总结是对工作、学习等方面的成果进行整理和总结的过程。在情感表达中,语言和非语言因素都起着重要的作用。如果你正在苦恼如何写一份完美的总结,不妨看看以下这些总结范文,或许能给你一些帮助。
人教版小学六年级数学教学设计篇一
教学内容:课本89页例1、例2、做一做、练习二第1、2题。教学目标:
1、让学生在已有的分数加法的基础上,通过小组合作,自主探究建构,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。
2、让学生在合作学习、汇报展示、互动交流中,体验学习带来的喜悦,培养学生的学科兴趣和学习能力。
3、让学生在课堂学习中感悟到数学知识的魅力,领略到美。教学重点:让学生理解分数乘整数的意义,掌握分数乘整数的计算方法。
教学难点:总结分数乘整数的计算方法。教学过程:
一、创设情境,提出学习目标。
1、创设情境:同学们,谁敢与老师比一比,看谁列式列得比较快?
比赛题目为:3个 3/10 相加的和是多少?6个 3/10 相加的和是多少?
师:同学们的表现真是太棒了?这节课我们就一起来研究有关《分数乘整数》的数学问题?
第1页/共5页 2、提出学习目标
让学生先说一说,再出示学习目标:(1)分数乘整数的计算方法。
学生独立自学课本89页例1、例2,完成做一做(教师相机进行指导,收集学生的学习信息,重在让学生展示不同的思维方法和错例,特别是引导小组内学生之间的交流与探讨)2、全班展示(1)算法展示。
生1:利用乘法与加法的关系进行计算。2/154=2/15+2/15+2/15+2/15=8/15 生2:先计算出结果,再进行约分。5/128=58/12=40/12=10/3= 生3:在计算过程中能约分的先约分,再计算。23/4=3/2 2与4先约分,再计算。(2)比较三种计算方法,选择最优算法。
通过对比,让学生体会先约分再计算的方法比较简便,同时向学生说明先约分的书写格式。(3)错例展示:
错例1:学生把整数与分子进行约分。错例2:学生没把计
第2页/共5页 算结果约成最简分数。
3、学生质疑问难,激发知识冲突。
(1)针对同学的展示,学生自由质疑问难。
(2)教师引导学困生提出问题:同学们,你在学习中碰到困难了吗?能把你遇到的困难说给大家听吗?那你对同学的展示有什么想法与建议吗? 4、引导归纳分数乘整数的计算法则。
1、完成课本12页练习二第1、2题。 2、生活中的数学
这个工作可让学生分组负责收集整理,登在小黑板上,每周一
第3页/共5页 换。要求学生抽空抄录并且阅读成诵。其目的在于扩大学生的知识面,引导学生关注社会,热爱生活,所以内容要尽量广泛一些,可以分为人生、价值、理想、学习、成长、责任、友谊、爱心、探索、环保等多方面。如此下去,除假期外,一年便可以积累40多则材料。如果学生的脑海里有了众多的鲜活生动的材料,写起文章来还用乱翻参考书吗? 单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。让学生把一周看到或听到的新鲜事记下来,摒弃那些假话套话空话,写出自己的真情实感,篇幅可长可短,并要求运用积累的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。这样,即巩固了所学的材料,又锻炼了学生的写作能力,同时还培养了学生的观察能力、思维能力等等,达到“一石多鸟”的效果。2、智力冲浪:用12个边长都是 dm的正方形硬纸板可以拼成多少种形状不同的长方形?它们周长分别是多少?(a类同学做)
第4页/共5页习正确的观察方法,即按顺序观察和抓住事物的不同特征重点观察,观察与说话相结合,在观察中积累词汇,理解词汇,如一次我抓住时机,引导幼儿观察雷雨,雷雨前天空急剧变化,乌云密布,我问幼儿乌云是什么样子的,有的孩子说:乌云像大海的波浪。有的孩子说“乌云跑得飞快。”我加以肯定说“这是乌云滚滚。”当幼儿看到闪电时,我告诉他“这叫电光闪闪。”接着幼儿听到雷声惊叫起来,我抓住时机说:“这就是雷声隆隆。”一会儿下起了大雨,我问:“雨下得怎样?”幼儿说大极了,我就舀一盆水往下一倒,作比较观察,让幼儿掌握“倾盆大雨”这个词。雨后,我又带幼儿观察晴朗的天空,朗诵自编的一首儿歌:“蓝天高,白云飘,鸟儿飞,树儿摇,太阳公公咪咪笑。”这样抓住特征见景生情,幼儿不仅印象深刻,对雷雨前后气象变化的词语学得快,记得牢,而且会应用。我还在观察的基础上,引导幼儿联想,让他们与以往学的词语、生活经验联系起来,在发展想象力中发展语言。如啄木鸟的嘴是长长的,尖尖的,硬硬的,像医生用的手术刀―样,给大树开刀治病。通过联想,幼儿能够生动形象地描述观察对象。
第5页/共5页
人教版小学六年级数学教学设计篇二
教学目标:
使学生进上步理解和掌握比和比例的意义与性质。
区别有关易混概念,进上步提高运用所学知识能力,为今后的学习打下良好的基础。
教学过程:
讲述本课复习课题并板书
基本概念的复习
比和比例的意义与性质。
比和分数、除法有什么联系?
说说比的基本性质的比例的基本性质?
比的基本性质与比例的基本性质各有什么用处?
看教材95页的归纳整理,并把基本性质栏中的空填上,说说根据什么填写的?
完成教材95的“做一做”。
结合第3题让学生说说什么叫做解比例?根据是什么?
示比值和化简比。
独立完成教材96页上的题目。
说说求比值与化简比的区别?
(求比值是根据比的意义。用前项除以后项,得到结果是一个数;化简比是根据比的基本性质,把比的前项和后项,同时乘以(或除以)相同的数(0除外),得到的结果是一个最简整数比)。
看书中的表,总结方法。
完成教材96页的“做一做”
比例尺
问题:1)什么叫做比例尺?说说“图距”、“实距”、“比例尺”三者之间的关系。
2)一幢教学大楼平面图的比例尺是1/100,这比例尺表示的是什么意思?
比例尺除写成数字化形式处,还可怎样表示?
完成教材97页上的“做一做”。(理解比例尺实质上是一个比,此比的前项与后项表示的意义是什么。)
练习巩固
完成教材十九页第1~4题。
全课总结(略)
人教版小学六年级数学教学设计篇三
教学目标:
1、理解圆的周长的概念
2、通过实践操作体验圆周率得出的过程
3、会用圆周长计算公式解决实际问题
4、结合课堂开展爱国主义教育
教重难点:
体验圆周率的得出过程
教学准备:
ppt课件,尺子、绳子,每个同学准备直径是3厘米、5厘米、8厘米的圆一个
教学过程:
一、创设情境,导入新课
二、用心感悟,理解概念
a)要求兔八哥所跑的路线,实际上就是求这个正方形的什么?
要知道这个正方形的周长,只要量出它的什么就可以了?能说出你的依据吗?(突出:正方形的周长与它的边长有关)
b)要求鸭小弟所跑的路程,实际上就是求圆的什么呢?板书课题:圆的周长。
c)你能用自己的话说说什么叫圆的周长吗?(围成圆的曲线的长叫做圆的周长)
d)指出你手上的圆的周长
三、动手操作,体验过程
2、请同学们用自己喜欢的方法测量任意两个圆的周长并完成表格
圆的直径
圆的周长
周长是直径的几倍?
3、提出猜想
你觉得圆的周长与什么有关呢?引导学生观察手上三个圆,说说你的想法。
跟直径、半径有关。那你觉得有什么关系呢?
直径越长,圆的周长就越长
5、汇报展示
观察数据,你有什么发现得出结论:圆的周长总是它直径的3倍多一些。板书:3倍多一些。
6、认识圆周率
7、引导出圆周长计算公式:圆的周长=直径圆周率用字母表示c=d
四、运用所学,解决问题
1、计算下面圆的周长
两个圆先求出示一个知道直径的圆,利用公式完成练习
2、判断题:
1)圆的直径越大,圆周率就越大
2)圆周长是它直径的3.14倍()
3)半圆的周长就是它所在圆的周长的一半()
3、解决开始跑步的问题
4、计算我们人民币1元的外周长,不知道条件怎么办?先测量然后计算
5、拓展
五、温故知新,总结课堂
人教版小学六年级数学教学设计篇四
教学目标:
1.知识目标:了解储蓄的意义,理解本金、利率、利息的含义。
2.能力目标:注重学生观察、对比、总结能力的培养,并让学生感受数学在生活中的'作用,提高应用意识和实践的能力。
3.情感目标:懂得存款利国利民,并从教育储蓄中感悟国家对少年儿童的殷切希望,树立努力学习的志向。
重点难点:
理解本金、利率、利息的含义,会正确计算利息。理解税后利息的含义,会根据实际情况使用公式。
教学流程:
一、知识扩充
(师出示中国五大银行行标。生根据生活经验,理解银行的业务范围及银行的分类。)
师:(出示一组信息)20xx年12月,中国银行给工业发放贷款18636亿元,给商业发放贷款8563亿元,给建筑业发放贷款2099亿元,给农业发放贷款5711亿元。
(让生思考,从信息中想到了什么?)
设计意图:让学生了解储蓄的意义,感受存款不但利国而且利民。
效果预测:学生可以从信息中感悟到国家用集资上来的存款繁荣经济、建设国家、援助农业,加强储蓄的意识。
二、创设情境
师:老师积攒了1000元钱,把它放在什么地方最安全合理呢?
生:放在银行里,不但安全还可以使自己的用钱更有计划。
师:听从大家的意见,现在老师就想去银行存款,谁想和我一起去?
(生走入老师创设的情境,感受存款的乐趣。)
(生独立完成填存单的任务,遇到问题随时提出,师生共同解决。)
设计意图:给予学生一个想像的空间,让学生身临其境地感悟生活中的数学,把知识、能力、人格有机地融合,让学生的各种因素碰撞后的灵感在实践中得以体现。
效果预测:经过师生互动、生生互补,学生可以掌握存款单的填写方法,并在老师的点拨中,掌握存款的种类、本金等数学概念。
三、合作学习
师:(出示信息)小丽学会存款后,把100元存入银行,整存整取1年,年利率2.25%,到期时可取出人民币102.5元。
(生找出本金、存款种类后,再谈一谈自己有什么新发现。)
出示表格
(生合作学习从表格中发现利息的多少与本金、利率、时间有关,并总结出公式:利息=本金×时间×利率。)
生:1000×3.6%×5=180元。
师:取款时的情况和我们预想的一样吗?和老师一起跳跃时间,来到xxxx年。(出示利息清单。)
利息清单
生总结:税后利息=本金×利率×时间×(1-20%)。
设计意图:为学生营造自我发现、自我总结的空间,让学生从实践中概括公式,在合作中分享自己与他人思考的成果,体会成功的快乐。
效果预测:学生在兴趣的驱使下,主动参与小组合作,在合作中积极思考,得出利息及税后利息的公式,并因为经历了概念的形成过程,为知识的应用做了良好的铺垫。
四、深化练习
1.奉献。
2.理财。
3.帮助。
4.介绍小知识。(教育储蓄)
设计意图:数学来源于生活,服务于生活,为学生设计的三组生活习题,其目的在于让学生感悟数学在生活中的价值,增强应用意识,同时培养了学生乐于助人、勤俭节约的优良品质。
效果预测:学生喜欢智慧的挑战,对学以致用有很强的能动性,所以他们一定会用智慧的眼光解决习题中的生活问题,同时在教育储蓄的感召下,进一步感悟党和人民的期望,树立终身学习的愿望。
人教版小学六年级数学教学设计篇五
一、指导思想:为了把好教学质量关,检测课程标准的落实请况,全面了解学生的数学学习历程,查找学生在学习过程中和教师教学经历中的问题,促进学生的学习和改进教师的教学。寻求更适应学生自我发展的学习模式,强化学校对教学管理、教师对教学行为的反思的重视程度。提升理念,更好的指导引领我们的复习,取得评价主、客体都满意的评价结果。
二、复习范围
1-6年级学习内容,侧重5-6年级所学内容。
三、新课程命题的特点:
1、以新的教育理念为指导,重视基本技能的考查,着眼发展能力。培养学生科学的思维方式和创新意识。
2、试题力求贴近社会生活,突出联系实际,富有时代特征,引导学生关注社会,独立思考问题,学有所用。
3、具有较强的开放性和综合性,注重学科知识的内在联系和多学科的综合联系。
4、关注学生情感、态度、价值观的协调发展,彰显人文魅力。
5、关注学生知识网络的自主构建。
四、课程内容学习的核心目标及目标达成策略:
切实发展学生的数感、符号感、空间观念、统计观念、以及应用意识和推理能力。达成核心目标,学生就可以以不变应万变,灵活解决所面对的实际问题。
数感:是人对数与运算的一般理解,这种理解可以帮助人们用灵活的方法做出数学判断和为解决复杂的问题提出有用的策略。是一种主动地、自觉地或自动化地理解数和运用数的态度与意识。数感是人的一种基本的数学素养,是建立明确的数概念和有效地进行计算等数学活动的基础,是将数学与现实问题建立联系的桥梁。
数感使人眼中看到的世界有了量化的意味,当我们遇到可能与数学有关的具体问题时,就能自然地、有意识地与数学联系起来。比如:参加辅导时我们常常要估计一下大约有多少人参加;看到体形较为特殊的人,我们很多时候在估量,这个人有多少斤或千克。大家可能还记得一道期末质量检测题:选择重量单位的题目是:老师的体重可能是65()后面有三个选项(吨、千克、克)一些学习成绩优秀的孩子这道题答错了,选择了“吨”。这说明孩子没有建立相应的数感,没有形成吨这个重量单位的概念,没有衡量、辨析、推理验证的意识和能力。
我们强化发展学生的数感可从以下几个方面入手
a、应用数字表示具体数据和数量关系。
b、能判定不同的算术运算,有计算能力,并能选择恰当的方法;
c、能依据数据进行推论,并对数据和推论的精确性和可能性进行检验。
典型例题:1、辨析:1米的50%,是50%米。
2、排列:加循环节使排列符合要求:
3.14163.14163.14163.1416
3、一个滴水的水龙头每天白白地流掉12千克水。照这样计算,第一季度就要浪费掉()千克水。
比如|:间隔问题,间隔数与物体数有什么关系,内隐着什么规律,我们可以画图,摆学具,画线段图,用图形或可用介质来抽象其中的数量关系或变化规律。这是初步的符号感的表现。再如用n表示一个自然数,那么与之相邻的两个自然数就可以用n-1和n+1来表示。还有比较典型的用字母表示公式、关系式等。
典型例题:1、利用关系式判断:8x=yy和x成()比例
x/2=yy和x成()比例
y/6=3/xy和x成()比例
2、在长方形内截取一个最大的正方形,阴影表示剩余部分
(1)阴影部分的周长是(2a)
(2)阴影部分的面积是((a-b)*b)b
a
空间观念:主要表现在能由实物的形状想象出几何图形,由几何图形想象出实物的形状,进行几何体与其三视图、展开图之间的转化;能根据条件做出立体模型或画出图形;能从较复杂的图形中分解出基本图形,并能分析其中的基本元素及其关系;能描述实物或几何图形的运动和变化;能采用适当的方式描述物体间的位置关系;能运用图形形象地描述问题,利用直观进行思考。
比如:认识球体,想象球中心的点就是球心,球心到球面的线段就是球半径。在实物不在眼前时,学生的头脑里依然有球立体的形象概念。再比如,在绿化栽树、载花,设计成什么样的图案,用哪些几何图形、如何组合等等。到第三学段经常要依据条件叙述画出图形,如果没有形成一定的空间观念是无法保证后续学习的。
典型例题:1、用4个同样的正方体木块,摆(一层两排)成一个长方体,表面积减少了32平方厘米,每一块的体积是()立方厘米。
2、用一张正方形的纸正好卷成一个圆柱,这个圆柱的底面周长和高一样长。()
3、把圆柱的侧面展开不能得到()
长方形、梯形、正方形、平行四边形。
4、一个正方形,以一条边为轴,旋转一周,会出现的立体图形是()
统计观念具体表现:认识到统计对决策的作用。能从统计的角度思考与数据有关的问题;能够通过收集数据、描述数据、分析数据的过程作出合理的决策;能对数据的来源、处理数据的方法,以及由此得到的结果进行合理的质疑。
在现代社会里人们面临更多的机会和选择,常常在不确定的情境中,根据大量的无组织的数据作出合理的决策,这是每一个公民都应具备的基本素质,比如投资论证、采购、炒股等都离不开统计,需统计观念作保障的。
典型例题:污染指数
150
轻度污染
100
良
50
优
0
大连太原上海杭州厦门重庆昆明
应用意识主要表现在:认识到现实生活中蕴涵着大量的数学信息,数学在现实生活中有着广泛的应用;面对实际问题能主动尝试从数学的角度运用所学知识和方法寻求解决问题的策论。
推理能力:能通过观察、实验、类比等获得数学猜想,并进一步寻求证据;能有条理地表达思考过程;在与他人交流的过程中能运用数学的语言合乎逻辑地进行讨论与质疑。
(推理能力已落实到了四个内容领域之中。应用意识和推理能力重在关注数学与生活的联系,能够进行理性的思考。)
典型例题:一条平均水深为1.5米的河,一个身高1.7米、水性不好的人下河游泳有危险吗?(用你喜欢的方法简要说明)
以上通过六个方面,说明了复习的着眼点,要使知识转化成内在的东西,形成能力,使学生得到实质的发展才是我们追求的目标。另外义务教育阶段的数学课程应突出体现基础性、普及性、和发展性,所以评价也应体现基础性、普及性、和发展性。体现国家对小学阶段学生数学素养的基本要求。因此要在基础性的基础上去追求发展性,不必过高要求。
根据建构主义理论的合理内核:学习是个体主动建构自己知识的过程,是一种结构改变的过程。不是简单的信息积累,而是新旧知识经验的冲突,经由磋商与和解引发学习者认知结构的重组或改变的过程。所以我们在上复习课时,要重视促成学生经由磋商与和解而形成知识经验的重组。经由主体作用重建形成的个性知识网络,才是学生真正获得的知识。才能达成学生真正意义的发展。
四、小学数学各模块知识网络分析:
以下提供各模块的知识网络仅供参考:(可以做学生的学案)
数的认识简易方程
数和数的运算数的整除代数初步知识
数的运算比和比例
一般复合应用题长度
典型应用题面积
应用题分数、百分数应用题量的计量体积
列方程解应用题重量
比和比例应用题时间
线
平面图形的认识与计算角
平面图形
空间与图形长方体、正方体
立体图形的认识与计算
圆柱体、圆锥体
统计表
统计与概率
统计图
数和数的运算
(一)数的认识
整数的含义:像…-3,-1,0,1,2,3,…这样的数统称整数。
正数和负数的含义:像0,1,+5,6,…这样的数叫做正数;像-3,-2,-9,…这样的数叫做负数。
占位
0是最小的自然数,0的作用表示起点
表示界线
a自然数1是最小的一位数,是自然数的基本单位
数的意义:是整数的一部分,可表示基数也可以表示序数
分数
分类:真分数--分子比分母小(小于1)
假分数--分子大于或等于分母(大于或等于1)
小数有限小数
按小数部分分无限不循环小数
无限小数纯循环小数
分类循环小数
按整数部分分纯小数混循环小数
带小数
人教版小学六年级数学教学设计篇六
思考并回答:
1、在小学里我们学过哪些数?
2、最小的非0的自然数是多少?有没有最大的自然数?自然数的基本单位是多少?
3、小数又可以怎样分类?
4、我们学过的整数和小数的计数单位有哪些?数位的顺序是怎样的?
6、写数时应注意什么?用阿拉伯数字写出下面各数:七千零三十八、七亿零三十八万、
三亿零五十万六千、零点零四零六
练习:
1、在数位顺序表里,小数点左边第一位是()位,计数单位是();第五位是()位,计数单位是()。小数点右边第一位是()位,计数单位是();第三位是()位,计数单位是()位。
2、最高位是百万位的整数是()位数;最后一位是百分位的小数是()位小数。
3、5830070420读作()。“8”在()位上,表示();“7”在()位上,表示()。
4、有一个四位数,加上“1”就变成五位数,这个四位数是();有一个四位数,减去“1”就变成三位数,这个四位数()。
5、地球有多大?请读出下面数据。
地球的半径6378.14千米赤道长40073.92千米
地球表面积510067860平方千米地球海洋面积361745300平方千米
思考并回答:
1、3.150=3.15、7.8=7.8000,这是根据什么?
2、一个数的小数点向左移动两位,再向右移动一位,它的值有什么变化?
3、1÷3、70.7÷33,商的小数部分的数字有什么规律?
5、下面的循环小数,如果各保留三位小数取它的近似值,该怎样写?.....
0.720.33.150
6、以85400为例,省略万后面的尾数与写作以万为单位的数有什么区别?
8、三个连续的自然数的和是45,这三个数分别是()、()、()。
练习:
1、9035000以万为单位写作(),省略万后面的尾数写作()。408000000以亿为单位写作(),省略亿后面的尾数写作()。
2、7.85353……写作(),0.346346……写作()。
3、0.04×1000就是将0.04的小数点向()移动()位。
4、25.4÷100就是把25.4的小数点向()移动()位。3.002的小数点左移两位,是原数的(),小数点右移三位,是原数的()倍。
5、两个数相除的商是3.45,如果把被除数的小数点向右移动一位,除数的小数点向左移动一位,商是()。
数的整除
思考并回答:
1、下面的除式,哪些是整除关系?是整除关系的两个数要具备哪些条件?
32÷4、45÷7、12÷0.3、720÷90、2÷4
4、什么叫质因数?什么叫分解质因数?
5、下面各题分解质因数是否正确?为什么?不对的应该怎样改正?
6、求下面各组数的最大公约数和最小公倍数:14和42、24和32、12和18
7、互质的两个数一定都是质数吗?怎样判别两个数是否是互质数?
练习:
1、在16、4、8、32、36、80、84、160这些数中,80的约数有(),16的倍数有()。
2、20的约数有(),32的约数有(),20和32的公约数有(),其中最大的公约数是()。
3、按照下面要求写出互质数:两个都是质数();两个都是合数();一个是质数,一个是合数()。
能被3整除的数
能被5整除的数能被2整除的数
5、求下面各组数的最大公约数和最小公倍数:27和18、39和117、8和15
6、一个数用2、3、5除正好都是整数,这个数最小是();有一个数用它去除30、45、60正好都是整数,这个数最大是()。
7、判断题:
(1)没有约数2的自然数一定是奇数。
(2)一个自然数的约数总比它的倍数小。
(3)两个质数相乘,积一定是合数。
(4)一个奇数加上7,一定能被2整除。
(5)2、3、5都是质因数。
(6)两个合数不能成为互质数。
(7)17的约数都是质数。
(8)因为3、5、6的最大公约数是1,所以它们的最小公倍数是3×5×6=90。
分数和百分数
思考并回答:
1、先填空,在回答:4/5=1÷×、4/5=÷;7/9=1÷×、7/9=÷
什么叫分数?分数的分子、分母个表示什么?分数单位表示什么意思?
2、什么叫百分率?“9/100米”与“9﹪”在意义上有什么区别?
3、什么是分数的基本性质?分数的基本性质与
商不变的性质、比的基本性质有什么联系?
4、什么叫约分?什么叫通分?你能说出约分和通分的方法吗?
5、下面括号里应填什么数?其中哪一个分数是最简分数?为什么?
24/40=()/20=48/()=()/5=()/15=36/()
6、举例说明分数、小数、百分数的互化方法。
8、分数、小数、百分数混在一起,怎样比较它们的大小?比较0.6、2/3、61﹪的大小。
练习:
1、把3米长的钢管平均分成5段,每段钢管是全长的()/(),每段的长度是()/()米,3段占全长的()﹪。
2、生产500吨化肥,计划25天完成,平均每天完成计划的()﹪,每天生产()吨。
3、3里面有()个1/3,2/3里面有()1/12,1里面有11个2/(),100个1/7是()。
4、7/15的分数单位是(),添上()个这样的分数单位等于1,减去()个这样的分数单位等于1/5。
5、5/8的分母加上24,要使分数的大小不变,分子要();6/15的分母减去5,要使分数的大小不变,分子要()。
6、一个分数,它的单位是1/8,它有7个这样的单位,这个分数是(),化成小数是(),化百分数是()。
量和计量
思考并回答:
1、在小学里已经学过哪些量?它们各有哪些计量单位?
各种量基本单位各单位之间的关系
长度1米1千米=()米
1米=()分米
1分米=()厘米
1厘米=()毫米
面积1平方米1平方千米=()公顷
1平方千米=()平方米
1公顷=()平方米
1平方米=()平方分米
1平方分米=()平方厘米
体积1立方米
1升1立方米=()立方分米
1立方分米=()立方厘米
1升=()毫升
质量1千克1吨=()千克
1千克=()克
时间1秒1日=()时
1时=()分
1分=()秒
2、在进行单位之间的换算,或单名数与复名数之间的变换时,要注意什么?
练习:
1、填空:
(1)5米=()分米3.2分米=()厘米5平方米=()平方分米
3.2平方分米=()平方厘米52700平方米=()公顷
(2)4.8升=()毫升1.6千克=()克7.3米=()分米=()厘米
(3)4.2公顷=()平方米0.8平方千米=()公顷
1.05立方米=()立方分米1.45吨=()千克
(4)210秒=()分1/6日=()时1时20分=()分
2、选择:
(1)下列年份中,不是闰年的年份是()a1980年bc21
(2)25厘米×()=1米a1/2b4c40
(3)面积是1平方米的正方形的边长是()a10厘米b100厘米c10000厘米
3、判断题:
(1)第一季度有91天的这一年是闰年。
(2)一水池装了0.3立方米的水,这池水的容积是300升。
人教版小学六年级数学教学设计篇七
正比例和反比例
学习目标
1、使学生结合实际情境认识成正比例和反比例的量,能根据正、反比例的意义判断两种相关联的量是否成正比例或反比例。
2、使学生初步认识正比例的图像是一条直线,能利用给出的具有正比例关系的数据在方格纸上画出相应的直线,能根据具有正比例关系的一个量的数值看图估计另一个量的数值。
3、使学生在认识成正比例、反比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步提升思维水平。
4、使学生进一步体会数学与日常生活的密切联系,增强探索数学知识和规律的意识,养成积极主动地参与学习活动的习惯,提高学好数学的信心。
考点分析
1、两种相关联的量,一种量变化,另一种量也随着变化。如果这两种量中相对应的两个数的比的比值(也就是商)一定,这两种量就叫做成正比例的量,它们之间的关系叫做正比例关系。
如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用这样的式子来表示:=k(一定)。
2、用“描点法”可以得到正比例的图像,正比例的图像是一条直线。对照图像,能根据一种量的值,估计另一种量相对应的值。
3、两种相关联的量,一种量变化,另一种量也随着变化。如果这两种量中相对应的两个数的乘积一定,这两种量就叫做成反比例的量,它们之间的关系叫做反比例关系。
如果用字母x和y分别表示两种相关联的量,用k表示它们的积,反比例关系可以用这样的式子来表示:xy=k(一定)。
4、两个变量的比值一定,这两个变量成正比例;两个变量的积一定,这两个变量成反比例;没有上述两种关系,这两个变量不成比例。
典型例题
例1、(正比例的意义)一列火车行驶的时间和路程如下表。这两种量有什么关系?
时间/时123456……
路程/千米120240360480600720……
分析与解:(1)从上表可以看出,表中有时间和路程两种量。
(2)从左往右看,时间扩大,路程也扩大;从右往左看,时间缩小,路程也缩小。所以它们是两种相关联的量。
(3)路程和时间的比值始终不变,=120,=120,=120……这个比值就是火车的行驶速度。
通过观察和计算,我们对路程和时间的关系有两点发现:第一点路程和时间是两种相关联的量,也就是时间变化,路程也随着变化;第二点路程和对应的时间的比的比值(也就是速度)是一定的,有这样的关系:=速度(一定)。
具备了这两个条件,我们就可以得到结论:行驶的路程和时间成正比例关系;行驶的路程和时间成正比例的量。
点评:判断两种量是不是成正比例,分三步:一看它们是不是相关联的两种量;二是看一种量变化,另一种量是不是也随着变化;满足了前面两个条件,再看它们的比值是否一定。不要省去任何一步。如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用这样的式子来表示:=k(一定)。
例2、(判断是否成正比例)
练习本的单价一定,买练习本的数量和总价是不是成正比例?为什么?
分析与解:根据正比例的意义,看两个变量的比值是否一定,如果两个变量的比值一定,那么这两个变量就成正比例,反之,则不成正比例。
买练习本的数量和总价是两种相关联的量,它们与练习本的单价有下面的关系:
=练习本的单价(一定)
所以练习本的数量和总价成正比例。
例3、(正比例的图像)磁悬浮列车匀速行驶时,路程与时间的关系如下。
时间/分1234567……
路程/千米7142128354249……
(1)图中的点a表示时间为1分钟时,磁悬浮列车驶过的路程为7千米。请你试着描出其他各点。
(2)连接各点,它们在一条直线上吗?
42
35
28
21
14
7●a
0
1234567时间/分
分析与解:根据提供的各组数据描出图像的许多个点,再依次连成直线。路程和时间相对应的数的比值都是7,即速度一定,路程和时间成正比例,图像是一条直线。对照图像,可以根据时间的值估计出路程的值,也可以根据路程的值估计出时间的值,估计时允许有一定的出入。
(1)描点、连线如图。
路程/千米
42●
35●
28●
21●
14●
7●a
0
1234567时间/分
(2)在一条直线上,因为路程和时间成正比例,正比例的图像是一条直线。
(3)根据图像,列车运行2分半钟时,行驶的路程是17.5千米;行驶30千米大约需要4.3分钟。
例4、(辨析)圆的周长和直径成正比例,圆的面积和半径成正比例?
分析与解:圆的周长和直径成正比例,而圆的面积和半径却不成正比例。
可列表判断。
半径/cm123456……
直径/cm24681012……
周长/cm6.2812.5618.8425.1231.437.68……
面积/cm3.1412.5628.2650.2478.5113.04……
圆的周长和直径的相对应的数的比值都是3.14,所以圆的周长和直径成正比例。而圆的面积和半径的相对应的数的比值是变化的,所以圆的面积和半径不成正比例。
圆的周长和直径成正比例,圆的面积和半径却不成正比例。
例5、(反比例的意义)
每小时加工零件的个数/个2030406080……
加工的时间/时128643……
分析与解:(1)从上表可以看出,表中有每小时加工零件的个数和加工的时间两种量。(2)从左往右看,每小时加工零件的个数扩大,加工的时间反而缩小;从右往左看,每小时加工零件的个数缩小,加工的时间反而扩大。所以它们是两种相关联的量。(3)每小时加工零件的个数和相对应的加工的时间的积都始终不变,如20×12=240,30×8=240,40×6=240……而这个积就是这批零件的总个数。
通过观察和计算,我们发现:每小时加工零件的个数和加工的时间是两种相关联的量,每小时加工零件的个数随着加工的时间变化而变化,但无论它们怎么变化,相对应的积是一定的,有这样的关系:每小时加工零件的个数×加工的时间=零件的总个数(一定)。
所以每小时加工零件的个数和加工的时间成反比例的量,它们之间的关系叫做反比例关系。
点评:判断两种量是不是成反比例,和正比例一样,分三步:一看它们是不是相关联的两种量;二是看一种量变化,另一种量是不是也随着变化;满足了前面两个条件,再看它们的乘积是否一定,进行判断。不要省去任何一步。如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用这样的式子来表示:xy=k(一定)。
例6、(判断是否成反比例)
总产量一定,每公顷的产量和公顷数是不是成反比例?为什么?
分析与解:根据反比例的意义,看两个变量的乘积是否一定,如果两个变量的积一定,那么这两个变量就成反比例,反之,则不成反比例。
每公顷的产量和公顷数是两种相关联的量,它们与总产量有下面的关系:
每公顷的产量×公顷数=总产量(一定)
所以每公顷的产量和公顷数成反比例。
例7、(辨析)和一定,一个加数和另一个加数成反比例。
分析与解:判断两个变量是否成反比例,关键是看两个变量的乘积是否一定。很明显,和一定,两个加数的积是变化的,所以它们不成反比例。
和一定,一个加数和另一个加数不成反比例。因为它们的积不一定。
点评:有些相关联的量,虽然也是一种量变化,另一种量也随着变化,但它们不是积一定,也不是比值一定,它们就不成比例。像这样的还有:人的跳高高度和身高;减数一定,被减数和差等。
例8、(综合题1)
(1)长方形的面积一定,长和宽成反比例吗?为什么?
(2)长方形的周长一定,长和宽成反比例吗?为什么?
分析与解:判断时可以用列表的方式列举数据,也可以根据计算的公式来推导。
(1)因为长方形的长×宽=长方形的面积(一定),所以长和宽成反比例。
(2)长方形的周长=(长+宽)×2,长方形的周长一定,长+宽的和一定,但不是积一定,所以长和宽不成反比例。
例9、(综合题2)
分别说明大米的总千克数、每天吃的千克数和天数这三种量中,每两种量的比例关系。
(1)大米的总千克数一定,每天吃的千克数和天数;
(2)每天吃的千克数一定,大米的总千克数和天数;
(3)天数一定,大米的总千克数和每天吃的千克数。
分析与解:在大米的总千克数、每天吃的千克数和天数这三种量中,当某一种量一定时,另外两种量可能成正比例关系,也可能成反比例关系。可以根据数量关系式来判断。
(1)因为每天吃的千克数×天数=大米的总千克数(一定),所以大米的总千克数一定时,每天吃的千克数和天数成反比例。
(2)因为=每天吃的千克数(一定),所以每天吃的千克数一定时,大米的总千克数和天数成正比例。
(3)因为=天数(一定),所以天数一定时,大米的总千克数和每天吃的千克数成正比例。
人教版小学六年级数学教学设计篇八
1.通过复习近平面图形的变换方法,整体上进一步把握图形与变换的意义和方法。
2.会用平移、旋转的方法改变图形的位置,能按比例放大、缩小图形,培养学生的动手实践能力。
4.通过复习,进一步体会平移和旋转、放大与缩小的方法,激发学生的学习热情,培养学生的创新意识。
教学准备:教师准备教学光盘
1.提问:你知道变换图形的位置的方法有哪些?
引导学生说出变换图形的位置的方法主要是平移和旋转。
火车、电梯和缆车的运动是平移;风扇叶片、螺旋桨和钟摆的运动是旋转。与时针旋转方向相同的是顺时针旋转,方向相反的是逆时针旋转。
2.怎样能不改变图形的形状而只改变图形的大小?
引导学生说出运用放大和缩小的方法可以只改变图形的大小,而不改变图形的形状。
3.比较平移与旋转与放大和缩小这两种方法有什么联系和区别?
区别:平移和旋转不改变图形的大小,只改变图形的位置。而放大和缩小不改变图形的形状,只改变图形的大小。
联系:两种方法都不改变图形的形状。
引导学生得出:长方形、正方形、等腰三角形、等边三角形、等腰梯形、圆都是轴对称图形。长方形有2条对称轴,正方形有4条对称轴,等腰三角形和等腰梯形有1条对称轴,等边三角形有3条对称轴,圆有无数条对称轴。(教师出示相应的图片)
先让学生独立判断,然后结合学生的判断,进一步明确轴对称图形的基本含义,即把一个平面图形沿一条直线对折,折痕两边的部分能够完全重合,那么这个图形叫做轴对称图形。接着让学生画出轴对称图形的所有对称轴。
可以先让学生按要求依次进行操作,再通过交流帮助学生进一步明确相关的操作方法。
其中画出一个图形的另一半使它成为一个轴对称图形,以及画出一个图形旋转或平移后的图形,都可以先找出一些重要的点或线段,然后确定这些点或线段在另一半图形中的位置,或平移旋转后的位置,最后连一连。
要使学生认识到:决定平移后图形位置的关键是平移的`方向和平移的距离。决定旋转后图形位置的关键是旋转的方向和旋转的角度。
把一个图形按指定的比例放大,可以先在原图中找到平行四边形的底和高,算出放大后的底和高,然后画出放大后的这些线段,最后连一连。
要让学生思考按怎样的比是把原图形放大,按怎样的比是把原图形缩小。
可以先让学生讨论确定圆的位置,需要把圆向右移动几格?圆心应画在哪里?画出的圆的大小应与原来的圆大小相等。在此基础上依次解决书上的几个问题。
可以提醒学生以直角三角形的两条直角边作标准,先数一数每条直角边各有几格长,再算一算按指定的比例缩小后又应该是几格长。在此基础上,让学生动手画一画,并进行比较。求出新图形的面积与原来图形面积的比。
可以先让学生观察拼成的两个大正方形图案,说说它们分别是由哪两种瓷砖拼成的?在此基础上,鼓励学生各自按要求设计图案。要提醒学生:第一,每次只能选择两种瓷砖;第二,每种瓷砖都可以适当旋转。
展示学生设计的图案,及时组织学生互相评价。
通过复习,你对图形变换方面的知识又有了哪些新的认识?
完成《补充习题》的相关练习。
人教版小学六年级数学教学设计篇九
1、使学生认识比的意义和各部分的名称,学会比的读写方法,理解和认识比与除法、分数之间的联系。
2、培养学生比较、分析和概括等思维能力。
教学重难点
教学准备
幻灯片
教学过程设计
教学内容
师生活动
备注
一、引入新课
二、教学新课
三、巩固联系
四、作业
1、口答(幻灯出示两道除法到分数,两道分数到除法的换算题)
引入新课
2、出示两道文字题
(!)3千米是5千米的几分之几?
(2)8吨是4吨的几倍?
学生回答后,教师说明:在数学上我们把这两种类型同意为一个数与另一个数的比。今天我们就来学习比的意义。
1、学生用十分钟自习书本52到53页
2、问:通过自习你知道了哪些知识?还有哪些疑问?
3、小组内互相说,解决问题。
4、教师请个别同学说,然后师生一起探讨、研究。
5、幻灯出示例1、例2,让学生解答,以便知识得到进一步巩固。
6、说明相关注意点。如:单位、比值、名称、写法、读法......
1、书本53页练一练
2、练习十二1、2
练习十二3、4、5
人教版小学六年级数学教学设计篇十
化简比。(教材第50~51页例1)
1、能运用比的基本性质化简比。
2、理解求比值和化简比的区别。
3、理解知识间的内在联系,渗透类比思想。
重点:掌握化简比的方法。
难点:理解化简比与求比值的区别。
教学过程
一、复习引入
1、把下面的分数化为最简分数。(课件出示题目)
4/86/3012/1814/56
点名学生回答,并说一说什么是最简分数。
2、六二班共有学生50人,今天出勤人数为46,总人数与出勤人数的比是多少?(课件出示题目,点名学生回答)
3、师:比的基本性质是什么?
4、引出新课。
师:为了使数量间的关系更明确,我们经常要应用比的基本性质,把比化成最简单的整数比。这就是这节课我们要一起学习的内容。
二、学习新课
1、认识最简单的整数比。
师:谁知道什么样的比可以称作最简单的整数比?
引导学生联系最简分数的概念,讨论什么叫做最简单的整数比。
教师根据学生的回答进行归纳:最简单的整数比要满足两个条件,都是整数,二是比的前项和后项的公因数只有1。
指名学生举出几个最简单的整数比。
人教版小学六年级数学教学设计篇十一
“算出它们的普及率”。
1、使学生能应用百分数的知识计算出本班同学家庭的电话、电脑的普及率,并能进行简单的比较、分析和估计发展趋势,培养学生比较、分析等思维能力和实践能力。
2、使学生体会和感受数学与生活的联系,逐步培养学生应用数学知识的意识和能力。
3、使学生认识到改革开放后我国人民生活水平迅速提高,增强热爱社会主义祖国的思想感情。
情景一:
师:同学们,老师昨晚想通知大家今天带计算器,可以用什么方法呢?
生1:可以打我们家的电话,或打爸爸、妈妈的手机。
生2:发电子邮件。我的e-mail是……
生3:您只要通知我一个人,然后我去通知5个人,被通知的同学再分别通知5个同学,这样又快又好。
师:我班同学家里有电话的很多,有电脑的也不少。今天,我们来调查一下,我班谁家已安装了电话,谁家购买了电脑。
生1:老师,不用调查了。我这儿有全班同学家的电话。我班100%同学家里有电话。
生2:我们可以调查哪些同学家里有手机或小灵通这些移动电话,这样方便联系。
师:(生1)李××,你真是一个有心人。100%同学家里有电话,可以说成电话的普及率是100%。在我们的生活里,经常要计算和使用“普及率”。这节课,我们就来计算一些普及率。如家庭移动电话普及率、电脑普及率等。
评析在这一环节中,能及时改变原来的教学预设,给了学生一次展示的机会,其意义将是深远的。
情景二:
学生分组统计后汇报统计和计算的百分率结果。
师:我班同学家庭移动电话的普及率是多少?你是怎样计算的?
生1:移动电话的普及率是96.6%,就是求出已有移动电话的56个家庭数占全班58个家庭数的.百分之几。
生2:老师,我觉得应说“大约是96.6%”。
生3:我班同学家庭有电脑的是39户,普及率大约是67.2%。
师:你能根据计算的结果推算出本地区电话和电脑的普及率大约是多少吗?
生1:我认为我们南通市居民的固定电话普及率接近100%,移动电话的普及率大概是95%,电脑的普及率低一些,可能有60%。
生2:我不完全同意你的观点。不能认为我班同学家庭电话普及率是100%,就认为南通市居民的固定电话普及率接近100%,你要考虑到南通市还有比较贫困的地方。应该说,学田地区的电话普及率接近100%。
生3:我同意刚才同学的观点。因为我班同学大部分住在学田新村,如果要调查南通市居民的固定电话普及率,还应该到其他学校或新村去调查。
师:你想得真周到,你认为应怎样调查呢?
生3:我想在南通市的东西南北中各确定一个学校或新村去调查统计才准确。
师:也就是说,推算和估计普及率要考虑我班同学家庭的经济状况在南通地区处于什么水平。
评析在这个过程中,让学生尽情地展示自己最为真实的思想,不必考虑教师希望他说什么,而在意“我”自己的观点,是否准确,是否独特,是否有自己的个性。教师的鼓励与反馈“有利于创造活动的一般条件------心理的安全和心理的自由”。学生在心理安全的环境中,才能大胆猜想,质疑问难,发表不同意见。
情景三:
师:通过这一次实践活动,你有哪些体会?
生1:我懂得了通过调查统计后,能求出某种东西的普及率。
生2:我知道电脑的普及率比电话的普及率低,我们可以把调查的结果反馈给电脑商,让他们加强宣传的力度,多搞促销活动。
生3:我知道了我们学习的统计和百分数的知识很有用。
生4:我觉得生活水平提高了,因为我奶奶说,以前人憧憬“楼上楼下,电灯电话”这样的好日子,现在我们不但有了电灯电话,还有了电脑,有人家还有了私家车呢!
生5:……
师:我们还可以进行哪些有意义的调查活动?
生1:我班同学戴眼镜的很多,可以调查我班的近视率,或全校的近视率,引起大家的重视。
生2:我经常看到有同学在校外的小摊买零食。我想调查一下我班同学每月零花钱的用法,到底有多少钱买学习用品,多少钱买零食。
生3:我想调查有多少人还知道张思德,现在许多同学知道“小燕子”赵薇,不知道英雄张思德了。
生4:我想调查南通市有多少贫困家庭。
生5:……
评析学生是课堂的主体,给学生提供参与的机会,凡是学生能操作的,能颔悟到的,教师绝不包办代替。不刻意要求学生与教师思维一致;不刻意要求个别学生给出的答案对全班具有代表性。数学教学应当培养学生的发现、提问、分析和解决问题的能力。
数学课程标准的基本理念之一是“学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。”这堂实践活动课是在学生初步学习了百分数的意义和应用后安排的。活动内容来源于生活,能使学生感受到数学就在身边,让学生感受到数学与生活是密不可分的。小学生的思维正逐渐从具体形象思维向抽象思维过渡,但这并不意味着学生就不需要具体形象思维。数学来源于生活,但高于生活,具有一定的抽象性和逻辑性。著名数学家华罗庚说:宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日用之繁,无处不用数学。
对学生来说,如果始终是被动地接受,像成人一样地学习,他们就会觉得学习数学是索然无味的,他们的主动性、积极性、创造性会渐渐地沉睡起来,他们会渐渐地疏远数学。实践活动使学生从被动型向主动型转变,重复性向创新性过渡,有利于学生个性的发展,有利于学生创新意识和实践能力的培养。生动有趣的实践感受使学生觉得数学并不枯燥。让儿童在自己的世界里用自己喜爱的方式探究数学,在探究中体验数学、享受数学。当数学与儿童的现实生活密切结合时,数学才是活的,富有生命力的。
提倡学生用自己的话说收获,而不是仅仅重复教师的讲授,面对着具有鲜活生命和灵动个性的学生,教师更多地关注学生在数学活动中表现出来的情感与态度,应当给予积极的评价,为学生提供自由表达自己思想、表述自己观点、实现自己思维飞跃的舞台,帮助他们认识自我,建立学习自信心,教师成为学生学习过程中的欣赏者、支持者和引领者。
如何正确认识数学实践活动,如何上好数学实践活动课,数学实践活动课以怎样的模式呈现,是我们迫切需要解决的问题。我感觉到这是极其新鲜而富有挑战性的。在探索中,我了解到实践活动是“做数学”的具体表现,它是以解决某一实际的数学问题为目标,以引起学生的数学思维为核心的一种新型的课程形态,让学生在解决具体问题的过程中,对数学本身的探索中理解、掌握和应用数学。实践活动是一种研究性学习,学生应经历一个收集信息、处理信息和得出结论的完整过程。这节课给我留下的启迪是:当你真正将新课程的理念落实到具体的教学行为时,学生会还你一个惊喜!
人教版小学六年级数学教学设计篇十二
1、通过图形直观的表征,让学生更加清晰求的都是同一个阴影部分的面积。从而让学生直观地看到了加减法算式之间的联系,越来越接近1,感悟极限思想。
2、培养学生利用图形来分析问题、解决问题的意识和能力。
3、重视利用图形来分析题意,理清思路,提高解决问题的能力
计算出结果。
1、教学例2
计算
从第二个数开始,每个数是前一个数的
我一个一个加下去看看,答案好像有点规律。加下去,等号右边的分数越来越接近于1。
可以画个图来帮助思考。用一个圆或一条线段来表示“1”。
从图上可以看出,这些分数不断加下去,总和就是1。
2、渗透极限思想。
如果不停地加下去,
1、猜一猜“和”是多少?
2、请用“形”来解释这个结果。
3、反馈:
如果不停地加下去,空白部分会怎么样?
那的结果怎么样?(无限接近1。)
运用知识
你能用所学知识解决下列问题吗?
我是这样想的
所以原式的结果是1。
作业:第110页练习二十二,第3题、第4题、第5题。
人教版小学六年级数学教学设计篇十三
教学内容:
课本p10~11例6、例7和试一试、练一练以及练习三的第1-4题。
教学目标:
1.引导学生通过操作活动,初步认识体积和容积的意义。
2.使学生在活动中进一步积累空间与图形的学习经验,发展空间观念和数学思考。
3.使学生进一步激发学生探究立体图形的兴趣。
教学重点:
通过操作活动,初步认识体积和容积的意义。
教学难点:
通过操作活动,初步认识体积和容积的意义。
教学准备:
课件
教学过程:
一、激发兴趣、打入新课
谈话:同学们生活中的物体有大有小,看,你能比较这这两个物体的大小吗?(出示一个苹果和一个大枣)你是怎样比较的?今天我们一起学习有关物体的大小的知识——体积和容积(揭示课题)。
二、动手操作、自主探究
认识体积
1.出示两个有同样多水的相同玻璃杯,让学生看清两个杯子里水面同样高。
(1)先在一个杯子里放入一个大枣,让学生说明水面有什么变化。
提问:水面为什么会上升?(大枣占有了水中一块地方)
指出:大枣占有一块地方,我们就说大枣占有一定的空间。
因为大枣占有空间,把水往上挤,所以水面上升了。
(2)在另一个杯子放入荔枝。
(3)提问:现在水面有什么变化?说明了什么?
再比一比,哪个杯子里水面上升得高?为什么这个杯子里的水面会上升得高一些?
指出:因为荔枝大一些,所以这个杯子里水面上升得高一些,说明这一石块所占的空间大。
提问 :谁来说一说,哪一个水果所占的空间大,哪一个水果所占的空间小?
让学生说出,大的水果所占的空间大,小的水果所占的空间小。
指出:从刚才的实验中我们可以看出,物体不仅占有空间,而且占有的空间还有大有小。也就是说,大的物体所占的空间大,小的物体所占的空间小。
板书:物体所占空间的大小叫做物体的体积。
3.说能说说生活中两种物体体积的小。(说完整的话)
认识容积
出示两个大小不同的长方体纸盒,比较一下哪个体积大一些。(例7)
(1)学生比较并说明理由。
指出:书盒能容纳书的体积就是书盒的容积。也就是说容器所能容纳物体的体积,叫做这个容器的容积。
(2)举例说说生活中的两种容器的容积。
三、巩固提升
1.完成练一练
第1题可以让学生直接判断,然后教师可以操作演示,在让学生说说溢出的水的体积分别相当于哪个物体的体积。
2、第2题可以让学生先判断,然后再根据容积的含义进行解释。
3.完成练习五第1题
让学生说明三维饼干的体积为什么相等。使学生明确:因为它们都是有同样大小的8盒饼干堆成的,所以它们所占的空间大小也就一样。
4.完成练习五第2题
5.让学生明白杯子装的多说明容积大,杯子装的少的说明容积小。
6.第3题可让学生按要求操作,让后同桌交流摆的是否正确。
7.第4题可以让学生分别说说体积和容积分别指的是什么,有什么不同,再回答问题,并说明理由。
8.第5题中的三个图形分别表示相应的长度单位、面积单位和体积单位。这是它们的不同点。而1平方厘米是边长1厘米的正方形,1立方厘米是棱长1厘米的正方体,这两个概念都与1厘米有关。这是三个图形的内在联系。
四、全课小结
今天这节课我们学习了什么?你的收获大吗?你觉得学好这些知识有什么用吗?
五、布置作业
【本文地址:http://www.xuefen.com.cn/zuowen/6946536.html】