教案可以帮助教师更好地把握教学进度和教学效果。教案的编写需要注重培养学生的自主学习能力和创新思维。以下是一些专业教师团队整理的一些教案编写参考资料。
人教版七年级数学教案篇一
1.单项式:只含有数和字母的乘积的代数式叫做单项式.单独的一个数或一个字母也是单项式.它的本质特征在于:
(1)不含加减运算;。
(2)可以含乘、除、乘方运算,但分母中不能含有字母.
2.单项式的次数、系数:一个单项式中,所有字母的指数和叫做这个单项式的次数.单项式中的数字因数叫做这个单项式的系数.
3.多项式:几个单项式的和叫做多项式.多项式中,每个单项式叫做多项式的项,其中不含字母的项叫常数项.一个多项式中,次数最高的项的次数,叫做这个多项式的次数.
4.整式:单项和多项式统称整式.
人教版七年级数学教案篇二
1、让学生生自主探索小数的加、减法的计算方法,理解计算的算理并能正确地进行加、减法。
2、使学生体会小数加减运算在生活、学习中的广泛应用,体会数学的工具性作用。
3、激发学生学习小数加减法的兴趣,涌动长大后也要为国争光的豪情,提高学习的主动性和自觉性。
教学重难点。
教学重点:用竖式计算小数加减法。
教学难点:理解小数点对齐的算理。
教学工具。
多媒体课件。
教学过程。
(一)情景引入。
师:同学们,你们还记得吗?整数的加减法是怎样计算的?让我们用一道习题回顾一下。
(呈现多媒体,学生自主完成习题并总结计算算理)。
师:同学们你们可真棒,那么今天我们学习小数的加减法(引出课题并板书)。
(二)例题讲解。
(1)小丽买了下面两本书,一共花了多少钱?
(2)《数学家的故事》比《童话选》贵多少钱?
生:好的。
(展示小丽遇到的问题(1),并让学生列出算式)。
师:根据咱们总结的整数加减法的算理,想一想这个式子怎么计算呢?
(让学生大胆的去尝试,小组讨论,并列出竖式)。
师:你们发现小数加减法计算时需要注意什么?
生1:注意数位对齐。
生2:注意小数点要对齐。
生3:……。
老师小结:小数点要对齐,得数的小数点也要对齐。
师:小丽啊还有一个问题让我们看一看(展示问题(2))。
(让学生自主解决,并再回忆需要注意什么?)。
完成后学生给予总结,完成小数加减法的时候需要注意什么?
(三)习题巩固。
课本72页做一做。
课后小结。
学生谈一谈本节课你学到了什么?
给出总结:计算小数加、减法,先把各数的小数点对齐(也就是把相同数位上的数对齐),再按照整数加、减法的法则进行计算,最后在得数里对齐横线上的小数点点上小数点。
课后习题。
一、计算。
1.5-0.5=1-0.9=2.3+0.6=0.9+0.8=。
1.9-0.8=3.5-2.4=0.36+0.65=0.96-0.32=。
二、竖式计算。
20.87-3.65=3.25+1.73=。
18.77+3.14=23.5-2.8=。
三、解决问题。
1、小红买文具,买钢笔用去6.7元,买文具盒用去9.8元,一共用去多少钱?
板书。
计算小数加、减法,先把各数的小数点对齐(也就是把相同数位上的数对齐),再按照整数加、减法的法则进行计算,最后在得数里对齐横线上的小数点点上小数点。
人教版七年级数学教案篇三
1.理解垂线、垂线段的概念,会用三角尺或量角器过一点画已知直线的垂线。
2.掌握点到直线的距离的概念,并会度量点到直线的距离。
3.掌握垂线的性质,并会利用所学知识进行简单的推理。
[教学重点与难点]
1.教学重点:垂线的定义及性质。
2.教学难点:垂线的画法。
[教学过程设计]
一、复习提问:
1、叙述邻补角及对顶角的定义。
2、对顶角有怎样的.性质。
二.新课:
引言:
前面我们复习了两条相交直线所成的角,如果两条直线相交成特殊角直角时,这两条直线有怎样特殊的位置关系呢?日常生活中有没有这方面的实例呢?下面我们就来研究这个问题。
(一)垂线的定义
当两条直线相交的四个角中,有一个角是直角时,就说这两条直线是互相垂直的,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
如图,直线ab、cd互相垂直,记作,垂足为o。
请同学举出日常生活中,两条直线互相垂直的实例。
注意:
1、如遇到线段与线段、线段与射线、射线与射线、线段或射线与直线垂直,特指它们所在的直线互相垂直。
2、掌握如下的推理过程:(如上图)
反之,
(二)垂线的画法
探究:
1、用三角尺或量角器画已知直线l的垂线,这样的垂线能画出几条?
2、经过直线l上一点a画l的垂线,这样的垂线能画出几条?
3、经过直线l外一点b画l的垂线,这样的垂线能画出几条?
画法:
让三角板的一条直角边与已知直线重合,沿直线左右移动三角板,使其另一条直角边经过已知点,沿此直角边画直线,则这条直线就是已知直线的垂线。
注意:如过一点画射线或线段的垂线,是指画它们所在直线的垂线,垂足有时在延长线上。
(三)垂线的性质
经过一点(已知直线上或直线外),能画出已知直线的一条垂线,并且只能画出一条垂线,即:
性质1过一点有且只有一条直线与已知直线垂直。
练习:教材第7页
探究:
如图,连接直线l外一点p与直线l上各点o,
a,b,c,……,其中(我们称po为点p到直线
l的垂线段)。比较线段po、pa、pb、pc……的长短,这些线段中,哪一条最短?
性质2连接直线外一点与直线上各点的所有线段中,垂线段最短。
简单说成:垂线段最短。
(四)点到直线的距离
直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
如上图,po的长度叫做点p到直线l的距离。
人教版七年级数学教案篇四
3,体验数形结合的思想。
教学难点归纳相反数在数轴上表示的点的特征。
知识重点相反数的概念。
教学过程(师生活动)设计理念。
设置情境。
引入课题问题1:请将下列4个数分成两类,并说出为什么要这样分类。
4,-2,-5,+2。
允许学生有不同的分法,只要能说出道理,都要难予鼓励,但教师要做适当的引导,逐渐得出5和-5,+2和-2分别归类是具有较特征的分法。
(引导学生观察与原点的距离)。
思考结论:教科书第13页的思考。
再换2个类似的数试一试。
培养学生的观察与归纳能力,渗透数形思想。
深化主题提炼定义给出相反数的定义。
学生思考讨论交流,教师归纳总结。
规律:一般地,数a的相反数可以表示为-a。
思考:数轴上表示相反数的两个点和原点有什么关系?
练一练:教科书第14页第一个练习体验对称的图形的特点,为相反数在数轴上的特征做准备。
深化相反数的概念;“零的相反数是零”是相反数定义的一部分。
强化互为相反数的数在数轴上表示的点的几何意义。
给出规律。
解决问题问题3:-(+5)和-(-5)分别表示什么意思?你能化简它们吗?
学生交流。
分别表示+5和-5的相反数是-5和+5。
练一练:教科书第14页第二个练习利用相反数的概念得出求一个数的相反数的方法。
小结与作业。
课堂小结1,相反数的定义。
2,互为相反数的数在数轴上表示的点的特征。
3,怎样求一个数的相反数?怎样表示一个数的相反数?
本课作业1,必做题教科书第18页习题1.2第3题。
2,选做题教师自行安排。
本课教育评注(课堂设计理念,实际教学效果及改进设想)。
1,相反数的概念使有理数的各个运算法则容易表述,也揭示了两个特殊数的特征.这两个特殊数在数量上具有相同的绝对值,它们的和为零,在数轴上表示时,离开原点的距离相等等性质均有广泛的应用.所以本教学设计围绕数量和几何意义展开,渗透数形结合的思想.
2,教学引人以开放式的问题人手,培养学生的分类和发散思维的能力;把数在数轴上表示出来并观察它们的特征,在复习数轴知识的同时,渗透了数形结合的数学方法,数与形的相互转化也能加深对相反数概念的理解;问题2能帮助学生准确把握相反数的概念;问题3实际上给出了求一个数的相反数的方法.
3,本教学设计体现了新课标的教学理念,学生在教师的引导下进行自主学习,自主探究,观察归纳,重视学生的思维过程,并给学生留有发挥的余地.
人教版七年级数学教案篇五
借助“线段图”分析复杂的行程问题中的数量关系,从而建立方程解决实际问题,发展分析问题,解决问题的能力,进一步体会方程模型的作用。
重点、难点
1.重点:列一元一次方程解决有关行程问题。
2.难点:间接设未知数。
教学过程
一、复习
1.列一元一次方程解应用题的一般步骤和方法是什么?
2.行程问题中的基本数量关系是什么?
路程=速度×时间 速度=路程 / 时间
二、新授
画“线段图”分析, 若直接设元,设小张家到火车站的路程为x千米。
1.坐公共汽车行了多少路程?乘的士行了多少路程?
2.乘公共汽车用了多少时间,乘出租车用了多少时间?
3.如果都乘公共汽车到火车站要多少时间?
4,等量关系是什么?
如果设乘公共汽车行了x千米,则出租车行驶了2x千米。小张家到火车站的路程为3x千米,那么也可列出方程。
可设公共汽车从小张家到火车站要x小时。
设未知数的方法不同,所列方程的复杂程度一般也不同,因此在设未知数时要有所选择。
三、巩固练习
教科书第17页练习1、2。
四、小结
有关行程问题的应用题常见的一个数量关系:路程=速度×时间,以及由此导出的其他关系。如何选择设未知数使方程较为简单呢?关键是找出较简捷地反映题目全部含义的等量关系,根据这个等量关系确定怎样设未知数。
四、作业
教科书习题6.3.2,第1至5题。
人教版七年级数学教案篇六
多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。
及时了解、掌握常用的数学思想和方法
中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。
人教版七年级数学教案篇七
1.了解的概念和的画法,掌握的三要素;
2.会用上的点表示有理数,会利用比较有理数的大小;
3.使学生初步了解数形结合的思想方法,培养学生相互联系的观点。
教学建议
一、重点、难点分析
本节的重点是初步理解数形结合的思想方法,正确掌握画法和用上的点表示有理数,并会比较有理数的大小.难点是正确理解有理数与上点的对应关系。的概念包含两个内容,一是的三要素:原点、正方向、单位长度缺一不可,二是这三个要素都是规定的。另外应该明确的是,所有的有理数都可用上的点表示,但上的点所表示的数并不都是有理数。通过学习,使学生初步掌握用解决问题的方法,为今后充分利用“”这个工具打下基础.
二、知识结构
有了,数和形得到了初步结合,这有利于对数学问题的研究,数形结合是理解数学、学好数学的重要思想方法,本课知识要点如下表:
定义
三要素
应用
数形结合
规定了原点、正方向、单位长度的直线叫
原点
正方向
单位长度
帮助理解有理数的概念,每个有理数都可用上的点表示,但上的点并非都是有理数
比较有理数大小,上右边的数总比左边的数要大
在理解并掌握概念的基础之上,要会画出,能将已知数在上表示出来,能说出上已知点所表示的数,要知道所有的有理数都可以用上的点表示,会利用比较有理数的大小。
三、教法建议
小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出的概念.是一条具有三个要素(原点、正方向、单位长度)的直线,这三个要素是判断一条直线是不是的根本依据。与它所在的位置无关,但为了教学上需要,一般水平放置的,规定从原点向右为正方向。要注意原点位置选择的任意性。
关于有理数与上的点的对应关系,应该明确的是有理数可以用上的点表示,但上的点与有理数并不存在一一对应的关系。根据几个有理数在上所对应的点的相互位置关系,应该能够判断它们之间的大小关系。通过点与有理数的对应关系及其应用,逐步渗透数形结合的思想。
四、的相关知识点
1.的概念
(1)规定了原点、正方向和单位长度的直线叫做.
这里包含两个内容:一是的三要素:原点、正方向、单位长度缺一不可.二是这三个要素都是规定的.
(2)能形象地表示数,所有的有理数都可用上的点表示,但上的点所表示的数并不都是有理数.
以是理解有理数概念与运算的重要工具.有了,数和形得到初步结合,数与表示数的图形(如)相结合的思想是学习数学的重要思想.另外,能直观地解释相反数,帮助理解绝对值的意义,还可以比较有理数的大小.因此,应重视对的学习.
2.的画法
(1)画直线(一般画成水平的)、定原点,标出原点“o”.
(2)取原点向右方向为正方向,并标出箭头.
(3)选适当的长度作为单位长度,并标出…,-3,-2,-1,1,2,3…各点。具体如下图。
(4)标注数字时,负数的次序不能写错,如下图。
3.用比较有理数的大小
(1)在上表示的两数,右边的数总比左边的数大。
(2)由正、负数在上的位置可知:正数都有大于0,负数都小于0,正数大于一切负数。
(3)比较大小时,用不等号顺次连接三个数要防止出现“”的写法,正确应写成“”。
五、定义的理解
1.规定了原点、正方向和单位长度的直线叫做,如图1所示.
2.所有的有理数,都可以用上的点表示.例如:在上画出表示下列各数的点(如图2).
a点表示-4;b点表示-1.5;
o点表示0;c点表示3.5;
d点表示6.
从上面的例子不难看出,在上表示的两个数,右边的数总比左边的数大,又从正数和负数在上的位置,可以知道:
正数都大于0,负数都小于0,正数大于一切负数.
因为正数都大于0,反过来,大于0的数都是正数,所以,我们可以用,表示是正数;反之,知道是正数也可以表示为。
同理,,表示是负数;反之是负数也可以表示为。
3.正常见几种错误
1)没有方向
2)没有原点
3)单位长度不统一
人教版七年级数学教案篇八
1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式。
2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数。
3.多项式:几个单项式的和叫多项式。
4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。
5.整式:单项式和多项式统称为整式
2.2整式的加减
1.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项。
2.合并同类项法则:系数相加,字母与字母的指数不变。
3.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号。
4.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并。
5.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列)。
注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列。
人教版七年级数学教案篇九
1、通过丰富的实例,学生进一步认识点、线、面、体的几何特征,感受它们之间的关系。
2、培养学生操作、观察、分析、猜测和概括等能力,同时渗透转化、化归、变换的思想。
3、养成学生积极主动的学习态度和自主学习的方式。
重点:认识点、线、面、体的几何特征,感受它们之间的关系。
难点:在实际背景中体会点的含义。
圆柱、圆锥、正方体、长方体、球、棱柱、棱锥模型。
观察、讨论.让学生共同体会“点动成线、线动成面、面动成体。
让学生举出更多的“点动成线、线动成面、面动成体”的例子。
小组合作学习,学生利用学具完成教科书第114页练习(动手转一转)。
设计意图:教师利用多媒体动态演示,让学生主动参与学习活动,观察感受,经历体验图形的变化过程,通过合作学习,感悟知识的生成、变化、发展,激发学生的联想与再创造能力。学生自己动手实践操作,加深学生印象,化解难度。
教师展示图片(建筑或生活的实物等),让学生找找生活中的平面、曲面、直线、点等。
让学生找出生活中更多的包含平面、曲面、直线、曲线、点的例子。
1、课本112页观察,并回答它的问题。
引导学生观察后得出结论:面与面相交得到线,线与线相交得到点。
2、113页练习(提供实物,议一议,动手摸一摸),思考以下问题:
让学生自己体会并小组讨论得出点、线、面、体之间的关系。
2、阅读教科书第119页的实验与探究,并思考有关问题。
人教版七年级数学教案篇十
一、知识与技能
(1)能用代数式表示实际问题中的数量关系.
(2)理解单项式、单项式的次数,系数等概念,会指出单项式的次数和系数.
讲授法、谈话法、讨论法。
【教学重点】
单项式的有关概念
【教学难点】
负系数的确定以及准确确定一个单项式的次数
【课前准备】
教师准备教学用课件。
【教学过程】
一、新课引入
教师操作课件,展示章前图案以及字幕,学生观看并思考下列问题:
1.青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段,列车在冻土地段的行驶速度是100千米/时,在非冻土地段的行驶速度可以达到120千米/时,请根据这些数据回答下列问题:
(1)列车在冻土地段行驶时,2小时能行驶多少千米?3小时呢?t小时呢?
分析:(1)根据速度、时间和路程之间的关系:路程=速度×时间.列车在冻土地段2小时行驶的路程是100×2=200(千米),3小时行驶的路程为100×3=300(千米),t小时行驶的路程为100×t=100t(千米).
(2)列车通过非冻土地段所需时间为2.1t小时,行驶的路程为120×2.1t(千米);列车通过冻土地段的路程为100t,因此这段铁路的全长为120×2.1t+100t(千米).
(3)在格里木到拉萨路段,列车通过冻土地段要u小时,那么通过非冻土地段要(u-0.5)小时,冻土地段的路程为100u千米,非冻土地段的路程为120(u-0.5)千米,这段铁路的全长为[100u+120(u-0.5)]千米,冻土地段与非冻土地段相差为[100u-120(u-0.5)]千米.
思路点拨:上述问题(1)可由学生自己完成,问题(2)、(3)先由学生思考、交流的基础上教师引导学生分析怎样列式.
上述的3个问题中的数量关系我们分别用含有字母的式子表示,通过本章学习,我们还可以将上述问题(2)、(3)进行加减运算,化简.
kb2.下面,我们再来看几个用含字母的式子表示数量关系的问题.
用含有字母的式子填空,看看列出的式子有什么特点.
(1)边长为a的正方体的表面积为______,体积为_______.
(2)铅笔的单价是x元,圆珠笔的单价是铅笔的单价的2.5倍圆珠笔的单价是_______元.
(3)一辆汽车的速度是v千米/时,它t小时行驶的路程为_______千米.
(4)数n的相反数是_______.
教师课堂巡视,关注中下程度的学生,及时引导,学生探究交流.
上面各问题的代数式分别是:6a2,a3,2.5x,vt,-n.
观察上面各式中运算有什么共同特点?
上面各式中,数字与字母之间,字母与字母之间都是乘法运算,它们都是数字与字母的积,例如:6a2表示6×a2,a3表示1×a3,2.5x表示2.5×x,vt表示1×v×t,-n表示-1×n.
像上面这样,只含有数与字母的积的式子叫做单项式.单独的一个数或一个字母也是单项式.如:-2,a,,都是单项式,而,1+x都不是单项.
单项式中的数字因数叫做这个单项式的系数,例如:6a2的系数是6,a3的系数是1,-n的系数是-1,-的系数是-.
单项式表示数字与字母相乘时,通常把数字写成前面,当一个单项式的系数是1或-1时通常省略不写.
一个单项式中,所有字母的指数的和叫做这个单项式的次数.例如,2.5x中字母x的指数是1,2.5x是一次单项式;vt中字母v与t的指数和是2,vt是二次单项式,-ab2c中字母a、b、c的指数和是4,-ab2c是4次单项式.
人教版七年级数学教案篇十一
1.在自主性学习和科学探究活动中,概述出花的主要结构。
2.联系生活实际,大胆推测描述出传粉和受精的过程,从而阐明花与果实和种子的关系。
3.模拟人工辅助传粉,认同花、果实、种子对被子植物传种接代的重要意义,养成爱护花的良好习惯。
重点和难点
1.雄蕊和雌蕊(花蕊)与果实和种子形成的关系。
2.受精的过程及受精后子房的发育。
3.爱花习惯成为学生的一种自觉行动。
一、花的结构
1.花托2.萼片3.花瓣4.雄蕊5.雌蕊
小结:花的主要结构是雄蕊和雌蕊。
方案一:两人合作,结合书中的插图,按照由下向上、由外向内的顺序,观察、解剖桃花(鲜花、冰冻鲜花或浸制标本)或当地常见的典型的一种被子植物的花。认识花的各部分结构,相互交流,概述出雄蕊和雌蕊是花的主要结构。
方案二:四人合作,根据假设,结合书中的插图,按照由下向上、由外向内的顺序,观察桃花模型,认识花的结构,分析、交流,明确雌蕊与果实和种子形成的关系,验证假设,概述出雄蕊和雌蕊是花的主要结构。
方案三:结合生活实际,自主性学习,回忆平时常见的被子植物的花,对照彩图进行联想、观察,认识花的结构,相互交流合作,解答疑惑,概述出雄蕊和雌蕊是花的主要结构。
方案四:两人合作,结合书中的插图,按照由下向上、由外向内的顺序观察花的结构,对照已经解剖开的桃花(鲜花或挂图)黏贴图,根据疑惑,进一步认识花的结构,概述出雄蕊和雌蕊是花的主要结构。组织学生画花、说花,围绕困惑:与果实和种子形成有关的结构可能是什么?进行学法指导,利用cai组织学生探究花的结构,巡视指导,帮助学生得出结论。利用桃花模型质疑:假如一朵花的雌蕊被害虫吃掉了,它还能发育成果实吗?请学生运用科学探究的方法,观察模型,认识结构,检验假设,得出结论。
用优美的诗句带领学生回到那鲜花盛开的季节,充分调动学生的逻辑思维和观察能力,请学生带着疑惑,自学、相互交流,认识花的结构,明确雄蕊和雌蕊是花的主要结构。
用花的黏贴图引导学生思考花是怎样结出果实的?组织学生合作探究花的结构。由于花粉和胚珠的结构不易看到,在探究时要注意联系实际,用挂图或板图进行说明,帮助学生加深理解。
二、传粉和受精
1.传粉:花粉从花药落到雌蕊柱头上的过程。
2.受精:精子和卵细胞相融合的过程。
方案一:调动经验储备,运用逻辑思维能力,想像、回忆,用精炼、生动的语言,描述(虫媒花和风媒花)传粉的过程,在教师指导下,进一步了解传粉过程,总结出什么是传粉。
方案二:根据问题,仔细观看录像(cai课件),合作交流,描述(虫媒花和风媒花)传粉的过程,在教师指导下,总结出什么是传粉。
方案三:课前小组合作排练,课上以小组为单位模拟表演(虫媒花和风煤花)传粉过程,在活动中,通过观察、分析,总结出什么是传粉。
三、果实和种子的形成
方案一:根据问题,调动经验储备,联系生活实际,大胆推测果实和种子的形成过程,最终在合作交流中,进一步阐明花与果实和种子形成的关系。
方案三:针对书中的不解之处,在教师指导下,利用活动教具,黏贴果实和种子的形成过程,使抽象问题具体化,从而阐明花与果实和种子形成的关系。方案四:在教师帮助下,列表回顾种子的结构、果实的组成和子房的结构等知识。
运用逻辑思维和推理的方法,大胆推测果实和种子的形成过程,从而阐明花与果实和种子形成的关系。创设问题情境:花落后能结出果实。激发学生求知欲望,指导学生模拟科学家进行科学探究的过程,分析推理,得出结论。
爱花习惯教育模拟表演人工辅助传粉的方法,认同花、果实、种子对被子植物传种接代的重要意义,养成爱护花的习惯。
人教版七年级数学教案篇十二
学习目标:
1.会用正.负数表示具有相反意义的量.
2.通过正.负数学习,培养学生应用数学知识的意识.
3.通过探究,渗透对立统一的辨证思想
学习重点:
用正.负数表示具有相反意义的量
学习难点:
实际问题中的数量关系
教学方法:
讲练相结合
教学过程
一.学前准备
通过上节课的学习,我们知道在实际生产和生活中存在着两种不同意义的量,为了区分它们,我们用正数和负数来分别表示它们.
问题1:“零”为什么即不是正数也不是负数呢?
引导学生思考讨论,借助举例说明.
参考例子:温度表示中的零上,零下和零度.
二.探究理解解决问题
问题2:(教科书第4页例题)
先引导学生分析,再让学生独立完成
(2)20xx年下列国家的商品进出口总额比上一年的变化情况是:
美国减少6.4%,德国增长1.3%,
法国减少2.4%,英国减少3.5%,
意大利增长0.2%,中国增长7.5%.
写出这些国家20xx年商品进出口总额的增长率.
解:(1)这个月小明体重增长2kg,小华体重增长―1kg,小强体重增长0kg.
(2)六个国家20xx年商品进出口总额的增长率:
美国―6.4%,德国1.3%,
法国―2.4%,英国―3.5%,
意大利0.2%,中国7.5%.
三.巩固练习
从0表示一个也没有,是正数和负数的分界的角度引导学生理解.
在学生的讨论中简单介绍分类的数学思想先不要给出有理数的概念.
在例题中,让学生通过阅读题中的含义,找出具有相反意义的量,决定哪个用正数表示,哪个用负数表示.
通过问题(2)提醒学生审题时要注意要求,题中求的是增长率,不是增长值.
四.阅读思考1页
(教科书第8页)用正负数表示加工允许误差.
问题:1.直径为30.032mm和直径为29.97的零件是否合格?
2.你知道还有那些事件可以用正负数表示允许误差吗?请举例.
五.小结
1.本节课你有那些收获?
2.还有没解决的问题吗?
六.应用与拓展
1.必做题:
教科书5页习题4.5.:6.7.8题
2.选做题
1).甲冷库的温度是―12°c,乙冷库的温度比甲冷酷低5°c,则乙冷库的温度是.
人教版七年级数学教案篇十三
1、在了解相反意义量的`基础上,使学生了解正负数的概念和学习正负数的意义。
2、使学生能正确判断一个数是正数还是负数,明确零既不是正数也不是负数。
3、学会用正负数表示实际问题中具有相反意义的量。
重点:正负数的概念
难点:负数的概念
投影片、实物投影仪
(一)引入
生:自然数
师:为了表示“没有”,又引入了一个什么数?
生:自然数0
师:当测量和计算的结果不是整数时,又引进了什么数?
生:分数(小数)
师:可见数的概念是随着生产和生活的需要而不断发展的。请同学们想一想,在现实生活中是否还存在着别类型的数呢?如吐鲁番盆地最低处低于海平面155米,世界最高峰珠穆朗玛高出海平面8848.13米,我市某天最高气温是零上8摄氏度。
请学生用数表示这些量,遭遇表示困难。
(二)新课教学
1、相反意义的量
师:在现实生活中,我们常常遇到一些具有相反意义的量,比如:(投影片显示)
(1)汽车向东行驶2.5千米和向西行驶1.5千米;
(2)气温从零上6摄氏度下降到零下6摄氏度;
(3)风筝上升10米或下降5米。
引导学生明确具有相反意义的量的特征:(1)有两个量(2)有相反的意义
请学生举出一些相反意义的量的实例。
教师归结:相反意义中的一些常用词有:盈利与亏损,存入与支出,增加与减少,运进与运出,上升与下降等。
2、正数与负数
师:用小学里学过的数能表示这些具有相反意义的量吗?如何来表示具有相反意义的量呢?
由师生讨论后得出:我们把一种意义的量规定为正的,用“+”(读作正)号来表示,同时把另一种与它相反意义的量规定为负的,用“-”(读作负)号来表示。
师:例如,如果零上6℃记作+6℃(读作正6摄氏度),那么零下6℃记作-6℃(读作负6摄氏度),请同学们用同样的方法表示(1)、(2)两题。
生:(1)如果向东行驶2.5千米记作+2.5千米(读作正2.5千米),那么向西行驶1.5千米记作-1.5千米(读作负1.5千米);(2)如果上升10米记作+10米(读作正10米),那么下降5米记作-5米(读作负5米)。
生:(讨论后得出)不能。
师:(以温度计为例)温度计中的0不是表示没有温度,它通常表示水结成冰时的温度,是零上温度与零下温度的分界点,因此得出:零既不是正数也不是负数。
(三)、练习
1、学生完成课本第4页练习1,2,3
2、补充练习
(1)在-2,+2.5,0,,-0.35,11中,正数是,负数是;
(3)欧洲人以地面一层记为0,那么1楼、2楼、3楼……就表示为0,1,2……那么地下第二层表示为。
(四)小结
1、引入负数可以简明的表示相反意义的量,对于相反意义的量,如果其中一种量用正数表示,那么另一种量可以用负数表示。
2、在表示具有相反意义的量时,把哪一种意义的量规定为正,可根据实际情况决定。
3、要特别注意零既不是正数也不是负数,建立正负数概念后,当考虑一个数时,一定要考虑它的符号,这与小学里学过的数有很大的区别。
(五)作业
见作业1.1节作业。
人教版七年级数学教案篇十四
1.会用正.负数表示具有相反意义的量.
2.通过正.负数学习,培养学生应用数学知识的意识.
3.通过探究,渗透对立统一的辨证思想
用正.负数表示具有相反意义的量
实际问题中的数量关系
讲练相结合
通过上节课的学习,我们知道在实际生产和生活中存在着两种不同意义的量,为了区分它们,我们用正数和负数来分别表示它们.
问题1:“零”为什么即不是正数也不是负数呢?
引导学生思考讨论,借助举例说明.
参考例子:温度表示中的'零上,零下和零度.
问题2:(教科书第4页例题)
先引导学生分析,再让学生独立完成
(2)20xx年下列国家的商品进出口总额比上一年的变化情况是:
美国减少6.4%,德国增长1.3%,
法国减少2.4%,英国减少3.5%,
意大利增长0.2%,中国增长7.5%.
写出这些国家20xx年商品进出口总额的增长率.
解:(1)这个月小明体重增长2kg,小华体重增长—1kg,小强体重增长0kg.
(2)六个国家20xx年商品进出口总额的增长率:
美国—6.4%,德国1.3%,
法国—2.4%,英国—3.5%,
意大利0.2%,中国7.5%.
从0表示一个也没有,是正数和负数的分界的角度引导学生理解.
在学生的讨论中简单介绍分类的数学思想先不要给出有理数的概念.
在例题中,让学生通过阅读题中的含义,找出具有相反意义的量,决定哪个用正数表示,哪个用负数表示.
通过问题(2)提醒学生审题时要注意要求,题中求的是增长率,不是增长值.
(教科书第8页)用正负数表示加工允许误差.
问题:1.直径为30.032mm和直径为29.97的零件是否合格?
2.你知道还有那些事件可以用正负数表示允许误差吗?请举例.
1.本节课你有那些收获?
2.还有没解决的问题吗?
1.必做题:
教科书5页习题4.5.:6.7.8题
2.选做题
1).甲冷库的温度是—12°c,乙冷库的温度比甲冷酷低5°c,则乙冷库的温度是.
人教版七年级数学教案篇十五
3、培养实事求是、严谨、认真、务实的学习态度、
4、渗透数学公式的结构美、和谐美、
1、教学方法:引导发现法、探究法、讲练法、
(一)重点
准确掌握积的乘方的运算性质、
(二)难点
用数学语言概括运算性质、
(三)解决办法
增强对三种运算性质的理解,并运用对比的方法强化训练以达到准确地区分、
一课时、
投影仪或电脑、自制胶片、
3、通过举例来说明积的乘方性质应如何正确使用,师生共练以达到熟练掌握、
4、多种题型的设计,让学生能从不同的角度全面准确地理解和运用该性质、
(一)明确目标
本节课重点学习积的乘方的运算性质及其较灵活地运用、
(二)整体感知
(三)教学过程
1、创设情境,复习导入
前面我们学习了同底数幂的乘法、幂的乘方这两个寨的运算性质,请同学们通过完成一组练习,来回顾一下这两个性质:
填空:
人教版七年级数学教案篇十六
1.使学生在了解代数式概念的基础上,能把简单的与数量有关的词语用代数式表示出来;
2.初步培养学生观察、分析和抽象思维的能力.
列代数式.
弄清楚语句中各数量的意义及相互关系.
1?用代数式表示乙数:(投影)
(1)乙数比x大5;(x+5)
(2)乙数比x的2倍小3;(2x-3)
(3)乙数比x的倒数小7;(-7)
(4)乙数比x大16%?((1+16%)x)
(应用引导的方法启发学生解答本题)
例1用代数式表示乙数:
(1)乙数比甲数大5;(2)乙数比甲数的2倍小3;
(3)乙数比甲数的倒数小7;(4)乙数比甲数大16%?
解:设甲数为x,则乙数的代数式为
(1)x+5(2)2x-3;(3)-7;(4)(1+16%)x?
(本题应由学生口答,教师板书完成)
最后,教师需指出:第4小题的答案也可写成x+16%x?
例2用代数式表示:
(1)甲乙两数和的2倍;
(2)甲数的与乙数的的差;
(3)甲乙两数的平方和;
(4)甲乙两数的和与甲乙两数的差的积;
(5)乙甲两数之和与乙甲两数的差的积?
分析:本题应首先把甲乙两数具体设出来,然后依条件写出代数式?
解:设甲数为a,乙数为b,则
(1)2(a+b);(2)a-b;(3)a2+b2;
(4)(a+b)(a-b);(5)(a+b)(b-a)或(b+a)(b-a)?
(本题应由学生口答,教师板书完成)
例3用代数式表示:
(1)被3整除得n的数;
(2)被5除商m余2的数?
分析本题时,可提出以下问题:
(1)被3整除得2的数是几?被3整除得3的数是几?被3整除得n的数如何表示?
(2)被5除商1余2的数是几?如何表示这个数?商2余2的数呢?商m余2的数呢?
解:(1)3n;(2)5m+2?
(这个例子直接为以后让学生用代数式表示任意一个偶数或奇数做准备)?
例4设字母a表示一个数,用代数式表示:
(1)这个数与5的和的3倍;(2)这个数与1的差的;
(3)这个数的5倍与7的和的一半;(4)这个数的平方与这个数的的和?
解:(1)3(a+5);(2)(a-1);(3)(5a+7);(4)a2+a?
(通过本例的讲解,应使学生逐步掌握把较复杂的数量关系分解为几个基本的数量关系,培养学生分析问题和解决问题的能力?)
例5设教室里座位的行数是m,用代数式表示:
(1)教室里每行的座位数比座位的行数多6,教室里总共有多少个座位?
(2)教室里座位的行数是每行座位数的,教室里总共有多少个座位?
分析本题时,可提出如下问题:
(1)教室里有6行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?
(2)教室里有m行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?
(3)通过上述问题的解答结果,你能找出其中的规律吗?(总座位数=每行的座位数×行数)
解:(1)m(m+6)个;(2)(m)m个?
1?设甲数为x,乙数为y,用代数式表示:(投影)
(1)甲数的2倍,与乙数的的'和;(2)甲数的与乙数的3倍的差;
(3)甲乙两数之积与甲乙两数之和的差;(4)甲乙的差除以甲乙两数的积的商?
2?用代数式表示:
(1)比a与b的和小3的数;(2)比a与b的差的一半大1的数;
(3)比a除以b的商的3倍大8的数;(4)比a除b的商的3倍大8的数?
3?用代数式表示:
(1)与a-1的和是25的数;(2)与2b+1的积是9的数;
(3)与2x2的差是x的数;(4)除以(y+3)的商是y的数?
〔(1)25-(a-1);(2);(3)2x2+2;(4)y(y+3)?〕
首先,请学生回答:
1?怎样列代数式?2?列代数式的关键是什么?
其次,教师在学生回答上述问题的基础上,指出:对于较复杂的数量关系,应按下述规律列代数式:
(1)列代数式,要以不改变原题叙述的数量关系为准(代数式的形式不唯一);
(2)要善于把较复杂的数量关系,分解成几个基本的数量关系;
1?用代数式表示:
(1)体校里男生人数占学生总数的60%,女生人数是a,学生总数是多少?
2?已知一个长方形的周长是24厘米,一边是a厘米,
求:(1)这个长方形另一边的长;(2)这个长方形的面积.
学法探究
分析:先深入研究一下比较简单的情形,比如三个圆环接在一起的情形,看有没有规律.
当圆环为三个的时候,如图:
此时链长为,这个结论可以继续推广到四个环、五个环、…直至100个环,答案不难得到:
解:
=99a+b(cm)
人教版七年级数学教案篇十七
知识与能力
从简单的转盘游戏开始,使学生在生活经验和试验的基础上,进一步体验不确定事件的特点及事件发生的可能性大小。
能用实验对数学猜想做出检验,从而增加猜想的可信度。 解决问题
在转盘游戏过程中,经历猜测结果,实验验证,分析试验结果等数学活动,增加数学活动经验。
情感态度与价值观
在合作与交流过程中,体验小组合作更有利于探究数学知识,敢于发表自己观点,提高个人认识。
在实验中,体会不确定事件的特点及事件发生可能性大小;使每个学生都能积极认真参与课堂设计中的实验,真正在实验中获得知识上的认识。
创设情境,切入标题
请同学们猜测,当我自由转动转盘时,指针会落在什么颜域呢?
请各小组分别派一名代表,看哪组能转出红色。
结果,8小组有6组转出了红色。
为什么会出现这样的结果呢?
因为,在这个转盘中,红域的面积大,白域的面积小,因此,当转盘停上转动时,指针落到红域的可能性大。
大家同意这种看法吗?下面我们亲自动手感受一下。
学生按照题目要求进行实验。
请各组组长把你组的实验数据汇报一下(教师把数据填写在表格里) 实验结果:六个小组每组实验16次,全班共实验96次,指针落在红域的次数分别如下9,6,10,5,8,12。共计50次。
请同学们对我们的实验结果进行分析交流,谈谈你在试验中有哪些心得。
根据观察,转盘上红域的面积为总面积的一半,指针落在红域的可能性也应该是一半。通过对我们全班的实验结果分析,指针落在红域的比例是50∶96,结果接近百分之五十。
在小组内实验结果不明显,实验次数越多越能说明问题。
通过实验,我们确定感受到,转盘游戏中各区域的面积的可能性大小与指针落在什么区域的可能性大小有直接关系。以后在生活中再遇到转盘游戏问题可要想想今天的实验结论。
下面我们利用转盘做一下数学游戏(出示幻灯片),学生按教学设计中要求进行游戏,教师巡回指导。
每组每人游戏一次,全班共游戏48次。其游戏结果是,平均数增大1的,共35次,平均数减小1的,共13次。
请同学们对下列问题进行交流(幻灯片出示教材206页4个问题)。 这个转盘转到“平均数增大1”区域的可能性大,从面积大小就可以看出。
如果平均数增大1,我是在卡片上增加一个数,这个数等于卡片上数字的个数加1,如果是平均数减小1,我就在每个数上都减去1。
同学们说出很多种方法,不一一列举。
“平均数增大1”的次数占总次数的百分之七十三,“平均数减小1”占百分之二十七。
如果将这个实验继续做下去,卡片上所有数的平均数会增大。
同学们说的都很好,课后能不能自己也利用转盘设计一个新的游戏,感兴趣的同学可以在课下与我交流。
以下过程同教学设计,略去。
指导学生完成教材第206页习题。
学生可从各个方面加以小结。 布置作业
仿照课堂游戏,自编一个新的游戏。 能否利用扑克牌设计本节转盘游戏。
人教版七年级数学教案篇十八
1、熟练掌握一元一次不等式组的解法,会用一元一次不等式组解决有关的实际问题;
3、体验数学学习的乐趣,感受一元一次不等式组在解决实际问题中的价值。
正确分析实际问题中的不等关系,列出不等式组。
建立不等式组解实际问题的数学模型。
出示教科书第145页例2(略)
问:(1)你是怎样理解“不能完成任务”的数量含义的?
(2)你是怎样理解“提前完成任务”的数量含义的?
(3)解决这个问题,你打算怎样设未知数?列出怎样的不等式?
师生一起讨论解决例2.
1、教科书146页“归纳”(略).
2、你觉得列一元一次不等式组解应用题与列二元一次方程组解应用题的步骤一样吗?
在讨论或议论的基础上老师揭示:
步法一致(设、列、解、答);本质有区别.(见下表)一元一次不等式组应用题与二元一次方程组应用题解题步骤异同表。
人教版七年级数学教案篇十九
1,掌握相反数的概念,进一步理解数轴上的点与数的对应关系;
2,通过归纳相反数在数轴上所表示的点的特征,培养归纳能力;
3,体验数形结合的思想。
教学难点归纳相反数在数轴上表示的点的特征
知识重点相反数的概念
教学过程(师生活动)设计理念
设置情境
引入课题问题1:请将下列4个数分成两类,并说出为什么要这样分类
4,-2,-5,+2
允许学生有不同的分法,只要能说出道理,都要难予鼓励,但教师要做适当的引导,逐渐得出5和-5,+2和-2分别归类是具有较特征的分法。
(引导学生观察与原点的距离)
思考结论:教科书第13页的思考
再换2个类似的数试一试。
培养学生的观察与归纳能力,渗透数形思想
深化主题提炼定义给出相反数的定义
学生思考讨论交流,教师归纳总结。
规律:一般地,数a的相反数可以表示为-a
思考:数轴上表示相反数的两个点和原点有什么关系?
练一练:教科书第14页第一个练习体验对称的图形的特点,为相反数在数轴上的特征做准备。
深化相反数的概念;“零的相反数是零”是相反数定义的一部分。
强化互为相反数的数在数轴上表示的点的几何意义
给出规律
解决问题问题3:-(+5)和-(-5)分别表示什么意思?你能化简它们吗?
学生交流。
分别表示+5和-5的相反数是-5和+5
练一练:教科书第14页第二个练习利用相反数的概念得出求一个数的相反数的方法
小结与作业
1、相反数的定义
2、互为相反数的数在数轴上表示的点的特征
3、怎样求一个数的相反数?怎样表示一个数的相反数?
本课作业
1、必做题教科书第18页习题1.2第3题
2、选做题教师自行安排
本课教育评注(课堂设计理念,实际教学效果及改进设想)
1、相反数的概念使有理数的各个运算法则容易表述,也揭示了两个特殊数的特征.这两个特殊数在数量上具有相同的绝对值,它们的和为零,在数轴上表示时,离开原点的距离相等等性质均有广泛的应用.所以本教学设计围绕数量和几何意义展开,渗透数形结合的思想.
2、教学引人以开放式的问题人手,培养学生的分类和发散思维的能力;把数在数轴上表示出来并观察它们的特征,在复习数轴知识的同时,渗透了数形结合的数学方法,数与形的相互转化也能加深对相反数概念的理解;问题2能帮助学生准确把握相反数的概念;问题3实际上给出了求一个数的相反数的方法.
3、本教学设计体现了新课标的教学理念,学生在教师的引导下进行自主学习,自主探究,观察归纳,重视学生的思维过程,并给学生留有发挥的余地。
人教版七年级数学教案篇二十
教师在备课时,应充分估计学生在学习时可能提出的问题,确定好重点,难点,疑点,和关键。根据学生的实际改变原先的教学计划和方法,满腔热忱地启发学生的思维,针对疑点积极引导。
非常高兴,能有机会和同学们共同学习
昨天,老师在七年级三班上课时,把他们分成七个小组,每个小组回答问题的情况以抢答赛的形式记分。你们看(出示投影)这是七年级三班七个小组回答问题的表现情况。答对一题得一分,记作+1分;答错一题扣一分,记作1分。第几组最棒?老师还没来得及计算出每个小组的最后得分,咱们班哪位同学能帮老师算出最后结果?(学生在教师引导下回答)
我们已得出了每个小组的最后分数,那么哪个小组是优胜小组?(第一小组),回去以后,老师就把小奖品发给他们,相信他们一定会很高兴。
同学们,这节课你们愿不愿意也分成几个小组,看一看那个小组的同学表现得最出色?(原意)那么老师就按座次给同学们分组,每一竖排为一组。老师把组号写在黑板上,以便记分。
希望各组同学积极思考、踊跃发言。同学们有没有信心得到老师的小奖品?(有)同学们加油!
我们已得到了这7个小组的最后得分,那位同学能试着用算式表示?(学生在教师指导下列算式)
以上这些算是都是什么运算?(加法),两个加数都是什么数?(有理数),这就是我们这节课要学习的有理数的加法(板书课题)。
刚才老师说要给七年级三班的优胜组发奖品,老师手里有12本作业本,优胜组共6人,老师将送出的作业本数占总数的几分之几?(二分之一)分数最低的一组共7人,他们每人交给老师一个作业本,占总数的几分之几?(十二分之七)如果,老师得到的作业本记为正数,送出的作业本记为负数,则老师手里的作业本增加或减少几分之几?同学们能列出算式吗?(学生列式)对于这个算式,同学们还能轻易的感知出结果吗?(不能)
对于有理数的加法,有的同学们能直接感知得到结果,有的靠感知是不够的,这就需要我们共同探索规律!(出示投影),观察这7个算式,每一个算式都是怎样的两个有理数相加?(引导学生回答)你们还能举出不同以上情况的算式吗?(不能),这说明这几个算式概括了有理数加法的不同情况。
前两个算式的加数在符号上有什么共同点?(相同),那么我们就可以说这是什么样的两数相加?(同号两数相加)同学们还能观察出那几个算式可归为一类吗?(3、4、5、异号两数相加,6、7一个数同0相加)
同学们已把这7个算式分成了三种情况,下面我们分别探讨规律。
(2) 异号两数相加,其和有何规律呢?大家观察这三个式子回答问题。(引导学生分成两类,容易得到绝对值相同情况的结论。再引导学生观察绝对值不相同的情况,回答问题)哪位同学能概括一下这个规律?(引导学生得出)
(3) 一个数同0相加,其和有什么规律呢?(易得出结论)
同学们经过积极思考,探索出了解决有理数加法的规律,顾一下(出哪位同学能带领大家共同回顾一下?(出示投影,学生大声朗读)我们把这个规律称为有理数的加法法则。
同学们都很聪明,积极参与探索规律,每个组都有不错的成绩。个别落后的组不要气馁,继续努力,下面老师就给大家一个得分的机会,看哪一组能[出题制胜]!(出示)
(活动过程1后评价、加分;教师以其中一题为例,讲解题格式及过程;活动过程2后:让每组第三排同学评价加分)
同学们已经基本掌握了有理数的加法法则,并会运用它,但七年级三班有几位同学对这一内容掌握的不是太好,以致在作业中出了毛病,他们为此很苦恼。希望咱们同学能帮帮他们,看哪位同学能像妙手回春的神医华佗一样药到病 除!(师生共同治病)
看来同学们对有理数的加法已经掌握得很好了,大家还记得前面那个难倒我们的有理数的加法题呢?那位同学能解决这个问题呢?(学生口述 师板书)。在大家的努力下,我们终于攻破了这个难关。
通过这节课的学习,大家有什么收获?(学生回答)同学们都有很多收获,老师认为收获最多的是优胜组的同学,因为他们能得到老师的小奖品,大家赶紧看看那一组获胜?欢迎优胜组上台领奖,大家掌声鼓励!
同学们,希望你们在未来的学习和生活中都能积极进取,获得一个又一个的胜利。
人教版七年级数学教案篇二十一
1?使学生掌握代数式的值的概念,能用具体数值代替代数式中的字母,求出代数式的值;
2?培养学生准确地运算能力,并适当地渗透特殊与一般的辨证关系的思想。
重点和难点:正确地求出代数式的值
一、从学生原有的认识结构提出问题
1?用代数式表示:(投影)
(1)a与b的和的平方;(2)a,b两数的平方和;
(3)a与b的和的50%?
2?用语言叙述代数式2n+10的意义?
3?对于第2题中的代数式2n+10,可否编成一道实际问题呢?(在学生回答的基础上,教师打投影)
若学校有15个班(即n=15),则添置排球总数为多少个?若有20个班呢?
二、师生共同研究代数式的值的意义
2?结合上述例题,提出如下几个问题:
(1)求代数式2x+10的值,必须给出什么条件?
(2)代数式的值是由什么值的确定而确定的?
(3)求代数式的值可以分为几步呢?在“代入”这一步,应注意什么呢?
下面教师结合例题来引导学生归纳,概括出上述问题的答案?(教师板书例题时,应注意格式规范化)
例1当x=7,y=4,z=0时,求代数式x(2x-y+3z)的值?
解:当x=7,y=4,z=0时,
x(2x-y+3z)=7×(2×7-4+3×0)
=7×(14-4)
=70?
注意:如果代数式中省略乘号,代入后需添上乘号
人教版七年级数学教案篇二十二
学生活动:思考,交流
师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数).
问题2:在生活中,仅有整数和分数够用了吗?
请同学们看书(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流。
(也可以出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等)
学生交流后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有-的新数。
人教版七年级数学教案篇二十三
1。2有理数1。2。2数轴。这一节是初中数学中非常重要的内容,从知识上讲,数轴是数学学习和研究的重要工具,它主要应用于绝对值概念的理解,有理数运算法则的推导,及不等式的求解。同时,也是学习直角坐标系的基础,从思想方法上讲,数轴是数形结合的起点,而数形结合是学生理解数学、学好数学的方法。日常生活中带见的用温度计度量温度,已为学习数轴概念打下了一定的基础。通过问题情境类比得到数轴的概念,是这节课的主要学习方法。同时,数轴又能将数的分类直观的表现出来,是学生领悟分类思想的基础。
(3)由于七年级学生的理解能力和思维特征和生理特征,学生的好动性,注意力容易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,一发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生的主动性。
从学生已有知识、经验出发研究新问题,是我们组织教学的一个重要原则。小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出数轴的概念。教学中,数轴的三要素中的每一要素都要认真分析它的作用,使学生从直观认识上升到理性认识。直线、数轴都是非常抽象的数学概念,当然对初学者不宜讲的过多,但适当引导学生进行抽象的思维活动还是可行的。例如,向学生提问:在数轴上对应一亿万分之一的点,你能画出来吗?它是不是存在等。
(一)知识与技能
1、掌握数轴的三要素,能正确画出数轴。
2、能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数。
(二)过程与方法
1、使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识。
2、对学生渗透数形结合的思想方法。
(三)情感、态度与价值观
1、使学生初步了解数学来源于实践,反过来又服务于实践的辩证唯物主义观点。
2、通过画数轴,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受。
1、重点:正确掌握数轴画法和用数轴上的点表示有理数。
2、难点:有理数和数轴上的点的对应关系。
1、重点、难点分析
本节的重点是初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数,并会比较有理数的大小。难点是正确理解有理数与数轴上点的对应关系。数轴的概念包含两个内容,一是数轴的三要素:原点、正方向、单位长度缺一不可,二是这三个要素都是规定的。另外应该明确的是,所有的'有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数。通过学习,使学生初步掌握用数轴解决问题的方法,为今后充分利用“数轴”这个工具打下基础。
2、知识结构
有了数轴,数和形得到了初步结合,这有利于对数学问题的研究,数形结合是理解数学、学好数学的方法,本课知识要点如下:
定义规定了原点、正方向、单位长度的直线叫数轴
三要素原点正方向单位长度
应用数形结合
1、教学方法:根据教师为主导,学生为主体的原则,始终贯穿“激发情趣—手脑并用—启发诱导—反馈矫正”的教学方法。
2、学生学法:动手画数轴,动脑概括数轴的三要素,动手、动脑做练习。
1课时
电脑、投影仪、三角板
讲授新课
(出示投影1)
问题1:三个温度计。其中一个温度计的液面在0上2个刻度,一个温度计的液面在0下5个刻度,一个温度计的液面在0刻度。
师:三个温度计所表示的温度是多少?
生:2℃,—5℃,0℃。
问题2:在一条东西向的马路上,有一个汽车站,汽车站东3m和7。5m处分别有一棵柳树和一棵杨树,汽车站西3m和4。8m处分别有一棵槐树和一根电线杆,试画图表示这一情境。(小组讨论,交流合作,动手操作)
师:我们能否用类似的图形表示有理数呢?
师:这种表示数的图形就是今天我们要学的内容—数轴(板书课题)。
师:与温度计类似,我们也可以在一条直线上画出刻度,标上读
数,用直线上的点表示正数、负数和零。具体方法如下
(边说边画):
师问:我们能不能用这条直线表示任何有理数?(可列举几个数)
让学生观察画好的直线,思考以下问题:
(出示投影2)
(1)原点表示什么数?
(2)原点右方表示什么数?原点左方表示什么数?
(3)表示+2的点在什么位置?表示—1的点在什么位置?
(4)原点向右0。5个单位长度的a点表示什么数?
原点向左1。5个单位长度的b点表示什么数?
根据老师画图的步骤,学生思考在一条水平的直线上都画出什么?然后归纳出数轴的定义。
师:在此基础上,给出数轴的定义,即规定了原点、正方向和单
位长度的直线叫做数轴。
通过上述提问,向学生指出:数轴的三要素——原点、正方向和单位长度,缺一不可。
【教法说明】通过“观察—类比—思考—概括—表达”展现知识的形成是从感性认识上升到理性认识的过程,让学生在获取知识的过程中,领会数学思想和思维方法,并有意识地训练学生归纳概括和口头表达能力。
师生同步画数轴,学生概括数轴三要素,师出示投影,生动手动脑练习
尝试反馈,巩固练习
(出示投影3)。画出数轴并表示下列有理数:
1、1。5,—2。2,—2。5,,,0。
2。写出数轴上点a,b,c,d,e所表示的数:
请大家回答下列问题:
(出示投影4)
(1)有人说一条直线是一条数轴,对不对?为什么?
(2)下列所画数轴对不对?如果不对,指出错在哪里?
【教法说明】此组练习的目的是巩固数轴的概念。
十一、小结
本节课要求同学们能掌握数轴的三要素,正确地画出数轴,在此还要提醒同学们,所有的有理数都可用数轴上的点来表示,但是反过来不成立,即数轴上的点并不是都表示有理数,至于数轴上的哪些点不能表示有理数,这个问题以后再研究。
十二、课后练习习题1。2第2题
十三、教学反思
1、数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体出了从感性认识,到理性认识,到抽象概括的认识规律。
2、教学过程突出了情竟到抽象到概括的主线,教学方法体了特殊到一般,数形结合的数学思想方法。
3、注意从学生的知识经验出发,充分发挥学生的主体意识,让学生主动参与学习活,并引导学生在课堂上感悟知识的生成,发展与变化,培养学生自主探索的学习方法。
【本文地址:http://www.xuefen.com.cn/zuowen/6958983.html】