通过写心得体会,我们可以更好地理解自己的优点和不足,进而改进自己。写心得体会可以加入个人感受和情感色彩,做到更有感染力。以下是小编为大家收集的心得体会范文,供大家参考,希望对大家的写作有所启发。
圆柱的体积心得体会篇一
教学圆柱的体积前,我先和学生一起温习了长方体和正方体的体积公式,重点引导学生认识到长方体和正方体都可以用底面积乘高进行计算。
对于圆柱的体积的计算公式,有很多学生在课前已经看过书本了,很明确的知道了是用底面积去乘高进行计算。对于老师来说,学生已经轻而易举的知道了最终的结论,而且结论也相当的好记,在这样的情况下如何去进行新课的教学。
所以,一开始,我并没有让学生去猜测圆柱的体积计算公式,而且凭空猜测圆柱的体积公式也是无意义的。基于这样理解教材的角度出发,我按照了书上的例题直接展开教学。
出示了三个等低等高的长方体、正方体和圆柱图形,提出问题:长方体与正方体的体积相等吗?为什么?通过第一问进一步让学生认识到长方体和正方体的体积都可以用底面积乘高来计算。
提出问题:猜一猜,圆柱的体积与长方体、正方体的体积相等吗?用什么方法可以验证?
学生通过小组讨论交流,有几种方法:溢水法,还有的是把圆柱体进行分割。
教师提示:圆可以转化成长方形进行计算面积,圆柱可以转化成长方体计算体积吗?
这时,我请学生将准备好的萝卜(近圆柱形)进行分割,拼接。将圆柱转化成了一个近似的长方体。
通过交流指出圆柱体变成了近似的长方体,形状发生了变化,但是体积并没有变化,即拼成的'近似长方体的体积等于圆柱的体积。
引导学生观察:在转化的过程中,拼成的近似长方体与圆柱体的各个量之间的关系。
通过讨论和交流,让学生充分谈谈,在转化中,哪些量发生了变化,哪些没有发生变化。
学生通过实践、探索、发现,完成将未知的知识利用知识经验转化为熟悉的知识。这样得到的知识是“活”的,这样的知识对学生自身智力和创造力发展会起到积极的推动作用。所有的答案也不是老师告诉的,而是、学生在自己艰苦的学习中发现并从学生的口里说出来的这样的知识具有个人意义,理解更深刻。
圆柱的体积心得体会篇二
1.教学内容。
本节课是苏教国标教材六年小学数学(下册)第二单元25页的例4教学。内容包括圆柱体的体积计算公式的推导和运用公式解决一些简单的实际问题。
2.本节课在教材中所处的地位和作用。
《圆柱和圆锥》这一单元是小学阶段学习几何形体知识的最后部分,是几何知识的综合运用。学好这部分知识,为今后学习复杂的形体知识打下扎实的基础,是后继学习的前提。
3.教材的重点和难点。
由于圆柱体积计算是圆锥体积计算的基础,因此圆柱体积和应用是本节课教学重点。其中,圆柱体积计算公社的推导过程比较复杂,需要用转化的方法来考虑,推导过程要有一定的逻辑推理能力,因此,等积转化数学思想的培养以及观察比较新旧图形的联系,做出合请推理,从而推导圆柱体积公式的过程是本节课的难点。
4.教学目标。
(1)让学生经历观察、猜想、操作、验证、交流和归纳等数学活动过程,探索并掌握圆柱的体积公式,初步学会应用公式计算圆柱的体积,并解决相关的简单实际问题。
(2)使学生进一步体会“转化”方法的价值,培养应用已有知识解决实际问题的能力,发展空间观念和初步的推理能力。
(3)通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。
二、说教法。
从学生已有的知识水平和认知规律出发,经过观察、比较、猜想、思考、、验证等方法,自主探究,合情推理。
三、说教学过程。
本节课的教学过程分为六个教学环节,主要包括:
1、复习引导,揭示课题。
明确已有的圆柱的特征、体积概念的认识、平面图形公式的研究方法等知识水平,建立新的学习和探究欲望。
2、观察比较,建立猜想。
在观察长方体、正方体、圆柱体等底等高时,猜想他们的体积是否都想等?猜想后强调“可能“相等,因为是猜想的'。圆柱的体积是不是等于底面积乘高,我们还没有研究出公式来,所以这里只能是一种没有经过验证的猜想,只能用“可能”相等,没有经过验证的观点,不可以用“一定“两个字,让学生体会数学的严谨性。
3、激励思考,提出验证的方法。
有没有一个可以借鉴的好的研究方法,来证实等底等高的圆柱体与长方体、正方的体积有可能相等呢?或者说圆柱的体积也有可能等于底面积乘高呢?学生可以通过回忆平面图形面积计算公式时的推导方法,获取一些思考。
4、自主探究,合情推理。
在学生回忆的基础上,可以提出使用“切割—转化—观察—比较—分析—推理”等方法,四人一组,来讨论下面的问题:
小组讨论纲要:
(1)用方法,把圆柱体转化成了体。
(2)在这个转化的过程中,变了,没有变。
(3)通过观察比较,你发现了什么?
(4)怎么进行合情推理?
(5)怎样用简捷的形式表示你推导出来的公式呢?
把课堂还给学生,教师的角色是组织和引导。
5、学以致用,解决实际问题。
应用所推导出来的圆柱体积计算公式,解决一些生活中的简单实际问题,理解生活中处处有数学,体会数学的应用价值和广泛领域。
6、全课小结,提升认识水平。
在研究圆柱体积公式的时候,我们运用了哪些方法?这里的切割是指切割旧图形,还是切割要研究的新图形?转化是指转化成已学过的旧图形,还是转化成没有学过的新图形?观察比较什么?怎样分析推理?这里蕴藏着什么样的数学思想?最后问大家这样一个问题,发明电灯重要,还是使用电灯重要,哪个更能造福人类,造福子孙万代?科学家、发明家就是这样诞生的,他们善于猜想、善于发现,敢于探究。如果我们将来想成为科学家,我们必须具备这样的品质。通过这节课的学习,你敢不敢大胆去尝试、去探究圆锥体的体积计算公式,或是更广泛的研究上下底面都是相等的三角形、上下底面都是相等的正多边形等一些直棱柱的体积计算方法呢?在研究中,你会发现,数学很美,它是思维的体操,有兴趣的同学,可以把你研究的成果告诉老师一起分享。
四、说教学反思。
在本节课的教学中,我主要让学生自己动手实践、自主探索与合作交流,在实践中体验,在实践中提升,从而获得知识。讲课时,我再利用教具学具和课件双重演示,让学生通过眼看、脑想、讨论等一系列活动后,用自己的语言说出圆柱体体积计算公式的推导过程。我的第一层次是复习。通过复习来导入新课。第二层次,推导圆柱体的计算公式。在学生自学的基础上,亲自动手切拼,把圆柱体转化成近似的长方体,找出近似长方体与原圆柱体各部分相对应部分,从而推出圆柱体积计算公式。用知识迁移法,把旧知识发展重新构建转化为新知识,使学生认识到形变质没变的辩证关系,培养学生自学能力,动手能力,观察分析的和归纳能力。第三层次,针对本节所学知识内容,安排适度练习,由易到难,由浅入深,使学生当堂掌握所学的新知识,并通过练习达到一定技能。
这节课,在设计上充分体现以教师为主导,学生为主体,让学生动手、动脑、参与教学全过程,较好地处理教与学,练与学的关系。寓教于乐中学会新知识,使学生爱学、会学,培养了学生动手操作能力、口头表达能力和逻辑思维能力,让学生充分体验成功的喜悦。
当然,由于经验不足,在教学过程中还有很多环节没有处理好。恳请大家提出宝贵的意见和建议。
圆柱的体积心得体会篇三
作为一种基本的几何图形,圆柱在生活、工作中随处可见,它不仅被广泛应用于建筑、机械和工程领域,也是其他学科如数学、物理等基础内容。在长时间的学习、使用过程中,我深刻地体会到了圆柱的重要性和价值,下面我将就圆柱的几个方面,谈一下我对它的心得体会。
一、定义及特征
圆柱是一个正抛物面绕着它的对称轴无限旋转而成的几何体,由顶面、底面以及侧面组成。圆柱的顶面和底面都是圆形,而侧面是一条平行于底面的矩形,圆柱的·侧面积等于两底面积加上面积。
圆柱在几何学中具有非常简单、明显的特点,也是我们较为容易理解和掌握的图形之一。在实际应用中,圆柱的简单性、规整性往往是对于需要加工、设计或其他方面的处理来说最基本、最经典的要求。
二、应用领域
圆柱作为一种基础图形,其在实际生活和工作中应用非常广泛。特别在建设领域,以圆柱为形状的构件,比如柱子、水管、烟囱、圆柱形的塔等都是必不可少的。此外,圆柱还在机械工业中被用于生产轴、套管等关键零部件,尤其是工业制造中需要涉及旋转、滚动或轴承的产品,圆柱的应用更为广泛。
三、数学运用
在数学学科中,圆柱通常作为一些概念或公式的具体应用,例如球面角、体积公式等。由于圆柱具有良好的对称性,而且其几何性质比较简单,所以在许多数学问题的解决过程中,它通常都能起到重要的辅助作用。
四、几何方面的启示
圆柱在形状上为一种规则、对称、简单的几何体,可以引出许多几何问题和理论。例如,在与圆柱有关的几何问题中,我们可以思考有关圆柱的立体角、弧、面积和体积等问题,从而深化对于几何概念的理解和认识。另一方面,圆柱对于我们的观察和感知也有一定的启示作用,我们可以通过观察圆柱与其他几何体之间的关系,对于几何空间的把握和理解有更为深刻的认识。
五、实际操作体会
在实际操作中,圆柱思维方式的运用也是非常重要的。在工业设计、机械加工、建筑工程等方面,遵从圆柱的几何原理是非常基础的要求。例如,在建筑的柱子、桥梁等重要构件设计中,充分考虑到圆柱的稳固性、美观性是非常必要的;在机械加工过程中,因需要取得高精度的表面,而充分保证了圆柱的线性与对称性,从而得到更好的加工产品。
总之,圆柱在几何学、物理学、数学学科中起到了非常特殊的地位和作用,其作为一种基本、简单、规则的几何体,给我们带来了许多化繁为简、去伪存真的思想启示。在实际应用中,准确、优秀地运用圆柱思维模式,则可以使我们更好地解决各种复杂的问题,并取得优异的效果。
圆柱的体积心得体会篇四
数学无处不在,身边就有许许多多的数学,数学在生活中是不可缺少的,让我们一起来寻找数学,探索数学。
某天的数学课上,学的是圆柱的体积。上课前,有一些人已经知道了圆柱的体积是底面积乘高,但是但老师追问为什么是这样算时,大家都愣住了。经过我们的`探究,我们知道了圆柱体积的推导有以下几种方法。
方法一:你们应该都知道长方体的体积是长乘宽乘高吧,长乘宽就等于底面积,所以长方体的体积是底面积乘高。然后我们把圆柱平均分成若干份,拼成一个近似的长方体,这个长方体的底面积就相当于圆柱的底面积,这个长方体的高就相当于圆柱的高,所以圆柱的的体积是底面积乘高。
方法二:用硬币,我们在脑海里把硬币想象成平面,然后把硬币叠成圆柱,硬币的一个面就相当于是它的底,把底的面积乘硬币的个数就是底面积乘高也就是体积了。
方法三:首先我们回忆以下圆面积的推导过程,就是把一个圆平均分成若干份,然后拼成一个近似的长方形。
根据观察,原来圆柱的底面积与长方体的底面积是相等的,圆柱的高与长方体的高也是相等的。因此得出圆柱的体积与长方体的体积也相等。
生活中处处有数学,只要你认真探索就会发现许多奥秘。只要你认真思考、探索就一定能发现。
圆柱的体积心得体会篇五
第一段:介绍圆柱体体积的概念和重要性(字数:200)。
在一年级数学课堂上,我们学习了很多有趣而实用的知识。其中,我最近学习获取了有关圆柱体体积的知识。圆柱体是一个非常常见且有趣的几何体,它的体积是我们计算物体容量的重要基本概念之一。体积决定了物体能够容纳多少东西,理解和掌握圆柱体体积的概念对于我们在日常生活中计算容量,如液体容器、饭盒等都非常重要。
第二段:认识圆柱体的形状和计算公式(字数:250)。
在学习圆柱体的体积时,我们首先从认识圆柱体的形状开始。圆柱体由两个平行和相等的圆底面以及连接两个底面的侧面构成。通过观察和实践,我们发现无论底面的大小如何改变,圆柱体的体积都与底面的面积成正比。我们学习到了计算圆柱体体积的公式:体积=底面积×高。高的计量单位可以是厘米、米等等,只要保持与底面的计量单位一致即可。例如,如果底面的半径是3cm,高是5cm,那么圆柱体的体积就是3.14×3×3×5=141.3cm3。
第三段:探索圆柱体体积的应用场景(字数:250)。
在学习圆柱体的体积时,我们还通过实例探索了它在日常生活中的应用场景。我们发现圆柱体的体积计算可以应用到很多场景中,比如计算水杯、玩具箱、沙桶等容器的容量。我们还了解到,许多包装盒或者瓶子的体积也都可以用圆柱体的体积来计算。此外,我们甚至可以将圆柱体的体积概念应用到测量建筑物或者地球上的湖泊、河流等体量很大的物体时。了解和掌握圆柱体体积的应用场景,让我们在日常生活中更加灵活地运用这一知识。
第四段:困难和难点的克服(字数:250)。
在学习圆柱体的体积过程中,我们遇到了一些困难和难点。对于初学者而言,一开始可能对圆柱体的体积定义和计算公式理解起来有些困难。此外,某些情况下需要对圆柱体的形状进行近似估算,以便近似计算其体积。然而,通过老师的悉心教导和同学们的积极合作,我们成功地克服了这些困难。通过多次实践和练习,我们逐渐掌握了圆柱体体积的概念以及如何准确地计算它。与此同时,我们也体会到了坚持不懈和相互帮助的重要性。
第五段:总结学习圆柱体体积的收获(字数:250)。
通过一年级关于圆柱体体积的学习,我们不仅掌握了圆柱体形状和体积的相关概念,还能够灵活应用它们解决日常生活中容量计算的问题。我们学会了使用计算公式来准确地计算圆柱体的体积,并且在实践中积累了宝贵的经验。此外,通过克服困难和与同学合作的过程,我们也体验到了团队合作和坚持不懈的重要性。这些收获将对我们今后的数学学习和生活中的实际问题解决起到积极的促进作用。
通过一年级关于“圆柱体体积”的学习,我们不仅掌握了圆柱体的形状和体积的概念,也能够灵活应用该知识解决实际生活中的容量计算问题。我们学会了使用计算公式准确计算圆柱体的体积,并通过克服困难和与同学的合作,体会到了团队合作和坚持不懈的重要性。这些收获将对我们今后的数学学习和实际问题解决起到积极的促进作用。通过对圆柱体体积的学习,我们不仅提高了数学素养,也培养了我们的逻辑思维和实际问题解决的能力,这不仅对我们的学习有帮助,也对我们未来的生活有实际应用的意义。
圆柱的体积心得体会篇六
作为一名教师,我深知培养学生的数学素质对他们未来的学习和生活至关重要。在数学教学中,圆柱体体积是一个常见的概念,也是学生容易混淆和理解困难的内容之一。在教授圆柱体体积的过程中,我通过不断总结和归纳,积累了不少心得体会。
第二段
引入圆柱体体积的概念时,我喜欢通过直观的实例来引发学生的兴趣和理解。我会选取一些熟悉的圆柱体,如铅笔盒、水杯等来展示,说明圆柱体的特点和应用场景。让学生通过观察和模拟实际操作,深入理解圆柱体体积的意义和计算方法。这种启发式的教学方法对学生而言是非常直观和易于理解的。
第三段
在教学过程中,我还注重培养学生的动手能力和思维能力。为了让学生更好地掌握圆柱体体积的计算方法,我经常设计一些小组讨论活动和实践课堂。学生可以分组合作,互相交流和提出问题,共同探讨解决问题的方法。这不仅锻炼了学生的动手操作能力,也培养了他们的思维和合作能力。
第四段
另外,我还注重激发学生对数学的兴趣和审美情怀。在讲解圆柱体体积的公式时,我会借助一些有趣的数学题目和实例,引导学生发现数学之美。比如,通过一个有关喷泉水柱高度的问题,让学生明白数学不仅仅是一种工具,还是一门高尚的艺术形式。这样的启发方法,能够使学生更加主动地参与到数学学习当中,提高他们的学习积极性。
第五段
总结起来,教授圆柱体体积的经验使我更加坚信,教育是一门艺术。只有把教学与实际生活结合,重视学生的兴趣和思维能力的培养,才能够帮助学生掌握知识,提高他们的数学素养。因此,在教学中,我会坚持不断创新和总结,不断寻求更好的教学方法,以促进学生的全面发展,为他们的未来打下坚实的数学基础。
圆柱的体积心得体会篇七
面对复习的问题,学生回答的很好,长方体的体积=长×宽×高,当我指着长方体的底面时,学生就说,长方体的体积=底面积×高。学生对于圆的面积计算公式的的推导记忆犹新,这是很值得我高兴的。面对本课的重点解决问题,我满怀信心(两个复习问题的铺垫,学生会首先想起来把圆柱体按照圆的面积推导过程一样,来等分圆柱体),开始引导学生独立思考,怎样计算圆柱体的体积?正当大家苦思冥想的时候,一只手举得高高的:老师,我想出来一种。又是他,每次回答问题总是第一个举手,把别人的风头都给抢去了,他是一个爱表现的学生,为了不影响其他学生思考,每次我总是压一压他的积极性。给大家留一点思考的时间,等一会再说你的方法,谁知道这个积极分子不容我把话说完,已经拿着自己的圆柱体跑到讲台上了,(哎,让我怎么评价他呢,耐不住性子啊,再稳重一些多好啊?):我是这样想的,这是一个圆柱体的生日蛋糕,我想把它横着切成一个个圆片,分给你们吃。霎时间,下面的同学都笑了,过了一会,一个学生提问:切蛋糕,和圆柱体的体积有什么关系啊?有啊,这个圆柱体蛋糕的体积就是每一个圆片的面积乘上圆片的个数。这样解释完,下面的学生有的在笑,有的在议论,还有的再思考。我想想了,这是我该出手的时候了:你给大家解释一下,圆片是什么?圆片的个数又是什么?圆片就是圆柱的底面积,圆片的个数就是圆柱的高。
这种推导圆柱体体积的'计算方法,是出乎我意料之外的,因为,解决问题前,已经复习了长方体体积计算方法与圆的面积的推导方法,都是为把圆柱体进行等分转化成长方体体积来推导做铺垫的。谁曾向,这种用堆的过程来说明“底面积×高”计算圆柱体体积的道理,实际是积分思想,这是要到中学才学习的,学生不好理解的,竟然跑到预想方法之前了。真是计划不如变化快啊。课堂上的精彩总是不期而至啊。试想,如果,刚开始他举手,我就像以往一样”压一压他,让他和其他学生同步思考,说不定,这个想法在他脑海里转瞬即逝,那么这个精彩的火花就不会在课堂上呈现。
由此感悟到,课堂上,要给学生即兴发言的机会,及时的捕捉学生的思维灵感,精彩就会不期而至。《圆柱体的体积》这一课我学到了很多东西。
圆柱的体积心得体会篇八
教学目标:
1、通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确地计算圆柱的体积和容积。
2、初步学会用转化的数学思想和方法,解决实际问题的能力。
3、渗透转化思想,培养学生的自主探索意识。
教学重点:
教学难点:
教学过程:
一、复习。
1、长方体的体积公式是什么?正方体呢?(长方体的体积=长×宽×高,长方体和正方体体积的统一公式“底面积×高”,即长方体的体积=底面积×高)。
2、拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么,怎么求。(删掉)。
3、复习圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆和所拼成的长方形之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。
二、新课。
(1)用将圆转化成长方形来求出圆的面积的方法来推导圆柱的体积。(沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块,把它们拼成一个近似长方体的立体图形——课件演示)。
(2)由于我们分的不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。(课件演示将圆柱细分,拼成一个长方体)。
反复播放这个过程,引导学生观察思考,讨论:在变化的过程中,什么变了什么没变?
长方体和圆柱体的底面积和体积有怎样的关系?
学生说演示过程,总结推倒公式。
(3)通过观察,使学生明确:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。(长方体的体积=底面积×高,所以圆柱的体积=底面积×高,v=sh)。
圆柱的体积心得体会篇九
1.经历认识圆柱体积,探索圆柱体积计算公式及简单应用的过程。
2.探索并掌握圆柱体积公式,能计算圆柱的体积。
3.在探索圆柱体积的过程中,进一步体会转化的数学思想,体验数学的探索性和挑战性,感受数学结论的确定性。
教学重点。
圆柱体积计算公式的推导过程。
教学难点。
圆柱体积计算公式的灵活运用。
教具准备。
教学过程。
一、复习铺垫。
1.请同学们回忆一下什么是物体的体积。
2.(出示幻灯片长方体)这是什么体?怎样计算它的体积?
同样的方法复习正方体。
3.长方体和正方体的体积可以用一个统一的公式来表示是怎样的?
[复习旧知,为后面推导圆柱体积计算公式做铺垫]。
二、情境导入。
师:同学们,你们都知道自己的生日吗?你们都喜欢过生日吗?
生:喜欢。
师:为什么?
生:有礼物,还有生日蛋糕。
师:今天是亮亮和爷爷的生日,你们观察一下书的图片,发现了什么?
生:亮亮的一家在一起过生日,亮亮和爷爷都有一个生日蛋糕,而且爷爷的生日蛋糕大,亮亮的生日蛋糕小。
生:亮亮和爷爷的生日蛋糕都是圆柱形的。
师:同学们观察得都很仔细,那么你们说说,爷爷的生日蛋糕,意味着什么?联系我们刚学过的.知识来说。
生:生日蛋糕大,就意味着它的体积大,生日蛋糕小,就是它的体积小。
师:你们真棒!那么想不想知道两个生日蛋糕的具体大小吗?今天我们就来探讨一个圆柱体的体积公式。
三、推导、论证。
1.拿出两个不易分辨体积大小的茶叶筒。
师:你们能说出哪个茶叶筒体积大吗?怎样比较两个茶叶筒体积的大小呢?
让学生思考和交流。
2.大家看圆柱的底面是一个圆形,在学习圆面积计算时,我们是把圆转化成哪种图形来计算的?(演示课件:圆转化成长方形)。
4.师生合作。用教具把圆柱等分成16份,拼成一个近似的长方体。再把圆柱等分32份同样拼成一个近似长方体。观察两次等分的相同点和不同点:
生:相同点:都可以拼成一个近似的长方体。
不同点:等分的份数越多,就起接近一个长方体。
5.同学们观察一下,拼成的长方体和圆柱体有什么关系?你们发现了什么?
6.学生汇报讨论结果,同时板书。
生:近似长方体的底面就是圆柱的底面积;近似长方体的高就是圆柱的高;近似长方体的体积就是圆柱的体积。
7.根据学生的发现引导学生推导出圆柱的体积=底面积×高,用字母表示v=sh。
四、实际应用。
1.要求圆柱体积,必须知道哪些条件?(生:底面积和高)。
2.如果已知底面积和高,你们会求圆柱的体积吗?
3.学生读题,特别提示统一单位。学生自主计算后全班交流。
4.反馈练习。p31页练一练1。
练一练2:理解题意,使学生理解方钢的体积与锻造后的圆柱形体积相等,再自主解答。
五、家庭作业。
测量你身边的圆柱的体积并向大家汇报你是怎样测量的?比一比看谁的方法最好?
圆柱的体积心得体会篇十
1.使学生理解和掌握圆柱的体积计算公式,能运用公式计算圆柱的体积、容积,解决一些简单的实际问题。
2.渗透极限思想,发展学生的空间观念。
3、培养学生仔细计算的良好习惯。
1、圆柱体体积的计算
2、圆柱体体积公式的推导
1.解答下面各题
(1)圆的半径是2厘米。圆的面积是多少平方厘米?
(2)一个长方体,底面积是20平方米,高是2米,体积是多少?
2.导入
我们以前学过了长方体、立方体的体积的计算方法,都可以用公式v=sh进行计算,圆柱体的体积又该怎样计算呢?这节课我们一起来研究圆柱体体积的计算方法。(揭示课题)
1.公式推导
(1)自学课本,初步感知圆柱是怎样转化成长方体的,让学生去发现两柱体之间的联系。
(2)操作研讨:演示操作,讨论:拼成的长方体跟圆柱体有什么异同点?
异:长方体变成圆柱体。同:体积、底面积、高都相同。
(3)比较归纳
在自学、操作、观察、讨论的基础上得出:
圆柱体体积=圆柱底面积圆柱的高
v=sh
2.公式应用
(1)例1.读题,学生独立解答,板演、反馈,说说列式依据与应注意的问题。(单位)
类似题练习:
书本试一试和练一练
请同学板演计算的过程,并说明列式的依据.同学之间评.
(3).深入练习,书本第5题.
(4)实际应用:
测量生活中常见圆柱物体:茶叶罐、搪瓷杯,学生自由选择。量底面直径和高,并计算它的体积.
回顾学习全过程,知道求圆柱体积所需要的条件。质疑问难。
作业本一面。
圆柱的体积心得体会篇十一
活动目标:
1、初步认识圆柱体的基本特征,探索生活中与圆柱体相似的物体。
2、激发幼儿探索圆柱体秘密的兴趣。
活动准备:
1、知识经验准备:
(1)请家长引导幼儿观察生活中与圆柱体相似的物体。
(2)已认识过球体。
2、材料准备:
(1)提供圆柱体实物若干,如易拉罐、茶罐、积木、固体胶等,准备印泥、纸张。
(2)一样大小的.硬币若干、透明胶、长方形纸张、固体胶、橡皮泥。
活动过程:
一、幼儿在活动室寻找各种圆柱体实物并自由探索。
1、它们与球有什么不同?
2、把圆柱体立在桌上和侧放在桌上会出现什么不同的现象?
3、把圆柱体上、下两面印下来,发现了什么?
4、小结:上下两面都是圆形,这两个圆形是一样大的,侧面没有棱角,而且从上。
到下都是一样粗细,叫做圆柱体。
二、组织幼儿讨论:你在社会中还见过哪些像圆柱体的物品。
三、玩一玩、变一变。
1、怎样把许多枚硬币变成圆柱体?
2、怎样把长方形纸张变成圆柱体?
3、怎样把橡皮泥变成圆柱体?
四、活动延伸:让幼儿自由选择区域进行活动。
计算角:提供各种圆柱体实物,供幼儿继续探索发现圆柱体的秘密。
操作角:提供多种材料供幼儿继续变成圆柱体。
圆柱的体积心得体会篇十二
本节课的设计思考:
一、让学生在现实情境中体验和理解数学
《课程标准》指出:要创设与学生生活环境、知识背景密切相关的、又是学生感兴趣的学习情境,让学生在观察、操作、猜测、交流、反思等活动中体会数学知识的产生、形成与发展的过程,获得积极的情感体验,感受数学的力量,同时掌握必要的基础知识与基本技能。在本节课中,我给学生创设了生活情景(装在杯子中的水的体积你会求吗?)学生听到教师提的问题训在身边的生活中,颇感兴趣。学生经过思考、讨论、交流,找到了解决的方法。而且此环节还自然渗透了圆柱体(新问题)和长方体(已知)的知识联系。在此基础上教师又进一步从实际需要提出问题:如果要求某些建筑物中圆柱形柱子的体积,能用刚才同学们想出来的办法吗?这一问题情境的创设,激发学生从问题中思考寻求一种更广泛的方法来解决圆柱体体积的欲望。
二、鼓励学生独立思考,引导学生自主探索、合作交流
办?学生通过思考很快确定打算把圆柱转化成长方体。那么怎样来切割呢?此时采用小组讨论交流的形式。同学们有了圆面积计算公式推导的经验,经过讨论得出:把圆柱的底面沿直径分成若干等份。在此基础上,小组拿出学具进行了动手操作,拼成了一个近似的长方体。同学们在操作、比较中,围绕圆柱体和长方体之间的联系,抽象出圆柱体的体积公式。这个过程,学生从形象具体的知识形成过程(想象、操作、演示)中,认识得以升华(较抽象的认识――公式)。 不足之处:
在学生们动手操作时,我处理的有点急,没有给学生充分的思考和探究的时间。在今后的教学中我要特别关注学生的学习过程,优化课堂教学,对教材进行适当的加工处理。数学知识的教学,必须抓住各部分内容之间的内在联系,遵循教材特点和学生的认知规律。圆柱体积的教学,要借助于学生已经学过的长方体体积的计算方法,通过分析、推导、演示,发现新知识。推导出圆柱体积的计算公式,实现教学目的。圆柱的体积这部分知识是学生在有了圆柱、圆和长方体的相关知识基础上进行教学的。在知识和技能上,通过对圆柱体积的具体研究,理解圆柱体的体积公式的推导过程,会计算圆柱的体积;在方法的选择上,抓信新旧知识的联系,通过想象、实际操作,从经历和体验中思考,培养学生科学的思维方法;贴近学生生活实际,创设情境,解决问题,体现数学知识“从生活中来到生活中去”的理念,激发学生的学习兴趣和对科学知识的求知欲,使学生乐于探索,善于探究。在新的课改形势下,死记硬背这种肤浅的、教条的、机械的学习方式已经完全不适应教学改革的需要,不利于学生健康的成长发展的需要,教师要重视引导学生去探索,思考,发现规律,培养学生分析问题和解决问题的能力。反思本节课的教学,觉得在练习设计上还可以下一番功夫。比如可以设计开放性习题:给一个圆柱形积木,让学生先测量相关数据再计算体积等等。
二、教师的语言非常贫乏
在课堂教学中,评价语言是非常重要,它总是伴随在教学的始终,贯穿于整个课堂,缺乏激励的课堂就会像一潭死水,毫无生机。而精妙的评价语言就像是催化剂,能使课堂掀起层层波澜,让学生思维的火花时刻被点燃。教师准确,生动,亲切的评价语言大大调动了学生学习的主动性和积极性,让学生在激励中学、自信中学、快乐中学,让教师与学生零距离地接触,我想学生的心理更能感觉到更大的鼓舞。
苏霍姆林斯基指出:“教育的艺术首先包括谈话的艺术。”教师的教学效果,很大程度上取决于他的语言表达能力。数学课堂教学过程就是数学知识的传递过程。在整个课堂教学过程中,数学知识的传递、学生接受知识情况的反馈,师生间的情感交流等,都必须依靠数学语言。教师的语言表达方式和质量直接影响着学生对知识的接受,教师语言的情感引发着学生的情感,所以说教师的语言艺术是课堂教学艺术的核心。我这节课最大的失误是语言没有发挥出调控课堂驾驭课堂的作用。
圆柱的体积心得体会篇十三
《数学课程标准》指出:动手实践、自主探索、合作交流是学生学习数学的重要方式。组织学生在实践操作中探究发现规律,可以充分调动学生的各种感官,从感性到理性,从实践到认识,从具体到抽象,引导学生积极动手动脑、概括分析、抽象推理等,这不仅有利于学生思维的发展,而且也可以加深学生对数学知识的理解和掌握。尤其是对于几何知识的学习,课堂教学中的动手操作就显得更加重要。
在探索圆柱体积计算方法的时候,教师试图让学生结合圆面积计算的探索方法,能联想到可以把,圆柱的体积转化成已知的立体图形的体积。但这种方法似乎在学生的印象中并不深刻,因此学生在探索的一开始,学生就遇到了思考的困惑,对他后面的探索造成了很大的影响。在教师的印象中圆面积的计算公式推导应该是我们花了很多时间去让学生操作的,但是操作的效果却如此之差。我们不妨反问自己一下,究竟自己在教学的时候是否用好了学生的操作,让学生对操作的过程有深刻的体会与认识,在操作中是否激起了学生的思考。
当学生想到了探索方法后,却因为一些客观的原因,没有能够让学生亲自去套作一番,光是看课件、看其他同学的.操作,对于大部分学生来说,印象是不够深刻的,体会也是不到位的。毕竟这部分内容的学习对与学生来说也是有一定困难的,虽然是六年级的同学,但他们的空间想象能力还是不够的,需要实打实的操作,让他们有个直观的认识。
所以我认为我们的课堂上应放手让学生去操作,用直观的操作,留下自己思考的痕迹,为进一步探索知识做好准备。
二、让观察更细致,寻找知识的联系。
数学观察力,是新课标中对提出学生应必备的一种重要数学能力。学生在操作的基础上要学会观察,挖掘知识之间的联系,真正体现操作的价值。
在圆柱的体积的教学中,教师让学生去发现圆柱体与通过切割后形成的长方体之间的联系时,不少学生都一时摸不着头脑。这时,教师不妨给孩子一些观察的提示,如:“拼成的长方体的底面积与原来圆柱的底面积有什么关系?为什么是相等的?”“拼成的长方体的高与原来圆柱的高有什么关系?为什么是相等的?”通过学生直观的观察,让学生去挖掘数学本质上的一些联系,让学生在知识的探索过程中有一个完成的体验过程,也对所学的知识有一个更好的理解。
观察是智慧的源泉,让学生学会从变化的角度去观察,发现知识之间的联系,这也是一种令学生终身受益的学习方法。
三、让探索更深入,渴求方法的掌握。
通过操作与观察,可以说学生积累了一定的认知经验,这种经验我想不应该只停留在一节课、一个内容的学习中,可以延伸到很多知识的学习中去,从而形成一定的学习方法。就如在圆柱的体积的学习中,圆柱体转化成已经学过的长方体的体积来探究的这种方法在之前学生已经接触过,如:圆面积的计算方法、平行四边形的面积计算方法,我们都是通过将未知的图形转化成已知图形来探索面积计算的方法。如果我们在教学的过程中能够很好地重视学生的操作经验积累,并形成一定的方法,相信学生在沟通新知和旧知之间的联系时会更加的自然而然,也能顺利的实现知识的正迁移。
圆柱的体积心得体会篇十四
1、结合实际让学生探索并掌握圆柱体积的计算方法,能正确运用公式解决简单的实际问题。
2、让学生经历观察、猜想、验证等数学活动过程,培养学生空间想象能力和探究推理能力,渗透“转化”、“极限”等数学思想,体验数学研究的方法。
3、通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,获得成功的喜悦。
理解并掌握圆柱体积计算公式,并能应用公式计算圆柱的体积。
圆柱的体积演示教具、多媒体课件、圆柱实物2个(一个为橡皮泥)、水槽、水。
一、情境激趣导入新课。
2、提问:“能用一句话说说什么是圆柱的体积吗?”(板书课题)。
二、自主探究,学习新知。
(一)设疑。
1、从刚才的实验中你有办法得到这个圆柱学具的体积吗?
2、再出示一个用橡皮泥捏成的圆柱体模型,你又能用什么好办法求出它的体积?
3、如果要求大厅内圆柱的体积,或压路机前轮的体积,还能用刚才的方法吗?(生摇头)。
(二)猜想。
1、猜想一下圆柱的体积大小可能与什么有关?理由是什么?
2、大家再来大胆猜测一个,圆柱的体积公式可能是什么?说说你的理由?
(三)验证。
1、为了证实刚才的猜想,我们可以通过实验来验证。怎样进行这个实验呢?结合我们以往学习几何图形的经验,说说自己的想法。(用转化的方法,根据学生叙述课件演示圆的面积公式推导过程)。
2、圆柱能转化成我们学过的什么图形呢?它又是怎么转化成这种图形的?(小组讨论后汇报交流)。
3、指名两位学生上台用圆柱体积教具进行操作,把圆柱体转化为近似的长方体。
4、根据学生操作,师再次课件演示圆柱转化成长方体的过程。并引导学生分析当分的份数越多时,拼成的图形越接近长方体。
5、通过上面的观察小组讨论:
(1)圆柱体通过切拼后,转化为近似的长方体,什么变了?什么没变?
(2)长方体的底面积与原来圆柱体的哪部分有关系?有什么关系?
(3)长方体的高与原来圆柱体的哪部分有关系?有什么关系?
(生汇报交流,师根据学生讲述适时板书。)。
小结:把圆柱体转化成长方体后,形状变了,体积不变,长方体的底面积等于圆柱的底面积,高等于圆柱的高,因为长方体的体积等于底面积×高,所以圆柱体积也等于底面积×高,用字母表示是v=sh。
7、完成“做一做”:一根圆形木料,底面积为75cm2,长是90cm。它的体积是多少?(生练习展示并评价)。
9、思考:如果只知道圆柱的底面半径和高,你有办法求出圆柱的体积吗?如果是底面直径和高,或是底面周长和高呢?(学生讨论交流)。
小结:可以根据已知条件先求出圆柱的底面积,再求圆柱的体积。
10、出示课前的圆柱,说一说现在你可以用什么办法求出这个圆柱的体积?(测不同数据计算)。
(1)底面半径2cm,高5cm。
(2)底面直径6dm,高1m。
(3)底面周长6.28m,高4m。
三、练习巩固拓展提升。
1、判断正误:
(1)等底等高的圆柱体和长方体体积相等。………………()。
(2)一个圆柱的底面积是10cm2,高是5m,它的.体积是10×5=50cm3。.....()。
(3)圆柱的底面积越大,它的体积就越大。............()。
(4)一个圆柱的体积是80cm3,底面积是20cm2,它的高是4cm。......()。
四、全课总结自我评价。
通过这节课的学习你有什么感受和收获?
圆柱的体积是几何知识的综合运用,它是在学生了解了圆柱的特征、掌握了长方体和正方体体积以及圆的面积计算公式推导过程的基础上进行教学的。由于圆柱是一种含有曲面的几何体,这给体积的认识和计算增加了难度。为了降低学习难度,让学生更好地理解和掌握圆柱体积的计算方法,为后面学习圆锥体积打下坚实的基础,因此在本节课的教学设计上我十分注重从生活情境入手,让学生经历圆柱体积的探究过程,通过一系列的数学活动,培养学生探究数学知识的能力和方法,同时在学习活动中体验学习的乐趣。
从本节课教学目标的达成来看,较好地体现了以下几方面:
一、创设生活情境,体现数学生活化。
《新课程标准》指出:要创设与学生生活环境、知识背景密切相关的,又是学生感兴趣的学习情境,让学生在观察、操作、猜测、交流、反思等活动中逐步体会数学知识的产生、形成与发展的过程,获得积极的情感体验,感受数学的力量,同时掌握必要的基础知识与基本技能。在本节课中,我从生活情境入手,创设了一个装水的学具槽放入圆柱学具使水面上升的情境,引导学生观察思考,直观感知圆柱体积的概念,同时意识到过去学的排水法可以用来求圆柱的体积,紧接着当老师再出示橡皮泥捏成的圆柱体模型,并追问大厅内圆柱的体积等问题时,学生意识到前面所说求体积计算方法的局限性,从而产生思维困惑,进一步激发了探究圆柱体积计算方法的欲望。这样的导入不仅为学生创造了一个十分宽松的生活化学习环境,还为学生后面构建数学模型,发现圆柱体积公式奠定了基础。在练习的设计上,为避免纯数学的计算,我以学生熟悉的学校圆柱形花坛为背景,提出求花坛填土体积这样的问题,让学生学会灵活应用知识解决简单的实际问题,在巩固体积计算方法的同时,进一步感受到数学知识的使用价值。这样的教学安排不仅体现了数学来源于生活,又应用于生活的思想,也使数学的课堂教学充满浓浓的生活味。
二、引导学生经历知识探究的全过程。
动手实践、自主探究、合作交流是《新课程标准》所倡导的数学学习的主要方式。在本课教学中,由于学具的欠缺,没能给学生提供小组动手操作的机会,为了弥补这一不足,最大限度发挥学生自主学习的作用,教学中我努力为学生搭建探究平台,通过观察、设疑、猜想、验证,经历圆柱体积的转化过程,发展学生的空间想象能力。在探究圆柱体积的过程中,我从本班学情出发,大胆放手让学生猜想“圆柱体积大小可能与什么有关,可能怎样计算,为什么?”,然后再结合以往学习几何图形的经验,回顾圆的面积推导过程,实现知识迁移,明确“转化”思想在数学研究中的重要意义。为了让学生直观感受到圆柱体转化为长方体的过程,我较好地借助实物模型和多媒体课件演示,把二者有机结合,先让两个学生上台操作演示,然后再课件动态模拟,在学生充分观察的基础上,小组讨论交流:当圆柱体转化成近似的长方体后什么变了,什么没变?长方体的底面积与圆柱的底面积有什么关系?长方体的高与圆柱的高有什么关系?从而得出结论:圆柱的体积等于底面积乘以高。整个探究过程以学生自主学习为主,知识的形成给学生留下深刻的印象。伴随着问题的圆满解决,学生体验到了成功的喜悦与满足。
三、注重学法指导和数学思想方法的渗透。
“学会学习”是对学生“学”的最高要求,因此在教学中不但要教给学生知识,更要教给学生学习的方法,让学生终身受用。在本节课的教学中,我把“观察、猜想、验证”的学法指导,贯穿于整个学习过程,使学生学得主动有效。在探究方法的引导上从回忆圆的面积公式推导入手,确定转化的方法,体验转化的过程,验证转化的结果,使“转化”、“极限”等数学思想在课中得到良好渗透,学生进一步体会到科学、条理的数学思维方式,从而发展了学生的数学能力。
【本文地址:http://www.xuefen.com.cn/zuowen/6910369.html】