生命不息,总结不止。总结是我们对生活中所经历的事情进行回顾和总结的重要方式。总结的完美是基于对自己成长的真实认识和未来发展的展望。以下是一些优秀的总结范文,供大家参考。
比的基本性质教学设计理念篇一
教学目标:
1、了解比例各部分的名称,探索并掌握比例的基本性质,会根据比例的基本性质正确判断两个比能否组成比例,能根据乘法等式写出正确的比例。
2、通过观察、猜测、举例验证、归纳等数学活动,经历探究比例基本性质的过程,渗透有序思考,感受变与不变的思想,体验比例基本性质的应用价值。
3、引导学生自主参与知识探究过程,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生的思维。
教学难点:根据乘法等式写出正确的比例。
教学准备:多媒体课件。
整体设计说明:
本班的孩子基础较差,很多孩子没有养成好的学习习惯,好的思考方法,所以课堂上的重点放在了发现并概括出比例的基本性质上。在比例的基本性质应用时,重点突出孩子的思考过程,强调孩子有根据地思考,养成独立思考的习惯。
教学过程。
一、旧知铺垫导入。
2、比和比例有什么区别?
设计意图:注重从学生已有的知识出发,为新课做好铺垫。
二、自主探究。
过渡:同学们,比有各部位的名称,把比组成比例后我们有了新的名称,请自学课本第34页。生阅读后,请同学说出黑板上比例各部分的名称。
设计意图:组成比例的四个数的名称的认识对孩子们来说是比较简单的,所以让孩子们自学,培养孩子的自主学习能力,养成读数学书的习惯。
三、反馈练习。
指出下面比例的外项和内项。(投影出示)。
先小组之内说一说,然后在指名回答。重点说分数形式的比例外项和内项。
设计意图:这一环节重点学习组成一个比例的两个比哪两个数是外项,哪两个数是内项。重点突出分数形式下怎么去找比例的内项和外项。
(1)投影出示几组比例,让学生观察看看能有什么发现?细心的同学很快会发现这几组比例数字相同,但是书写位置不同。然后老师在质疑,为什么这些比例里的四个数书写位置不同却能组成比例呢?请小组合作找个这个秘密。
(2)学生找出原因后,教师引导学生用一句话总结出来。并指出这叫做比例的基本性质,板书课题。
(3)继续提出:是不是所有的比例都具有这样的性质,举例验证,最后得出结论。
(4)比例写出分数形式后,也就是等号两端的分子分母交叉相乘,乘得的积也一定相等。
设计意图:这一环节我根据学生好奇的心理,用质疑的方式来激发学生的学习兴趣,让学生主动去探索新知,这样也能让学生体会到总结归纳的过程,并渗透科学态度的教育。
五、巩固练习。
1、应用比例的基本性质,判断下面哪组中的两个比能否组成比例(投影出示练习)。
2、应用比例的意义或者基本性质,判断下面哪组中的两个比可以组成比例。
(学生独立完成后,用展示台展示)。
3、根据比例的基本性质,在()里填上适当的数。(投影出示)。
六、全课总结:这节课你有什么收获。
设计意图:关注学生知识与技能的掌握情况,并且留给孩子质疑问难的空间。
七、拓展练习:把下面的等式改写成比例。
3×40=8×15。
比的基本性质教学设计理念篇二
1.理解比例的基本性质,认识比例的各部分名称。2.能用比例的基本性质正确判断两个比能否组成比例。学习重点理解比例的基本性质。
学习难点会根据比例的基本性质判断两个比能否组成比例。教具学具:ppt课件教学环节。
一、复习(课件出示以下问题,指名学生回答)。
1、什么叫做比例?
2、什么样的两个比才能组成比例?
3、判断下面的比,哪两个比能组成比例?把组成的比例写出来。3:918:303:61.8:0.92:49:27学生独立完成后全班交流订正。
判断两个比能不能组成比例,除了看比值是否相等,还有没有其它的方法?这节课我们就一起来研究研究。
二、自主探索,体验新知。(课件出示自学要求)。
1、自学要求:1)自学书第41页的内容,把重要的地方画上线,不懂的问题用铅笔标在书上。2)提示:可以结合以下问题进行自学:
(1)什么叫比例的项?比例中有几个项?分别叫什么?(2)你能把比例改写成分数形式吗?改写成分数后你还能找到比例的外项和内项吗?试试看.(3)比例的基本性质是什么?你能用字母表示这个性质吗?根据比例的基本性质如何判断两个比能不能组成一个比例.(4)小组中议一议并集体交流。
2、组织学生交流自学成果。1)试一试。
应用比例的基本性质,判断下面的两个比能否组成比例。如果能组成比例,把组成的比例写出来,并指出比例的内项和外项。
3:6和8:50.2:2.5和4:502)课件出示三组比例,让学生填空。
三、巩固练习。
课件出示练习题,学生练习。
四、课堂总结说一说本节课的收获。
比的基本性质教学设计理念篇三
1.使学生进一步理解比例的意义,懂得比例各部分名称。2.经历探索比例基本性质的过程,理解并掌握比例的基本性质。3.能运用比例的基本性质判断两个比能否组成比例。【教学重点】比例的基本性质。
2.应用比例的意义,判断下面的比能否组成比例。6∶10和9∶15。
4.5∶1.5和10∶5教师结合回答说:刚才,你们是根据比例的意义先求出比值,再作出判断的。老师不是这样想的,可很快就判断好了,想知道其中的秘密吗?那学完今天的知识----比例的基本性质,老师的秘密对你来说就不是秘密了。
【设计意图】注重从学生已有的知识出发,为新课做好铺垫。
二、自主探究。
三、反馈。
1.在四人小组里,将你的发现与同伴交流一下。
2.全班交流.(当学生说到比例的基节本性时,师引导学生探究验证.)3.板书:在比例中,两个外项的积等于两个内项的积。
【设计意图】因为学生对比的知识了解甚多,在这一环节,不是教师出示教材中的例子,而是让学生自己举例研究,使研究材料的随机性大大增强,从而提高结论的可信度。这样也能让学生体会到归纳的过程,并渗透科学态度的教育。
五、巩固练习。
1、应用比例的基本性质,判断下面哪组中的两个比能否组成比例(完成课本第41面的“做一做”)。
2、:4=6:()。
3、根据比例的基本性质,在()里填上适当的数.(1)15∶3=():1(2)2∶0.5=1.2:()。
5.在a:3=8:b中(。
)是内项,a_b=(。
)6.如果2a=7b(a,b不为零),那么a/b=()/()。
【设计意图】练习主要是运用比例的基本性质。要求学生讲明理由,培养学生有根据思考问题的良好习惯,并与用比例的意义来判断两个比能不能组成比例形成对比;在填写比例中未知数时,不仅要求学生说出理由,还要求学生进行检验,这样培养学生良好的检验习惯和灵活解决问题的能力,培养良好的学习习惯,并且充分体现练习的层次性、开放性,让孩子们发现比例的知识的奥妙。
六、通过本节课学习,你有什么收获?还有什么疑问?
【设计意图】关注学生知识与技能的掌握情况,并且留给孩子质疑问难的空间。
七、布置作业:
1、课本第43页的第5题(全班完成)。
2、课本第44页的第14题(学有余力的孩子完成)。
在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质。【板书设计意图】这板书是为了突出重点,让孩子能一目了然地看出比例各部分名称以及两个外项和两个内项的积到底是两个数相乘。
比的基本性质教学设计理念篇四
教学目的:使学生理解比的基本性质,掌握化简比的方法。
教学重、难点:化简比的方法。
教学过程:
一、复习。
1.除法中的商不变规律是什么?分数的基本性质是什么?
2、比与除法、分数有什么关系?
3、求比值 5:15 4/5:8/15 0.8:0.12。
二、新授。
我们刚才复习了除法中商不变规律和分数的基本性质,又知道。
和除法、分数有着密切的联系,比的前项相当于被除数,比的。
项相当于除数;比的前项也相当于分数的分子,比的后项相当。
分母。
那么在比中有什么样的规律?让学生自己讨论初步说出结论。
比的前项和后项同时乘以或者同时除以相同的数(零除外)。
注意:为什么这里要同时乘以或除以相同的数不能是0?(因为如果乘以0,比的后项就变成了0,没有意义。且0不能作除数,更不能同时除以0)。
2.教学化简比。
利用比的基本性质,我们可以把比化成最简单的整数比。
出示例1:把下面各比化成最简单的整数比。
(1)14:21 (2)1/6:2/9 (3)1.25:2 。
(1)问:这道题的前项和后项都是什么数?怎样才能使它化成最简的整数比呢?(先让学生自己讨论解答,然后引导得出:要把它化成最简整数比,就必须根据比的基本性质把前、后项同时除以它们最大公约数7)。
(2)问:这是一道分数比,怎样才能使它转化成整数比?(让学生自己动手做,后对照课本上的例题做法,对或者错,共同完成后引导学生说出:要根据比的基本性质,把它的前后项同时乘以它们的分母的最小公倍数18,才能转化成整数比)化成整数比以后,如果不是最简的整数比,还要应用(1)题的方法继续化简。
(3)问:这道是小数比,怎样化成整数比?(让学生说说并自己解答。指导根据比的基本性质,把它的前后项同时乘以相同的数,使它们转化成整数比。如果这时还不是最简整数比,要再除以前后项的最大公约数,使它化为最简整数比)。
(4)还有其它解法吗?可根据学生所答具体分析,特别是分数比实际上可用是分数除法来计算化简。
小结:这节课我们学习了什么新知识?它的内容是什么?还学会了什么?特别提示:化简与求比值的得数有什么不同?(化简的结果是一个比。求比值的结果是商,是一个数)。
三、巩固练习。
1.完成“做一做”的题目。
让学生说一说化简比的方法。
2.练习十二第5、7、8题。
3.练习十二第9题。
四、作业。练习十二第6、10题。
比的基本性质教学设计理念篇五
1、让学生认识比例的内项和外项;发现并使理解和掌握比的基本性质。
2、通过自主学习,让学生学会根据比例的基本性质正确判断两个比能否组成比例。
3、培养学生的抽象概括能力。使学生体验数学学习成功的快乐。
1.理解并掌握比例的基本性质。
2.探究、发现比例的基本性质。
多媒体课件
一、复习旧知
1.师:同学们,上节课我们学习了比例,什么叫做比例?生:表示两个比相等的式子叫作比例。2.师:如何判断两个比能否组成比例?生:化简比、求比值。
3∶6=1∶2
所以6∶10=9∶15生2:因为20∶5=4∶1
28∶7=4∶1
所以20∶5=28∶7.
(学生边说教师边用课件展示解题过程,目的在于引导学生规范解题格式。)4.师:除了化简比,求比值,还有没有其他更简单的方法呢?这就是今天我们要学习的内容。
(1)观察这几组比例,它们有什么共同点?
在比例6:3=4:2中,组成比例的四个数“
6、
3、
4、2”叫作这个比例的项。两端的两项“6和2”叫作比例的外项。中间的两项“3和4”叫作比例的內项。
(3)提问:你能说出其它三个比例的內项和外项各是多少吗?和你的同桌说一说。
3.探究比例的基本性质
认真观察所写出的比例,你有什么发现?(1)6和2(或3和4)可以同时是比例的外项,也可以同时是比例的內项。
(2)6×2=3×4,两个外项的积等于两个內项的积。4.验证是不是所有的比例都有这样的规律呢?请同学们任意写出一个比例,验证规律。
(1)与同桌每人写出一个比例,交换验证。
(2)如果把等号两端的分子、分母交叉相乘,结果会怎样呢?(3)为什么交叉相乘的积相等?明确:等号两端的分子、分母交叉相乘,就是把两个內项和两个外项分别相乘,所以它们的积是相等的。8.教学“试一试”
(1)假设每组两个比能组成比例,说出组成比例的内外项分别是什么。
(2)应用比例的基本性质判断能否组成比例
三、巩固练习
1.完成“练一练”第1题。(1)从表中你知道哪些信息?(2)从表中选择两组数据,写出一个乘积相等的式子。
追问:为什么每两个数相乘的积相等?(因为每两个数分别表示速度和时间,它们相乘的积表示路程,甲乙两地路程一定,所以乘积都相等。)(3)根据“80×6=120×4”写出比例,。
学生独立完成,教师巡视。
2、练习七第2题
(1)下面四个数
5、
说明:任意给出4个数判断能否组成比例,可以找出最大和最小项相乘,再把其他两数相乘。
(3)判断2.4.6.8这四个数。若不能组成,你能换掉一个数,使之组成比例吗?
3.任意从1-10中,写出4个数,判断能否组成比例?
与同桌合作完成。一个写,另一个判断。4.我是小法官,对错我来判。
(1)6和4是比例的什么?联系比例的基本性质,括号里可以填什么?指名填空,并说理由。(2)学生独立完成第2小题。
四、全课总结
今天我们学习了什么内容?你有什么收获?
比的基本性质教学设计理念篇六
1、让学生认识比例的内项和外项;发现并使理解和掌握比的基本性质。
2、通过自主学习,让学生学会根据比例的基本性质正确判断两个比能否组成比例。
3、培养学生的抽象概括能力。使学生体验数学学习成功的快乐。
多媒体课件。
一、复习旧知。
1.师:同学们,上节课我们学习了比例,什么叫做比例?生:表示两个比相等的式子叫作比例。2.师:如何判断两个比能否组成比例?生:化简比、求比值。
3∶6=1∶2。
所以6∶10=9∶15生2:因为20∶5=4∶1。
28∶7=4∶1。
所以20∶5=28∶7.
(学生边说教师边用课件展示解题过程,目的在于引导学生规范解题格式。)4.师:除了化简比,求比值,还有没有其他更简单的方法呢?这就是今天我们要学习的内容。
(1)观察这几组比例,它们有什么共同点?
在比例6:3=4:2中,组成比例的四个数“。
6、
3、
4、2”叫作这个比例的项。两端的两项“6和2”叫作比例的外项。中间的两项“3和4”叫作比例的內项。
(3)提问:你能说出其它三个比例的內项和外项各是多少吗?和你的同桌说一说。
认真观察所写出的比例,你有什么发现?(1)6和2(或3和4)可以同时是比例的外项,也可以同时是比例的內项。
(2)6×2=3×4,两个外项的积等于两个內项的积。4.验证是不是所有的比例都有这样的规律呢?请同学们任意写出一个比例,验证规律。
(1)与同桌每人写出一个比例,交换验证。
(2)如果把等号两端的分子、分母交叉相乘,结果会怎样呢?(3)为什么交叉相乘的积相等?明确:等号两端的分子、分母交叉相乘,就是把两个內项和两个外项分别相乘,所以它们的积是相等的。8.教学“试一试”
(1)假设每组两个比能组成比例,说出组成比例的内外项分别是什么。
三、巩固练习。
1.完成“练一练”第1题。(1)从表中你知道哪些信息?(2)从表中选择两组数据,写出一个乘积相等的式子。
追问:为什么每两个数相乘的积相等?(因为每两个数分别表示速度和时间,它们相乘的积表示路程,甲乙两地路程一定,所以乘积都相等。)(3)根据“80×6=120×4”写出比例,。
学生独立完成,教师巡视。
2、练习七第2题。
(1)下面四个数。
5、
说明:任意给出4个数判断能否组成比例,可以找出最大和最小项相乘,再把其他两数相乘。
(3)判断2.4.6.8这四个数。若不能组成,你能换掉一个数,使之组成比例吗?
3.任意从1-10中,写出4个数,判断能否组成比例?
与同桌合作完成。一个写,另一个判断。4.我是小法官,对错我来判。
(1)6和4是比例的什么?联系比例的基本性质,括号里可以填什么?指名填空,并说理由。(2)学生独立完成第2小题。
四、全课总结。
今天我们学习了什么内容?你有什么收获?
比的基本性质教学设计理念篇七
1、了解比例各部分的名称,探索并掌握比例的基本性质,会根据比例的基本性质正确判断两个比能否组成比例,能根据乘法等式写出正确的比例。
2、通过观察、猜测、举例验证、归纳等数学活动,经历探究比例基本性质的过程,渗透有序思考,感受变与不变的思想,体验比例基本性质的应用价值。
3、引导学生自主参与知识探究过程,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生的思维。
根据乘法等式写出正确的比例。
多媒体课件。
本班的孩子基础较差,很多孩子没有养成好的学习习惯,好的思考方法,所以课堂上的重点放在了发现并概括出比例的基本性质上。在比例的基本性质应用时,重点突出孩子的思考过程,强调孩子有根据地思考,养成独立思考的习惯。
一、旧知铺垫导入。
2、比和比例有什么区别?
【设计意图】。
注重从学生已有的知识出发,为新课做好铺垫。
二、自主探究。
过渡:同学们,比有各部位的名称,把比组成比例后我们有了新的名称,请自学课本第34页。生阅读后,请同学说出黑板上比例各部分的名称。
【设计意图】。
组成比例的四个数的名称的认识对孩子们来说是比较简单的,所以让孩子们自学,培养孩子的自主学习能力,养成读数学书的习惯。
三、反馈练习。
指出下面比例的外项和内项。(投影出示)。
先小组之内说一说,然后在指名回答。重点说分数形式的比例外项和内项。
【设计意图】。
这一环节重点学习组成一个比例的两个比哪两个数是外项,哪两个数是内项。重点突出分数形式下怎么去找比例的内项和外项。
(1)投影出示几组比例,让学生观察看看能有什么发现?细心的同学很快会发现这几组比例数字相同,但是书写位置不同。然后老师在质疑,为什么这些比例里的四个数书写位置不同却能组成比例呢?请小组合作找个这个秘密。
(2)学生找出原因后,教师引导学生用一句话总结出来。并指出这叫做比例的基本性质,板书课题。
(3)继续提出:是不是所有的比例都具有这样的性质,举例验证,最后得出结论。
(4)比例写出分数形式后,也就是等号两端的分子分母交叉相乘,乘得的积也一定相等。
【设计意图】。
这一环节我根据学生好奇的心理,用质疑的方式来激发学生的学习兴趣,让学生主动去探索新知,这样也能让学生体会到总结归纳的过程,并渗透科学态度的教育。
五、巩固练习。
1、应用比例的基本性质,判断下面哪组中的两个比能否组成比例(投影出示练习)。
2、应用比例的意义或者基本性质,判断下面哪组中的两个比可以组成比例。
(学生独立完成后,用展示台展示)。
3、根据比例的基本性质,在()里填上适当的数。(投影出示)。
六、全课总结:
这节课你有什么收获。
【设计意图】。
关注学生知识与技能的掌握情况,并且留给孩子质疑问难的空间。
七、拓展练习:把下面的等式改写成比例。
3×40=8×15。
比的基本性质教学设计理念篇八
教学目标:
1、让学生认识比例的内项和外项;发现并使理解和掌握比的基本性质。
2、通过自主学习,让学生学会根据比例的基本性质正确判断两个比能否组成比例。
3、培养学生的抽象概括能力。使学生体验数学学习成功的快乐。
教学重点和难点:
教学准备:多媒体课件。
教学过程:
一、复习旧知。
1.师:同学们,上节课我们学习了比例,什么叫做比例?生:表示两个比相等的式子叫作比例。2.师:如何判断两个比能否组成比例?生:化简比、求比值。
3∶6=1∶2。
所以6∶10=9∶15生2:因为20∶5=4∶1。
28∶7=4∶1。
所以20∶5=28∶7.
(学生边说教师边用课件展示解题过程,目的在于引导学生规范解题格式。)4.师:除了化简比,求比值,还有没有其他更简单的方法呢?这就是今天我们要学习的内容。
(1)观察这几组比例,它们有什么共同点?
在比例6:3=4:2中,组成比例的四个数“。
6、
3、
4、2”叫作这个比例的项。两端的两项“6和2”叫作比例的外项。中间的两项“3和4”叫作比例的內项。
(3)提问:你能说出其它三个比例的內项和外项各是多少吗?和你的同桌说一说。
认真观察所写出的比例,你有什么发现?(1)6和2(或3和4)可以同时是比例的外项,也可以同时是比例的內项。
(2)6×2=3×4,两个外项的积等于两个內项的积。4.验证是不是所有的比例都有这样的规律呢?请同学们任意写出一个比例,验证规律。
(1)与同桌每人写出一个比例,交换验证。
(2)如果把等号两端的分子、分母交叉相乘,结果会怎样呢?(3)为什么交叉相乘的积相等?明确:等号两端的分子、分母交叉相乘,就是把两个內项和两个外项分别相乘,所以它们的积是相等的。8.教学“试一试”
(1)假设每组两个比能组成比例,说出组成比例的内外项分别是什么。
三、巩固练习。
1.完成“练一练”第1题。(1)从表中你知道哪些信息?(2)从表中选择两组数据,写出一个乘积相等的式子。
追问:为什么每两个数相乘的积相等?(因为每两个数分别表示速度和时间,它们相乘的积表示路程,甲乙两地路程一定,所以乘积都相等。)(3)根据“80×6=120×4”写出比例,。
学生独立完成,教师巡视。
2、练习七第2题。
(1)下面四个数。
5、
说明:任意给出4个数判断能否组成比例,可以找出最大和最小项相乘,再把其他两数相乘。
(3)判断2.4.6.8这四个数。若不能组成,你能换掉一个数,使之组成比例吗?
3.任意从1-10中,写出4个数,判断能否组成比例?
与同桌合作完成。一个写,另一个判断。4.我是小法官,对错我来判。
(1)6和4是比例的什么?联系比例的基本性质,括号里可以填什么?指名填空,并说理由。(2)学生独立完成第2小题。
四、全课总结。
今天我们学习了什么内容?你有什么收获?
比的基本性质教学设计理念篇九
使学生能够联系商不变的性质和分数的基本性质,概括并理解比的基本性质,能够正确地运用比的基本性质,把比化成最简单的整数比;通过数学培养学生的抽象概括能力和迁移类推的能力。渗透转化的数学思想,并使学生认识到事物之间都是存在内在的联系的。
教学重点和难点。
教学过程。
一、师:在前面的学习中我们学习了比的意义,谁来说出什么是比?
师:比与我们学过的那些知识有联系?有什么联系?
师:看来大家对前面学过的知识掌握得比较好。
(导入新课)。
师:大家想一想这个猜想有没有研究的价值?
师:所有的猜想都需要一个验证的过程才能最终被我们接受,现在就请同学们利用以前学过的知识来验证这一猜想。请举例验证。
师:是吗?同学们想不想听一听这位同学的高见?
师:这位同学问的非常好,对呀,到底是为什么呢?谁来回答?
师:大家同意吗?
师:能举例说明吗?比如180:120化成最简整数比是什么?
师:怎么化简的?根据是什么?
教师根据学生的讲述板书:
180÷120=(180÷60):(120÷60)=3:2。
2.师:大家都会了吗?那老师考一考大家行吧?出示(1)48:40。
(2):出示教材中的一组分数和分数、小数和小数、分数和小数、分数和整数、整数和小数的对比练习,请大家独立化简,指名板演。
师:上面几位同学做得对吗?为什么这样做?能说一说理由吗?根据是什么?
师:看来大家对这部分知识掌握的的确非常好了。
四、这节课我们重点研究了什么?你有什么收获?运用比的基本性质应注意什么?
五、人教版小学数学六年级上册第47--48页练习.十一第1、3。
板书设计。
比的前项与后项同时乘或除以同一个数(0除外),比值不变。
180÷120=(180÷60):(120÷60)=3:2→最简整数比。
同时除以这两个数的最大公因数。
比的基本性质教学设计理念篇十
教完“比的基本性质”后,我不停地在思考一个问题:学生学习数学知识有一个最重要的基础:已有知识,尤其对六年级学生而言,他们在以前学习的过程中,积累了丰富的数学知识,尽管这些知识的获得有的来自于他人的帮助,有的来自于自身的感悟,但是不管怎样,不管其来源如何,既然学生已经掌握,就纳入到了学生已有的知识结构体系中,这些的确是客观存在的现实,并作为小学生已有知识的一部分构成进一步学习新知的数学资源。《数学新课程标准》指出:“数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上”。小学生已有的知识是学生进行数学学习的重要资源。
其实,对于小学生而言,由于他们已经有了许多相关的数学知识,很多教材中的“新知识”对于学生来讲并非“新知识”。正因为这样,我理解的小学生数学学习的实质是,用自己已有的知识与新知进行交互作用,进而重新建构自己的知识体系的过程。学生以前学习的“商不变的规律”、“分数的基本性质”、“比与分数、除法之间的关系”和今天学习的“比的基本性质”相互联系起来,让学生在已有知识的基础上学习新知就可以起到事半功倍的效果。
因此,学生的已有知识理所当然地成为他们数学学习的一个重要基础,进而成为我们进行数学教学的一个庞大资源库。而这些学生已经掌握的数学知识,为他们进一步学习数学提供了一个有利的条件。教师如果能够注意到这些情况,并将学生已有的知识科学合理进行利用,与学习数学新知互相结合起来,必将起到良好的效果。因此,关注学生已有的知识,贴近学生的实际情况,既是数学学科的特点所决定的,更是数学学习所必需的。
比的基本性质教学设计理念篇十一
比的基本性质这一课,我充分利用学生的已有知识,从把握新旧知识的相互联系开始,从分析它们的相似之处入手,通过让学生联想、猜测、观察、类比、对比、类推、验证等方法探讨“比的基本性质”这一规律。由于在推导比的基本性质时要用到比与除法、分数的联系,除法的商不变性质,分数的基本性质等知识,因此教学新课时对这些知识做了一些复习,引导学生回忆并运用这两条性质,为下一步的'猜想和类推做好了知识上的准备。。学生通过比与除法、分数的联系,通过类比,很快地类推出比的基本性质。
俗话说:“兴趣是最好的老师。”小学生对数学的迷恋往往是从兴趣开始的,由兴趣到探索,由探索到成功,在成功的愉快中产生新的兴趣,推动数学学习不断取得成功。但是数学的抽象性、严密性和应用的广泛性又常使学生难以理解,甚至望而却步。因此本节课教师从激发学生的学习兴趣入手,引导学生用一系列的猜想来提高兴趣,增强数学的趣味性,从而引发学生探求新知的欲望。
总之,教学中我着力体现“以学生发展为本”的教学理念,充分发挥学生的主体作用,使学生成为学习的主人,力求使学生在创新精神、实践能力及情感态度方面得到均衡发展,但课中也存在遗憾,在以后教学中力求让学生在知识点得到扩充。
比的基本性质教学设计理念篇十二
1、用迁移类推规律主动探索新知。本课中,我抓住了新旧知识的生长点,先是给学生复习了商不变的性质和分数的基本性质,然后引导学生联系比与除法、分数的关系,这样设计复习题,有助于学生通过寻求比与除法、分数的关系建构比的基本性质这一概念,符合学生认识事物的规律和迁移规律,铺就了由已学知识向将学知识迁移过渡的桥梁,学习的最近发展区有了实质的根基与准备。猜想引入让学习兴趣盎然,激起了探索的欲望,培养了思维联想、迁移的习惯与能力,让新知在过渡自然地融入。
2、小组合作成功有效。在整个过程中每个小组都能互相帮助,积极探讨,紧扣商不变与分数的基本性质分小组讨论比的基本性质,放飞思维,自主地依据已有知识经验,在合作、猜想、验证、交流中展开合理的想象与多角度思考,在有理有据表达、多种形式的对比中生成、完善了性质。大家学习热情很高,汇报展示紧扣主题,培养了孩子们的集体荣誉感,使学生从中体会到成功的喜悦,提高自己的学习兴趣,进而培养了学生的创新意识。
3、充分体现学生的自主学习主线。无论是猜想验证比的基本性质,还是进行比的应用,化简比的方法的总结,无处不体现了学生是学习的主人,无时不渗透着学生主动探索的过程,都留下了学生成功的脚印。
由于整节课只有35分钟,时间较短,另外学生的合作探索时间较长,汇报展示用时也较长,所以有前松后紧的感觉,时间分配不合理。刚刚进行完三种比的化简就下课了,没有进行练习,给学生完成家庭作业带来一定困难。这一缺陷下次一定注意。
比的基本性质教学设计理念篇十三
比的基本性质是在学生学习比的意义,比与分数、除法之间关系,除法的意义和商不变的性质,分数的意义和分数基本性质的基础上进行教学。
教材联系学生已有的商不变性质和分数的基本性质,通过对板书的“变式”,启发学生找发现比中存在的数学规律,然后概括出比的基本性质,并应用这一性质把比化成最简单的整数比。
学情分析。
学生已经认识比的意义,比、除法、分数之间的关系,并结合已经掌握的商不变性质和分数的基本性质进行学习。而比的基本性质和商不变性质及分数的基本性质是相通的。学生在学习分数的基本性质时,已经掌握了其形成的推理过程,学生具备了一定的类比学习技能。他们完全可以根据比与分数、除法的关系,推导出比的基本性质。
教学目标。
1、通过观察、类比,使学生理解和掌握比的基本性质,并会运用这个性质把比化成最简单的整数比。(主要以商不变性质为主要切入口)。
2、通过学习,培养学生观察、类比的能力,渗透转化的数学思想方法,培养学生思维的灵活性。
3、通过教学,使学生学会与人合作的意识,并能与他人互相交流思维的过程和结果。
教学重点和难点。
教学难点:掌握化简比的方法。找准整数比前后项的最大公约数、分数比转化成整数比。
比的基本性质教学设计理念篇十四
数学来源于生活,生活中中处处都有数学。在教学中我重视从学生的生活实践和已有的知识中学学习数学和理解数学,重视数学知识与学生生活实际的紧密联系,让学生体会到:身边有数学、数学无处不在。本节课的教学用学生喜听的故事引入,来代替书本的内容。当学生一听到猴子分桃子的故事,当然兴趣盎然,纷纷发表自己的看法,列出每只猴子可得到桃子的只数,增强了他们学习数学的主动性和积极性,真正发挥了学生的主体作用。层层深入,环环紧扣,循序渐进地进行知识的自然过渡,使认识逐步由感性向理性深化。同时对学生进行做人要公平的人生哲理教育。
练习题的设计应强调数学教学中培养学生学习数学的能力。在教学中我能抓住学生的心理特点,设计一些学生容易进入陷阱的题目,在这些小陷阱中,让学生愉快地掌握知识,突破重点和难点。例如:当学生得出“比的基本性质”这一规律时,我马上出示例题,基本性质理解了,学生就会完成了。再如:我增加的两道例题,把学生在化简过程中将会出现的错误全部呈现了出来,学生第一印象的掌握,有助于今后的练习。
将本文的word文档下载到电脑,方便收藏和打印。
比的基本性质教学设计理念篇十五
比的基本性质是在学生掌握了商不变的性质、分数基本性质和比与分数、除法的关系的基础上进行学习的。根据商不变的性质,分数的基本性质可以推导出比的基本性质,所以一上课,我在复习了分数的基本性质和商不变的性质后,及时提出问题——比是不是也有什么性质呢?如果有的话,你认为它是怎么样呢?当有的学生根据分数与比的关系、分数与除法的关系后就自然而然的猜想出比的基本性质——比的前项和后项同时乘或除以一个相同的数(零除外),比值不变。这叫做比的基本性质。随后我又问:这一性质存在吗?然后充分调动学生的思维,让学生猜想——验证,验证的过程其实就是学生经历这一知识的形成过程。在验证的过程中引导学生在小组合作交流中分析、整理、推导验证的具体的语言的表达能力,在他们一一举例验证后用数学语言进行概括和总结出比的基本性质——比的前项和后项同时乘或除以一个相同的数(零除外),比值不变。这叫做比的基本性质。总结出性质后,出了一些判断和填空对性质进行了巩固。
接下来,在应用比的基本性质化简比时,为培养学生对知识的概括能力。出了三道较有代表性的化简比的练习,36:72(整数比)2:0.5(小数比),1/3:2/5(分数比),在做的.过程中归纳和整理出化简比的方法。
1、化简时比的前项和后项都是整数时,可以把比写成分数的形式再化简。
2、是小数先转化为整数比,再最简比。
3、是分数可以用求比值的方法化简。但结果必须是一个比。大部分的学生掌握了以上的三种解法。
但本节课的练习量太少,没有体现练习的层次性,也没足够的时间去分析求比值与化简比的区别。以后注意课堂的容量,向大密度高质量看齐。
比的基本性质教学设计理念篇十六
分数的基本性质是在学生在学习了分数意义的基础上,联系学生已学的.商不变性质和分数与除法的关系进行教学的,是约分和通分的基础。我本着让学生实践数学、体验数学,以主体性教育理念为指导,充分尊重学生在课堂上的主体地位和学生参与新知的探索过程,培养学生自主学习和发展数学思维。
【本文地址:http://www.xuefen.com.cn/zuowen/6877425.html】