新,做到课堂教学的有效性。

3.加强备课组教研活动,强化教研功能。

由备课组长负责继续实行集体备课制,备出优质课,特色课,全力打造实用课,共同探索新的教学模式,同事注重发挥每位教师各自的教学特色。

4.加强质量监测,及时反馈,提高教学质量。

认真完成各单元的练习卷,检测卷,由专人负责,他人审核,严把质量关。在平时教学中,及时反馈教学情况,认真分析原因,并及时调查和整改措施,努力提高教学质量。

人教版七年级数学教案篇六

1.经历观察、分析、操作、欣赏以及抽象,归纳等过程,经历探索图形平移性质的过程以及与他人合作交流的过程,进一步发展空间观念,增强审美意识。

2.通过实例认识平移,理解平移的含义,理解平移前后两个图形对应点连线平行且相等的性质.

重点、难点。

重点:探索并理解平移的性质.

难点:对平移的认识和性质的探索.

教学过程。

一、引入新课。

1.教师打开幻灯机,投放课本图5.4-1的图案.

2.学生观察这些图案、思考并回答问题.

(1)它们有什么共同的特点?

(2)能否根据其中的一部分绘制出整个图案?

3.师生交流.

(1)这引进美丽的图案是由若干个相同的图案组合而成的,图5.4-1上一排左边的图案(不考虑颜色)都有“基本图形”;中间一个正方形,上、下有正立与倒立的正三角形,如图(1);上排中间的图案(不考虑颜色)都有“基本图形”:正十二边形,四周对称着4个等边三角形,如图(2);上排右边的图案(不考虑颜色)都有“基本图形”;正六边形,内接六角星,如图(3);下排的左图中的“基本图形”是鸽子与橄榄枝;下排右图中的“基本图形”是上、下一对面朝右与面朝左的人头像组成的图案.

人教版七年级数学教案篇七

比较正数和负数的大小。

1、借助数轴初步学会比较正数、0和负数之间的大小。

2、初步体会数轴上数的顺序,完成对数的结构的初步构建。

负数与负数的比较。

一、复习:

1、读数,指出哪些是正数,哪些是负数?

—85。6+0。9—+0—82

2、如果+20%表示增加20%,那么—6%表示。

二、新授:

(一)教学例3:

1、怎样在数轴上表示数?(1、2、3、4、5、6、7)

2、出示例3:

(1)提问你能在一条直线上表示他们运动后的情况吗?

(2)让学生确定好起点(原点)、方向和单位长度。学生画完交流。

(3)教师在黑板上话好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来。

(4)学生回答,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。

(5)总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。

(6)引导学生观察:

a、从0起往右依次是?从0起往左依次是?你发现什么规律?

(7)练习:做一做的第1、2题。

(二)教学例4:

1、出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。

2、学生交流比较的方法。

3、通过小精灵的话,引出利用数轴比较数的大小规定:在数轴上,从左到右的顺序就是数从小到大的顺序。

4、再让学生进行比较,利用学生的具体比较来说明“—8在—6的左边,所以—8〈—6”

5、再通过让另一学生比较“8〉6,但是—8〈—6”,使学生初步体会两负数比较大小时,绝对值大的负数反而小。

6、总结:负数比0小,所有的负数都在0的'左边,也就是负数都比0小,而正数比0大,负数比正数小。

7、练习:做一做第3题。

三、巩固练习

1、练习一第4、5题。

2、练习一第6题。

3、某日傍晚,黄山的气温由上午的零上2摄氏度下降了7摄氏度,这天傍晚黄山的气温是摄氏度。

四、全课总结

(1)在数轴上,从左到右的顺序就是数从小到大的顺序。

(2)负数比0小,正数比0大,负数比正数小。

第二课教学反思:

许多教师认为“负数”这个单元的内容很简单,不需要花过多精力学生就能基本能掌握。可如果深入钻研教材,其实会发现还有不少值得挖掘的内容可以向学生补充介绍。

例3——两个不同层面的拓展:

1、在数轴上表示数要求的拓展。

数轴除了可以表示整数,还可以表示小数和分数。教材例3只表示出正、负整数,最后一个自然段要求学生表示出—1。5。建议此处教师补充要求学生表示出“+1。5”的位置,因为这样便于对比发现两个数离原点的距离相等,只不过分别在0的左右两端,渗透+1。5和—1。5绝对值相等。同时,还应补充在数轴上表示分数,如—1/3、—3/2等,提升学生数形结合能力,为例4的教学打下夯实的基础。

2、渗透负数加减法

教材中所呈现的数轴可以充分加以应用,如可补充提问:在“—2”位置的同学如果接着向西走1米,将会到达数轴什么位置?如果是向东走1米呢?如果他从“—2”的位置要走到“—4”,应该如何运动?如果他想从“—2”的位置到达“+3”,又该如何运动?其实,这些问题就是解决—2—1;2+1;—4—(—2);3—(—2)等于几,这样的设计对于学生初中进一步学习代数知识是极为有利的。

例4——薄书读厚、厚书读薄。

薄书读厚——负数大小比较的三种类型(正数和负数、0和负数、负数和负数)

例4教材只提出一个大的问题“比较它们的大小”,这些数的大小比较可以分为几类?每类比较又有什么方法,教材则没有明确标明。所以教学中,当学生明确数轴从左到右的顺序就是数从小到大的顺序基础上,我还挖掘了三种不同类型,一一请学生介绍比较方法,将薄书读厚。

将厚书读薄——无论哪种类型,比较方法万变不离其宗。

无论哪种比较方法,最终都可回归到“数轴上左边的数比右边的数小。”即使有学生在比较—8和—6大小时是用“86,所以—8—6”来阐述其原因,其实也与数轴相关。因为当绝对值越大时,表示离原点的距离越远,那么在数轴上表示的点也就在原点左边越远,数也就越小。所以,抓住精髓就能以不变应万变。

在此,我还补充了—3/7和—2/5比较大小的练习,提升学生灵活应用知识解决实际问题的能力。

人教版七年级数学教案篇八

学生活动:思考,交流

师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数).

问题2:在生活中,仅有整数和分数够用了吗?

请同学们看书(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流。

(也可以出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等)

学生交流后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有-的新数。

人教版七年级数学教案篇九

1了解平行线的概念,理解学过的描述图形形状和位置关系的语句

3通过画平行线和按几何语句画图的题目练习,培养学生画图能力

4通过平行公理推论的推理,培养学生的逻辑思维能力和进行推理的能力

1教师教法:尝试法、引导法、发现法

2学生学法:在教师的引导下,尝试发现新知,造就成就感

(一)重点

平行公理及推论

(二)难点

平行线概念的理解

(三)解决办法

通过引导学生尝试发现新知、练习巩固的方法来解决

投影仪、三角板、自制胶片

1通过投影片和适当问题创设情境,引入新课

2通过教师引导,学生积极思维,进行反馈练习,完成新授

3学生自己完成本课小结

(-)明确目标

(二)整体感知

(三)教学过程

创设情境,引出课题

学生齐声答:不是

师:因此,平面内的两条直线除了相交以外,还有不相交的情形,这就是我们本节所要研究的内容(板书课题)

[板书]24平行线及平行公理

探究新知,讲授新课

师:在我们生活的周围,平面内不相交的情形还有许多,你能举例说明吗?

学生:窗户相对的棱,桌面的对边,书的对边……

师:我们把它们向两方无限延伸,得到的直线总也不会相交我们把这样的直线叫做平行线

[板书]在同一平面内,不相交的两条直线叫做平行线

教师出示投影片(课本第74页图2?17)

师:请同学们观察,长方体的棱与无论怎样延长,它们会不会相交?

学生:不会相交

师:那么它们是平行线吗?

学生:不是

师:也就是说平行线的定义必须有怎样的'前提条件?

学生:在同一平面内

师:谁能说为什么要有这个前提条件?

学生:因为空间里,不相交的直线不一定平行

教师在黑板上给出课本第73页图2

学生:两种相交和平行

由此师生共同小结:在同一平面内,两条直线的位置关系只有相交、平行两种

尝试反馈,巩固练习(出示投影)

1判断正误

(1)两条不相交的直线叫做平行线()

(2)有且只有一个公共点的两直线是相交直线()

(3)在同一平面内,不相交的两条直线一定平行()

(4)一个平面内的两条直线,必把这个平面分为四部分()

2下列说法中正确的是()

a在同一平面内,两条直线的位置关系有相交、垂直、平行三种

b在同一平面内,不垂直的两直线必平行

c在同一平面内,不平行的两直线必垂直

d在同一平面内,不相交的两直线一定不垂直

学生活动:学生回答,并简要说明理由

师:我们很容易画出两条相交直线,而对于平行线的画法,我们在小学就学过用直尺和三角板画,下面清同学在练习本上完成下面题目(投影显示)

已知直线和外一点,过点画直线

师:请根据语句,自己画出已知图形

学生活动:学生在练习本上画出图形

师:下面请你们按要求画出直线

注意:(1)在推动三角尺时,直尺不要动;

(2)画平行线必须用直尺三角板,不能徒手画

尝试反馈,巩固练习(出示投影)

1画线段,画任意射线,在上取、、三点,使,连结,用三角板画,,分别交于、,量出、、的长(精确到)

2读下列语句,并画图形

(1)点是直线外的一点,直线经过点,且与直线平行

(2)直线、是相交直线,点是直线、外的一点,直线经过点与直线平行与直线相交于

(3)过点画,交的延长线于

学生活动:学生思考并回答,能画,而且只能画一条

师:我们把这个结论叫平行公理,教师板书

【板书】平行公理:经过直线外一点,有且只有一条直线与这条直线平行

学生:思考后,立即回答,能画无数条

师:请同学们在练习本上完成

(出示投影)

已知直线,分别画直线、,使,

学生活动:学生在练习本上完成

师:请同学们观察,直线、能不能相交?

学生活动:观察,回答:不相交,也就是说

师:为什么呢?同桌可以讨论

学生活动:学生积极讨论,各抒己见

学生活动:教师让学生积极发表意见,然后给出正确的引导

师:我们观察图形,如果直线与相交,设交点为,那么会产生什么问题呢?请同学们讨论

学生活动:学生在教师的启发引导下思考、讨论,得出结论

[板书]如果两条直线都和第三条直线平行,那么这两条直线也互相平行

学生活动:学生思考,回答:不对,给出反例图形,

例如:如图1所示,射线与就不相交,也不平行

师:同学们想一想,当我们说两条射线或线段平行时,实际上是什么平行才可以呢?

生:它们所在的直线平行

尝试反馈,巩固练习(投影)

人教版七年级数学教案篇十

二、

本节教学的重点是掌握单项式与多项式相乘的法则.难点是正确、迅速地进行单项式与多项式相乘的计算.本节知识是进一步学习多项式乘法,以及乘法公式等后续知识的基础。

1.单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加,即

其中,可以表示一个数、一个字母,也可以是一个代数式.

2.利用法则进行单项式和多项式运算时要注意:

3根据去括号法则和多项式中每一项包含它前面的符号,来确定乘积每一项的`符号;

设m=-4x2,a=2x2,b=3x,c=-1,

∴(-4x2)·(2x2+3x-1)

=m(a+b+c)

=ma+mb+mc

=(-4x2)·2x2+(-4x2)·3x+(-4x2)·(-1)

=-8x4-12x3+4x2.

这样过渡较自然,同时也渗透了一些代换的思想.

教学设计示例

一、教学目标

1.理解和掌握单项式与多项式乘法法则及推导.

2.熟练运用法则进行单项式与多项式的乘法计算.

3.培养灵活运用知识的能力,通过用文字概括法则,提高学生数学表达能力.

4.通过反馈练习,培养学生计算能力和综合运用知识的能力.

5.渗透公式恒等变形的数学美.

二、学法引导

1.教学方法:讲授法、练习法.

类项,故在学习中应充分利用这种方法去解题.

三、重点·难点·疑点及解决办法

(一)重点

单项式与多项式乘法法则及其应用.

(二)难点

单项式与多项式相乘时结果的符号的确定.

(三)解决办法

复习单项式与单项式的乘法法则,并注意在解题过程中将单项式乘多项式转化为单项

式乘单项式后符号确定的问题.

四、课时安排

一课时.

五、教具学具准备

投影仪、胶片.

六、师生互动活动设计

七、教学步骤

(一)明确目标

本节课重点学习单项式与多项式的乘法法则及其应用.

(二)整体感知

(三)教学过程

1.复习导入

复习:

(1)叙述单项式乘法法则.

(单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.)

(2)什么叫多项式?说出多项式的项和各项系数.

2.探索新知,讲授新课

简便计算:

由该等式,你能说出单项式与多项式相乘的法则吗?单项式与多项式乘法法则:单项式

与多项式相乘,就是用单项式乘多项式的每一项,再把所得的积相加.

例1计算:

例2化简:

练习:错例辨析

(2)错在单项式与多项式的每一项相乘之后没有添上加号,故正确答案为

(四)总结、扩展

(99,河北)下列运算中,不正确的为()

a.b.

c.d.

八、布置作业

参考答案:

人教版七年级数学教案篇十一

1、在了解相反意义量的`基础上,使学生了解正负数的概念和学习正负数的意义。

2、使学生能正确判断一个数是正数还是负数,明确零既不是正数也不是负数。

3、学会用正负数表示实际问题中具有相反意义的量。

重点:正负数的概念

难点:负数的概念

投影片、实物投影仪

(一)引入

生:自然数

师:为了表示“没有”,又引入了一个什么数?

生:自然数0

师:当测量和计算的结果不是整数时,又引进了什么数?

生:分数(小数)

师:可见数的概念是随着生产和生活的需要而不断发展的。请同学们想一想,在现实生活中是否还存在着别类型的数呢?如吐鲁番盆地最低处低于海平面155米,世界最高峰珠穆朗玛高出海平面8848.13米,我市某天最高气温是零上8摄氏度。

请学生用数表示这些量,遭遇表示困难。

(二)新课教学

1、相反意义的量

师:在现实生活中,我们常常遇到一些具有相反意义的量,比如:(投影片显示)

(1)汽车向东行驶2.5千米和向西行驶1.5千米;

(2)气温从零上6摄氏度下降到零下6摄氏度;

(3)风筝上升10米或下降5米。

引导学生明确具有相反意义的量的特征:(1)有两个量(2)有相反的意义

请学生举出一些相反意义的量的实例。

教师归结:相反意义中的一些常用词有:盈利与亏损,存入与支出,增加与减少,运进与运出,上升与下降等。

2、正数与负数

师:用小学里学过的数能表示这些具有相反意义的量吗?如何来表示具有相反意义的量呢?

由师生讨论后得出:我们把一种意义的量规定为正的,用“+”(读作正)号来表示,同时把另一种与它相反意义的量规定为负的,用“-”(读作负)号来表示。

师:例如,如果零上6℃记作+6℃(读作正6摄氏度),那么零下6℃记作-6℃(读作负6摄氏度),请同学们用同样的方法表示(1)、(2)两题。

生:(1)如果向东行驶2.5千米记作+2.5千米(读作正2.5千米),那么向西行驶1.5千米记作-1.5千米(读作负1.5千米);(2)如果上升10米记作+10米(读作正10米),那么下降5米记作-5米(读作负5米)。

生:(讨论后得出)不能。

师:(以温度计为例)温度计中的0不是表示没有温度,它通常表示水结成冰时的温度,是零上温度与零下温度的分界点,因此得出:零既不是正数也不是负数。

(三)、练习

1、学生完成课本第4页练习1,2,3

2、补充练习

(1)在-2,+2.5,0,,-0.35,11中,正数是,负数是;

(3)欧洲人以地面一层记为0,那么1楼、2楼、3楼……就表示为0,1,2……那么地下第二层表示为。

(四)小结

1、引入负数可以简明的表示相反意义的量,对于相反意义的量,如果其中一种量用正数表示,那么另一种量可以用负数表示。

2、在表示具有相反意义的量时,把哪一种意义的量规定为正,可根据实际情况决定。

3、要特别注意零既不是正数也不是负数,建立正负数概念后,当考虑一个数时,一定要考虑它的符号,这与小学里学过的数有很大的区别。

(五)作业

见作业1.1节作业。

人教版七年级数学教案篇十二

1。2有理数1。2。2数轴。这一节是初中数学中非常重要的内容,从知识上讲,数轴是数学学习和研究的重要工具,它主要应用于绝对值概念的理解,有理数运算法则的推导,及不等式的求解。同时,也是学习直角坐标系的基础,从思想方法上讲,数轴是数形结合的起点,而数形结合是学生理解数学、学好数学的方法。日常生活中带见的用温度计度量温度,已为学习数轴概念打下了一定的基础。通过问题情境类比得到数轴的概念,是这节课的主要学习方法。同时,数轴又能将数的分类直观的表现出来,是学生领悟分类思想的基础。

(3)由于七年级学生的理解能力和思维特征和生理特征,学生的好动性,注意力容易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,一发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生的主动性。

从学生已有知识、经验出发研究新问题,是我们组织教学的一个重要原则。小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出数轴的概念。教学中,数轴的三要素中的每一要素都要认真分析它的作用,使学生从直观认识上升到理性认识。直线、数轴都是非常抽象的数学概念,当然对初学者不宜讲的过多,但适当引导学生进行抽象的思维活动还是可行的。例如,向学生提问:在数轴上对应一亿万分之一的点,你能画出来吗?它是不是存在等。

(一)知识与技能

1、掌握数轴的三要素,能正确画出数轴。

2、能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数。

(二)过程与方法

1、使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识。

2、对学生渗透数形结合的思想方法。

(三)情感、态度与价值观

1、使学生初步了解数学来源于实践,反过来又服务于实践的辩证唯物主义观点。

2、通过画数轴,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受。

1、重点:正确掌握数轴画法和用数轴上的点表示有理数。

2、难点:有理数和数轴上的点的对应关系。

1、重点、难点分析

本节的重点是初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数,并会比较有理数的大小。难点是正确理解有理数与数轴上点的对应关系。数轴的概念包含两个内容,一是数轴的三要素:原点、正方向、单位长度缺一不可,二是这三个要素都是规定的。另外应该明确的是,所有的'有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数。通过学习,使学生初步掌握用数轴解决问题的方法,为今后充分利用“数轴”这个工具打下基础。

2、知识结构

有了数轴,数和形得到了初步结合,这有利于对数学问题的研究,数形结合是理解数学、学好数学的方法,本课知识要点如下:

定义规定了原点、正方向、单位长度的直线叫数轴

三要素原点正方向单位长度

应用数形结合

1、教学方法:根据教师为主导,学生为主体的原则,始终贯穿“激发情趣—手脑并用—启发诱导—反馈矫正”的教学方法。

2、学生学法:动手画数轴,动脑概括数轴的三要素,动手、动脑做练习。

1课时

电脑、投影仪、三角板

讲授新课

(出示投影1)

问题1:三个温度计。其中一个温度计的液面在0上2个刻度,一个温度计的液面在0下5个刻度,一个温度计的液面在0刻度。

师:三个温度计所表示的温度是多少?

生:2℃,—5℃,0℃。

问题2:在一条东西向的马路上,有一个汽车站,汽车站东3m和7。5m处分别有一棵柳树和一棵杨树,汽车站西3m和4。8m处分别有一棵槐树和一根电线杆,试画图表示这一情境。(小组讨论,交流合作,动手操作)

师:我们能否用类似的图形表示有理数呢?

师:这种表示数的图形就是今天我们要学的内容—数轴(板书课题)。

师:与温度计类似,我们也可以在一条直线上画出刻度,标上读

数,用直线上的点表示正数、负数和零。具体方法如下

(边说边画):

师问:我们能不能用这条直线表示任何有理数?(可列举几个数)

让学生观察画好的直线,思考以下问题:

(出示投影2)

(1)原点表示什么数?

(2)原点右方表示什么数?原点左方表示什么数?

(3)表示+2的点在什么位置?表示—1的点在什么位置?

(4)原点向右0。5个单位长度的a点表示什么数?

原点向左1。5个单位长度的b点表示什么数?

根据老师画图的步骤,学生思考在一条水平的直线上都画出什么?然后归纳出数轴的定义。

师:在此基础上,给出数轴的定义,即规定了原点、正方向和单

位长度的直线叫做数轴。

通过上述提问,向学生指出:数轴的三要素——原点、正方向和单位长度,缺一不可。

【教法说明】通过“观察—类比—思考—概括—表达”展现知识的形成是从感性认识上升到理性认识的过程,让学生在获取知识的过程中,领会数学思想和思维方法,并有意识地训练学生归纳概括和口头表达能力。

师生同步画数轴,学生概括数轴三要素,师出示投影,生动手动脑练习

尝试反馈,巩固练习

(出示投影3)。画出数轴并表示下列有理数:

1、1。5,—2。2,—2。5,,,0。

2。写出数轴上点a,b,c,d,e所表示的数:

请大家回答下列问题:

(出示投影4)

(1)有人说一条直线是一条数轴,对不对?为什么?

(2)下列所画数轴对不对?如果不对,指出错在哪里?

【教法说明】此组练习的目的是巩固数轴的概念。

十一、小结

本节课要求同学们能掌握数轴的三要素,正确地画出数轴,在此还要提醒同学们,所有的有理数都可用数轴上的点来表示,但是反过来不成立,即数轴上的点并不是都表示有理数,至于数轴上的哪些点不能表示有理数,这个问题以后再研究。

十二、课后练习习题1。2第2题

十三、教学反思

1、数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体出了从感性认识,到理性认识,到抽象概括的认识规律。

2、教学过程突出了情竟到抽象到概括的主线,教学方法体了特殊到一般,数形结合的数学思想方法。

3、注意从学生的知识经验出发,充分发挥学生的主体意识,让学生主动参与学习活,并引导学生在课堂上感悟知识的生成,发展与变化,培养学生自主探索的学习方法。

【本文地址:http://www.xuefen.com.cn/zuowen/7066913.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档