2023年七年级数学相反数课件范文(19篇)

格式:DOC 上传日期:2023-11-02 19:31:13
2023年七年级数学相反数课件范文(19篇)
时间:2023-11-02 19:31:13     小编:影墨

总结是一种对自身成长和进步的记录,通过总结,我们可以看到自己的进步轨迹,同时也可以发现自己的不足之处,从而更好地改进和提升。如何写一篇较为完美的总结是每个人都面临的问题,需要我们注重方法和技巧的运用。总结不仅是个人的事情,也可以组织团队一起总结,共同提升。

七年级数学相反数课件篇一

教学建议

1.知识结构

2.重点和难点分析

(1)本节的重点是会用两直线垂直的定义判定两条直线垂直和点到直线的距离的概念.两直线垂直的定义中虽然强调“有一个角是直角”,但实际上由对顶角和邻补角的性质,可以得到其他三个角也都是直角,因此不指定哪一个角是直角,实际上无论哪一个角是直角,都可以判定两直线垂直.反过来,已知两直线垂直,那么它们的四个交角中无论哪一个角都是直角.对于点到直线的距离,一定要给学生强调距离是垂线段的长度,是一个数量,而不能误认为是垂线段本身.

(2)本节的难点是空间直线与平面、平面与平面的垂直关系.因为初一学生的空间想象能力比较差,想象不出什么情况下直线与平面、平面与平面垂直.教科书是学生在对长方体已有认识的基础上,通过进一步的观察分析,得出结论,对于这些结论,只要求学生有感性认识,不要求学生掌握,所以老师不要深挖.

3.教法建议

(1)本节仍用上节用过的相交线模型作演示(也可用我们提供的课件),在让学生观察模型时,不要只让学生看热闹,而要让他们带着问题去看,可以提出如下两个问题:(1)转动木条b时,它和不动木条a互相垂直的位置有几个?(认识垂线的唯一性);(2)当a、b相交有一个角是直角时,其他三个角也都是直角吗?然后找学生回答,以此来增加学生对两直线垂直的感性认识.

我们做了一个课件,这个课件把直线与平面、平面与平面垂直的情况,更直观的展现了学生,帮助学生对此知识的理解.

教学设计示例

一、素质教育目标

(一)知识教学点

1.使学生掌握垂线的概念。

2.会用三角尺或量角器过一点画一条直线的垂线。

3.使学生理解并掌握垂线的第一个性质。

(二)能力训练点

1.通过对垂线定义做正、反两方面的推理,培养学生的逻辑推理能力。

2.通过垂线的画法,进一步培养学生的实际动手操作能力。

(三)德育渗透点

使学生初步树立辩证唯物主义观点。

(四)通过垂线,使学生进一步体会到几何图形的对称美。

二、学法引导

1.教师教法:活动投影片演示直观教学法,引导发现法.

2.学生学法:在教师的指导下,自主式学习.

三、重点、疑点及解决办法

(一)重点

垂线概念和性质.

(二)难点

垂线的判断和性质的理解运用.

(三)疑点

垂线的性质.

(四)解决办法

通过创设情境,引导学生主动发现性质,并运用练习加以巩固.

四、课时安排

1课时

五、教具学具准备

投影仪、三角尺、量角器、自制胶片.

六、师生互动活动设计

1.通过创设情境,复习基础知识,引入课题.

2.通过教师引导提问,学生思考、互相叙述和纠正,教师点拨,练习巩固新课.

3.通过师生互答完成归纳小结.

七、教学步骤

(一)明明目标

通过画垂线,使学生既能理解并掌握垂线的概念和第一个性质,又能提高学生的动手操作能力.

(二)整体感知

以情境引入课题,以引导学生讨论思考、动手操作和教师点拨相结合完成教学任务,以练习检测为巩固检查手段,强化教学内容.

(三)教学过程

创设情境,复习引入

提出问题:如右图,(1)∠aoc的对顶角是哪个角?这两个角的关系怎样?

七年级数学相反数课件篇二

学习目标:

1、掌握数轴概念,理解数轴上的点和有理数的对应关系。

2、会正确地画出数轴,会用数轴上的点表示给定的有理数,会根据数

轴上的点读出所表示的有理数。

3、使学生初步理解数形结合的思想。

教学重点:数轴的概念。

教学难点:从直观认识到理性认识,从而建立数轴的概念,并初步体会数形结合的思想方法。

教学过程:

一、创设情境:

问题1:在一条东西走向的马路上,有一个汽车站,汽车站东3米和

师提出问题:(1)先画什么呢?

(2)先找什么?再找什么?

(3)怎样正确摆放这几者的位置呢?

问题2:怎样用数轴简明地表示这些树,电线杆与汽车站的相对位置

关系(方向、距离)

师生合作完成二、合作交流,探索新知

引导学生思考上面的问题,引导学生建立数轴的概念。

问题3:怎样正确地画一条数轴,数轴需哪几个条件?

怎样才能将不同数的点清楚表示出来?

尝试画满足条件的数轴。

可以先让学生试着画出自己想象的数轴,并把学生不同画法展示出来。先让学生交流哪种画法规范,然后师生共同分析归纳得出数轴的特征:

(1)数轴是一条直线。

(2)数轴三要素:原点

正方向

单位长度

(题目及图形在导学案上)

三、动手操作,亲身体验。

问题

(1)画出数轴并表示下列有理数

91.5-22-2.52(2)写出数轴上a、b、c、d、e表示的数

(图形在导学案上)

观察发现:(1)哪些数在原点的左边?哪些数在原点的右边?由此你会

发现什么规律?

(2)每个数到原点的距离是多少?由此你会发现什么规律?

小组讨论,交流归纳完成上述问题。

四、巩固提高

1、画出数轴并表示下列有理数。

(1)-3-2-10123

(2)-30-20-100102030

(3)155122-2-

2五、课堂小节:、数轴的概念。、数轴的三要素。、数轴的作法及数与点转化过程。

六、作业:

必做题:教科书第14面习题1、2第二题123

七年级数学相反数课件篇三

1.使学生掌握有理数减法法则并熟练地进行有理数减法运算;

2.培养学生观察、分析、归纳及运算能力。

有理数减法法则。

有理数的减法转化为加法时符号的改变。

电脑、投影仪

一、从学生原有认知结构提出问题

二、师生共同研究有理数减法法则

问题1(1)4-(-3)=______;(2)4+(+3)=______.

教师引导学生发现:两式的.结果相同,即4-(-3)=4+(+3).

思考:减法可以转化成加法运算.但是,这是否具有一般性?

归纳出有理数减法法则:减去一个数,等于加上这个数的相反数.

强调运用时注意“两变”:一是减法变为加法;二是减数变为其相反数.

三、运用举例变式练习

例1计算:(1)9-(-5);(2)0-8.(3)(-3)-1;(4)(-5)-0(5)(-3)-[6-(-2)];(6)15-(6-9)

例3p63例3

例415℃比5℃高多少?15℃比-5℃高多少?

(5)0-6;(6)6-0;(7)0-(-6);(8)(-6)-0.

4.当a=11,b=-5,c=-3时,求下列代数式的值:

(1)a-c;(2)b-c;(3)a-b-c;(4)c-a-b.

四、反思小结

1.由于把减数变为它的相反数,从而减法转化为加法.有理数的加法和减法,当引进负数后就可以统一用加法来解决。

2.不论减数是正数、负数或是零,都符合有理数减法法则.在使用法则时,注意被减数是永不变的。习题2.6知识技能1、3、4题。

本节课内容较为简单,学生掌握良好,课上反应热烈。

将本文的word文档下载到电脑,方便收藏和打印

推荐度:

点击下载文档

搜索文档

七年级数学相反数课件篇四

1.知识结构

2.重点和难点分析

一、素质教育目标

(一)知识教学点

1.使学生掌握垂线的概念。

2.会用三角尺或量角器过一点画一条直线的垂线。

3.使学生理解并掌握垂线的第一个性质。

(二)能力训练点

1.通过对垂线定义做正、反两方面的推理,培养学生的逻辑推理能力。

2.通过垂线的画法,进一步培养学生的实际动手操作能力。

(三)德育渗透点

使学生初步树立辩证唯物主义观点。

(四)通过垂线,使学生进一步体会到几何图形的对称美。

二、学法引导

1.教师教法:活动投影片演示直观教学法,引导发现法.2.学生学法:在教师的指导下,自主式学习.

三、重点、疑点及解决办法

(一)重点

垂线概念和性质.(二)难点

垂线的判断和性质的理解运用.(三)疑点

垂线的性质.(四)解决办法

通过创设情境,引导学生主动发现性质,并运用练习加以巩固.四、课时安排

1课时

五、教具学具准备

投影仪、三角尺、量角器、自制胶片.六、师生互动活动设计

1.通过创设情境,复习基础知识,引入课题.2.通过教师引导提问,学生思考、互相叙述和纠正,教师点拨,练习巩固新课.

3.通过师生互答完成归纳小结.七、教学步骤

(一)明明目标

创设情境,复习引入

提出问题:如右图,(1)∠aoc的对顶角是哪个角?这两个角的关系怎样?

七年级数学相反数课件篇五

宋老师本节课的教学设计合理,紧紧围绕教学目标,通过生活实例、观察、类比进行教学活动,由通过师生互动、生生互动的方式认识了不等式。体现了教师主导、学生主体.通过学生与教师身高比较(学生熟知的生活背景),从而引入不等式符号,体现从学生“现有发展区”向“最近发展区”发展,由浅入深地引导学生逐步认识不等式,并提供了学生进行数学活动的'时间和空间,让学生感悟到等式与不等式的联系与区别,体现了重视教学过程教学方法与育人价值的思想。在落实双基方面做了精心准备,选题由浅入深,题目典型能较好发反馈学生掌握情况。学生在本节课中的收获不仅仅停留在认识了不等式,而是通过类比发现了等式与不等式的联系与区别,掌握了合作交流、自主探究的学习方法,体验了学习成功的快乐!

需改进之处:

1.引入不够创新,过于普通;

2.个别提问的有效性不高;

3.学生资源未能很好的利用。

总之,本节课体现了执教者扎实的教学功底,较高的综合素质。通过听课和评课,我从执教者身上学到了许多好的教学策略和方法,吸收并应用在自己的教学中。

七年级数学相反数课件篇六

教学内容:正数和负数

教学目标

1、知识与技能

能判断一个数是正数还是负数,能用正数或负数表示生活中具有相反意义的量。

2、过程与方法

借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性。

3、情感态度与价值观

培养学生积极思考,合作交流的意识和能力、

教学重、难点与关键

1、重点:正确理解负数的意义,掌握判断一个数是正数还是负数的方法。

2、难点:正确理解负数的概念、

3、关键:创设情境,充分利用学生身边熟悉的事物,加深对负数意义的理解。

教具准备

投影仪

教学过程

一、课堂引入

二、讲授新课

(3)、数0既不是正数,也不是负数,但0是正数与负数的分界数、

(6)、请学生解释课本中图1、1-2,图1、1-3中的正数和负数的含义、

(7)、你能再举一些用正负数表示数量的实际例子吗?

(8)、例如,通常用正数表示汽车向东行驶的路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量。

三、巩固练习

课本第3页,练习1、2、3、4题。

四、课堂小结

为了表示现实生活中的具有相反意义的量,我们引进了负数、正数就是我们过去学过的数(除0外),在正数前放上“-”号,就是负数,但不能说:“带正号的数是正数,带负号的数是负数”,在一个数前面添上负号,它表示的是原数意义相反的数、如果原数是一个负数,那么前面放上“-”号后所表示的数反而是正数了,另外应注意“0”既不是正数,也不是负数。

五、作业布置

1、课本第5页习题1、1复习巩固第1、2、3题。

七年级数学相反数课件篇七

教学目标:

知识与技能目标:

2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根

过程与方法目标:

1.通过学习算术平方根,建立初步的数感和符号感,发展抽象思维。

2.通过拼大正方形的活动,体验解决问题的方法的多样性,发展形象思维。

情感与态度目标:

1.通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的。

2.通过探究活动培养动手能力和锻炼克服困难的意志,建立自信心,提高学习热情。

教学重点:算术平方根的概念。

教学难点:根据算术平方根的概念正确求出非负数的算术平方根。

教学过程:

一、创设情境导入新课

这节课我们先学习有关算术平方根的概念.

[设计意图]使学生感受到“神五”的成功发射这一伟大壮举,竟然与我们将要学习的本章知识有着密切的联系,激发起学生的好奇心和学习兴趣,感受到学习算术平方根的必要性。

请看下面的问题.

多媒体展示教科书第160页的问题

问题一:

很容易算出画布的边长等于5dm。

说说,你是怎样算出来的?

(边问边展示幻灯片)

[设计意图]通过幻灯片的演示,直观的把实际问题,抽象为数学问题,为学习算术平方根提供背景和素材,进而引入算术平方根的概念。

二、自主探究合作交流

出示自学提纲:

1、算术平方根以及有关概念

2、为什么规定:0的算术平方根为0。

3、自学例1,先试做后对照。

4、表示的意义是什么?它的值是多少?用等式怎样表示?

5、144的算术平方根是多少?怎样用符号表示?

学生活动:独立思考1、2、3、4、5、(4分钟)

小组交流1、答案2、提出疑难问题

注意:每个小组作好纪录(4分钟)

全班展开交流提出疑难问题

七年级数学相反数课件篇八

表达解决问题的方法;通过用绝对值或数轴对两个负数大小的比较,让学生学会尝试评价两种不同方法之间的差异。

3、情感态度与价值观:

借助数轴解决数学问题,有意识地形成“脑中有图,心中有数”的数形结合思想。通过“做一做“议一议”“试一试”问题的思考及回答,培养学生积极参与数学活动,并在数学活动中体验成功,锻炼学生克服困难的意志,建立自信心,发展学生清晰地阐述自己观点的能力以及培养学生合作探索、合作交流、合作学习的新型学习方式。

二、教学重点和难点

理解绝对值的概念;求一个数的绝对值;比较两个负数的大小。

三、教学过程:

1、教师检查组长学案学习情况,组长检查组员学案学习情况。(约5分钟)2.在组长的组织下进行讨论、交流。(约5分钟)3、小组分任务展示。(约25分钟)4、达标检测。(约5分钟)5、总结(约5分钟)

四、小组对学案进行分任务展示

(一)、温故知新:

(二)小组合作交流,探究新知

1、观察下图,回答问题:(五组完成)

大象距原点多远?两只小狗分别距原点多远?

归纳:在数轴上,一个数所对应的点与原点的距离叫做这个数的。一个数a的绝对值记作:.

4的绝对值记作,它表示在上与的距离,所以|4|=。

2、做一做:

(1)、求下列各数的绝对值:(四组完成)-1.5,0,-7,2(2)、求下列各组数的绝对值:(一组完成)

(1)4,-4; (2)0.8,-0.8;

从上面的结果你发现了什么?

3、议一议:(八组完成)

(1)|+2|=,

你能从中发现什么规律?

小结:正数的绝对值是它,负数的绝对值是它的,0的绝对值是。

4、试一试:(二组完成)

若字母a表示一个有理数,你知道a的绝对值等于什么吗?

(通过上题例子,学生归纳总结出一个数的绝对值与这个数的关系。)

5:做一做:(三组完成)

1、(1)在数轴上表示下列各数,并比较它们的大小:

-3,-1

(2)求出(1)中各数的绝对值,并比较它们的大小

(3)你发现了什么?

2、比较下列每组数的大小。

(1)-1和–5;(五组完成)(2)?

(3)-8和-3(七组完成)

5和-2.7(六组完成)6五、达标检测:

1:填空:

绝对值是10的数有()

|+15|=()|–4|=()

|0|=()|4|=()2:判断(1)、绝对值最小的数是0。()(2)、一个数的绝对值一定是正数。()(3)、一个数的绝对值不可能是负数。()

(4)、互为相反数的两个数,它们的绝对值一定相等。()(5)、一个数的绝对值越大,表示它的点在数轴上离原点越近。()

六、总结:

1绝对值:在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值.

2.绝对值的性质:正数的绝对值是它本身;

负数的绝对值是它的相反数;0的绝对值是0.

3、会利用绝对值比较两个负数的大小:两个负数比较大小,绝对值大的反而小.

七、布置作业

p50页,知识技能第1,2题.

七年级数学相反数课件篇九

教学目标:

一、知识和能力:

初步认识角,知道角的各部分名称,能用尺子和三角板画角。

二、过程和方法:

巧妙创设情境,通过寻找生活中的角过渡到数学意义上的角。通过找角,制作角,做角变大变小的游戏,学唱画角儿歌,理解角的各部分名称,加深对角的理解。利用小圆片和星星管做及时反馈。

三、情感态度和价值观:

让学生了解到生活中处处有角,通过小组讨论,培养学生的合作意识。唱儿歌培养学生的学习兴趣,亲手制作角,培养学生动手操作的应用意识。

教学重点:

角的特点和画法

教学难点:

正确画角

教学设想:

一、动手折角,做活动角,培养孩子动手操作能力

二、观察生活中的角,找找生活中的角,数学与生活联系

四、精心设计教具和学生学具

五、语言力求生动形象,儿童化

教学实录

一、设境征问(创设情境,激发兴趣)

师:上课之前,老师带你们去平面图形王国走一走,你们喜欢吗?

生:(齐)喜欢!

师:这些图形有谁认识呢?举手说一说

生:正方形长方形圆三角形!

师:是的,你们太棒啦,这些都是我们学过的`平面图形。今天老师带领大家学习另外一种新的平面图形朋友,叫做角。现在让我们一同来欣赏一下生活中的角吧!

生:(一同欣赏,共同发现)……

师:从刚刚我们欣赏到的角,你发现他们都有什么共同特点吗?

生:(小组讨论汇报结果)都有一个尖尖的地方,两条线!

师:想一想在生活中你都在哪里见到过角呢?

生:(共同思考,各言其说)

师:我们给这个尖尖的地方和两条线都起个名字,好吗?

生:好!(群情激昂共同起名字各言其说)

师:我们给这个尖尖的地方叫做角的顶点,两条线叫做角的两条边。这就是我们今天学习的内容:角的初步认识(板书课题)同学们认真观察总结,每个角有几个顶点,几条边呢?(教师统一结论引出课题)

生:一个顶点,两条边

二、自学悟道(数学乐园我来挑战)

生:好!(独自思考做判断把答案写在圆片卡上)

师:掌握学生做题情况点名学生回答教师纠错学生问题(生纷纷举手)

生1:第2,3,5不是角,1和4是角

生2:要画出角的顶点和角的边

师:你真聪明。画出角的顶点和两条边,现在请你在自己的圆片纸上自己也独自完成画一个角。(教师巡视)

生:共同尝试画角

生:(认真观看画角步骤)

师:教师板书演示画角过程

生:每人再画两个角(教师巡视)

师:大家画的角都太好啦,现在我们就来放松一下,共同唱一首画角的儿歌,好吗?

生:好!(师生一起边拍手边唱儿歌,心灵灵动舒爽,身体舒展)

小小角,真简单;一个顶点两条边;

画角时,要牢记;先画顶点再画边。

三:聚智求解(巩固提升夯实基础)

生:用手中的小圆片和星星管动手制作角(教师巡视)

师:(展示学生用圆片和星星管制作的角给大家看。)大家做的角都很好,老师这里也有一个比你们的都要长的星星管,这个星星管有着神奇的魔力,它会变大也会变小,你信吗?(和孩子们一起做角变大变小的游戏)

四、分享验证,形学成问(本课小结,深化内容)

师:游戏乐园,第三关,假如你是角,你会怎么介绍自己?(小结新知)

生1:hi,大家好,我是角,我有一个顶点,两条边。

总结:把自己当做角来总结知识,不仅达到了本节课课堂小结的目的,把课堂还给学生,充分体现了学生的主体地位而且使本节课教学方法新颖独特,方法多样,角度多元化。把总结新知变为角色扮演,使课堂结尾得到幽默和升华。是舒能课堂舒和能的保障。

七年级数学相反数课件篇十

1知识与技能:

使学生理解和掌握整十数除整十数、几百几十数(商一位数)的口算方法,能正确地进行计算。

2过程与方法:

通过观察、操作、讨论的活动,使学生经历探究口算方法的全过程。

3情感态度与价值观:

让学生感受数学与生活的联系,培养学生用数学知识解决简单实际问题的能力。

教学重难点。

1教学重点:

掌握用整十数除的口算方法。

2教学难点:

理解用整十数除的口算算理。

教学工具。

多媒体设备。

教学过程。

1复习引入。

口算。

20×3=7×50=6×3=。

20×5=4×9=8×60=。

24÷6=8÷2=12÷3=。

42÷6=90÷3=3000÷5=。

2新知探究。

1.教学例1。

有80面彩旗,每班分20面,可以分给几个班?

(1)提出问题,寻找解决问题的方法。

师:从中你能获取什么数学信息?

师:怎样解决这个问题?

(2)列式80÷20。

(3)学生独立探索口算的方法。

师:怎样算80÷20呢,请同学们先自己想一想、算一算,再说给同桌听一听。

学生汇报:

预设学生可能会有以下两种口算方法:

a.因为20×4=80,所以80÷20=4这是想乘算除。

b.因为8÷2=4,所以80÷20=4这是根据计数单位的组成。

为什么可以不看这个“0”?(80÷20可以想“8个十里面有几个二十?”)。

这样我们就把除数是整十数的转化为我们已经学过的表内除法。

(4)师小结:

同学们有的用乘法算除法的,也有用表内除法来想的,都很好,那么你喜欢哪种方法呢?

把你喜欢的方法说给同桌听。

(5)检查正误。

师:我们分的结果对不对?请同学们看屏幕(课件演示分的结果)。

(6)用刚学会的方法再次口算,并与同桌交流你的想法。

40÷2020÷1060÷3090÷30。

(7)探究估算的方法。

出示:83÷20≈80÷19≈。

师:你能知道题目要求我们做什么吗?你怎么知道的?你是怎样计算的?和同学们交流一下。

生:求83除以20、80除以19大约得多少,从题目中的约等号看出不用精确计算。

师:谁想把你的方法跟大家说一说。

预设:83接近于80,80除以20等于4,所以83除以20约等于4。

19接近于20,80除以20等于4,所以80除以19约等于4。

2.教学例2。

(1)创设情境引出问题。

师:谁会解决这个问题?

150÷50。

(2)小组讨论口算方法。

(3)你是怎么这样快就算出的呢?

a.因为15÷5=3,所以150÷50=3。

b.因为3个50是150,所以150÷50=3。

这一题跟刚才分彩旗的口算方法有不同吗?

都是运用想乘算除和表内除法这两种方法来口算的。

师:在解决分彩旗和刚才的问题中,我们共同探讨了除法的口算方法,(板题:口算除法)口算时,可以用自己喜欢的方法来口算。

口算练习:150÷30240÷80300÷50540÷90。

3.估算。

(1)探计估算的方法。

师:你能知道题目要求我们做什么吗?

你能估吗?请先估算,再把你的估算方法与同伴交流,看看能否互相借鉴。

(2)谁想把你的方法跟大家说一说。

(3)总结方法:把被除数和除数都看作与原数比较接近的整十数再用口算方法算。

(4)判断估算是否正确:122÷60=2349÷50≈8为什么不正确?

3巩固提升。

1.独立口算。

观察每道题,怎样很快说出下面除法算式的商?

如果估算的话把谁估成多少。

2.算一算、说一说。

(1)除数不变,被除数乘几,商也乘几。

(2)被除数不变,除数乘几,商反而除以几。

3.解决问题。

(1)一共要寄240本书,每包40本。要捆多少包?

你能找到什么条件、问题。你会解决吗?

240÷40=6(包)。

答:要捆6包。

(2)这个小朋友也是一个爱看书的好孩子,她在看一本故事书。

出示条件:一共有120个小故事,每天看1个故事。

问题:看完这本书大约需要几个月?

问:要求看完这本书大约需要几个月?必须要知道哪些条件,你会求吗?

120÷30=4(个)。

答:看完这本书大约需要4个月。

课后小结。

这节课你有什么收获?还有什么问题?

本节课学习了整十数除整十数、几百几十数(商一位数)的口算方法,能正确地进行计算。

板书。

口算除法。

有80面彩旗,每班分20面,可以分给几个班?

80÷20=。

七年级数学相反数课件篇十一

教学目的:

(一)知识点目标:

1.了解正数和负数在实际生活中的应用。

2.深刻理解正数和负数是反映客观世界中具有相反意义的理。

3.进一步理解0的特殊意义。

(二)能力训练目标:

1.体会数学符号与对应的思想,用正、负数表示具有相反意义的量。

2.熟练地用正、负数表示具有相反意义的量。

(三)情感与价值观要求:

通过师生合作,联系实际,激发学生学好数学的热情。

教学重点:能用正、负数表示具有相反意义的量。

教学难点:进一步理解负数、数0表示的量的意义。

教学方法:小组合作、师生互动。

教学过程:

创设问题情境,引入新课:分小组派代表,注意数学语言规范。

1.认真想一想,你能用学过的知识解决下列问题吗?

某零件的直径在图纸上注明是,单位是毫米,这样标注表示零件直径的标准尺寸是毫米,加工要求直径可以是毫米,最小可以是毫米。

2.下列说法中正确的()。

a、带有“一”的数是负数;b、0℃表示没有温度;。

c、0既可以看作是正数,也可以看作是负数。

d、0既不是正数,也不是负数。

[师]这节课我们就来继续认识正、负数及它们在生活中的实际意义,特别是数0。

讲授新课:

例1.仔细找一找,找了具有相反意义的量:

甲队胜5场;零下6度;向南走50米;运进粮食40吨;乙队负4场;零上10度;向北走20米;支出1000元;收入3500元。

(2)下列国家的商品进出口总额比上年的变化情况是:

美国减少6.4%,德国增长1.3%,法国减少2.4%,

英国减少3.5%,意大利增长0.2%,中国增长7.5%。

写出这些国家20商品进出口总额的增长率。

复习巩固:练习:课本p6练习。

课时小结:这节课我们学习了哪些知识?你能说一说吗?

课后作业:课本p7习题1.1的第3、6、7、8题。

课后反思:————。

七年级数学相反数课件篇十二

1.掌握相反数的概念;。

3.体验数形结合思想;。

4.根据相反数的意义化简符号.

二、知识回顾。

1.数轴的三要素是什么?在下面画出一条数轴:

原点、正方向和单位长度.

2.在上面的数轴上描出表示5、—2、—5、+2这四个数的点.

3.观察上图并填空:数轴上与原点的距离是2的点有2个,这些点表示的数是2、-2;与原点的距离是5的点有2个,这些点表示的数是5、-5.

三、新知讲解。

1.相反数的几何意义。

数轴上表示互为相反数的两个数的点关于原点对称.

2.相反数的概念。

像2和—2、5和—5、3和—3这样,只有符号不同的两个数叫做互为相反数.把其中一个数叫做另一个数的相反数.特别地,0的相反数是0.

四、典例探究。

1.相反数的几何意义(相反数的引入)。

【例1】如果a是一个正数,那么数轴上与原点的距离是a的点有两个,即一个表示a,另一个是,它们分别在原点的左边和右边,我们说,这两点关于.

a和互为相反数,也就是说,-a是的'相反数.

总结:互为相反数的两个数分别位于原点的两侧,且到原点的距离相等,我们也说数轴上表示互为相反数的两个数的点关于原点对称.

练1数轴上表示相反数的两个点和原点的距离.

2.相反数的概念辨析。

【例2】判断下列说法正误.

(1)-5是相反数.

(2)-5是5的相反数,5不是-5的相反数.()。

(3)符号相反的两个数叫做互为相反数.()。

总结:理解相反数的定义,要注意以下几点:

2.是相反数的两个数之间的关系是相互的,如的相反数是,反之的相反数是;。

3.“只有”指的是仅仅是符号不同,而数字(绝对值)是相同的,如-3和5不是相反数,因为它们的数字不同.

练2辨析:因为向东6米和向西3米是一对相反意义的量,如果规定向东是正方向,向东6米可以记作+6米,向西3米可以记作-3米,所以+6和-3互为相反数.()。

七年级数学相反数课件篇十三

2.进一步培养学生分类讨论的思想和观察、归纳与概括的能力.

3.初步认识对立统一的规律。

教学建议。

一、重点、难点分析。

本节的重点是了解的意义,理解的代数定义与几何定义的一致性.难点是多重符号的化简.“只有符号不同的两个数”中的“只有”指的是除了符号不同以外完全相同(也就是下节课要学的绝对值相同)。不能理解为只要符号不同的两个数就互为。另外,“0的是0”也是定义的一部分。关于“数a的是-a”,应该明确的是-a不一定是正数,a不一定是正数。关于多重符号的化简,如果一个正数前面有偶数个“-”号,可以把“-”号一起去掉;一个正数前面有奇数个“-”号,则化简符号后只剩一个“-”号。

二、知识结构。

的定义的性质及其判定的应用。

三、教法建议。

这节课教学的主要内容是互为的概念。

由于教材先讲,后讲绝对值,所以的定义只是形式上的描述,主要通过的几何意义理解的概念。教学中建议,直接给出的几何定义,通过实例了解求一个数的的方法。按着数轴————绝对值的顺序教学,可充分利用数轴使数与形更好地结合起来。

四、的相关知识。

1.的意义。

(1)只有符号不同的两个数叫做互为,如-与1999互为。

(2)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数叫做互为。如5与-5是互为。

(3)0的是0。也只有0的是它的本身。

(4)是表示两个数的相互关系,不能单独存在。

2.的表示。

在一个数的前面添上“-”号就成为原数的。若表示一个有理数,则的表示为-。在一个数的前面添上“+”号仍与原数相联系同。例如,+7=7,特别地,+0=0,-0=0。

3.的特性。

若互为,则,反之若,则互为。

4.多重符号化简。

(1)的意义是简化多重符号的依据。如是-1的,而-1的为+1,所以。

(2)多重符号化简的结果是由“-”号的个数决定的。如果“-”号是奇数个,则。

果为负;如果是偶然数个,则结果为正。可简写为“奇负偶正”。

例如,。由此可见,化简一个数就是把多重符号化成单一符号,若结果是“+”号,一般省略不写。

七年级数学相反数课件篇十四

1、会从实际问题中抽象出数学模型,会用一元一次不等式解决实际问题;

3、在积极参与数学学习活动的过程中,初步认识一元一次不等式的应用价值,形成实事求是的态度和独立思考的习惯。

教学重点:

寻找实际问题中的不等关系,建立数学模型。

教学难点:

弄清列不等式解决实际问题的思想方法,用去括号法解一元一次不等式。

教学过程(师生活动)

探究新知1、分组活动。先独立思考,理解题意。再组内交流,发表自己的观点。最后小组汇报,派代表论述理由。

2、在学生充分发表意见的基础上,师生共同归纳出以下三种采购方案:

(1)什么情况下,到甲商场购买更优惠?

(2)什么情况下,到乙商场购买更优惠?

(3)什么情况下,两个商场收费相同?

3、我们先来考虑方案:

设购买x台电脑,如果到甲商场购买更优惠。

问题1:如何列不等式?

问题2:如何解这个不等式?

去括号,得

去括号,得:6000+4500x-450044800x

移项且合并,得:-300x1500

不等式两边同除以-300,得5

答:购买5台以上电脑时,甲商场更优惠。

4、让学生自己完成方案(2)与方案(3),并汇报完成情况。

教师最后作适当点评。

问题1:这个问题比较复杂。你该从何入手考虑它呢?

分组活动。先独立思考,再组内交流,然后各组汇报讨论结果。

最后教师总结分析:

1、如果累计购物不超过50元,则在两家商场购物花费是一样的;

2、如果累计购物超过50元但不超过100元,则在乙商场购物花费小。

3、如果累计购物超过100元,又有三种情况:

(1)什么情况下,在甲商场购物花费小?

(2)什么情况下,在乙商场购物花费小?

(3)什么情况下,在两家商场购物花费相同?

上述问题,在讨论、交流的基础上,由学生自己解决,教师可适当点评。

总结归纳:

通过体验买电脑、选商场购物,感受实际生活中存在的不等关系,用不等式来表示这样的关系可为解决问题带来方便。由实际问题中的不等关系列出不等式,就把实际问题转化为数学问题,再通过解不等式可得到实际问题的答案。

布置作业:

教科书第126页习题9.2第1题(1)(2)第3题1、2。

七年级数学相反数课件篇十五

2.使学生掌握求一个已知数的;。

3.培养学生的观察、归纳与概括的能力.

教学重点和难点。

重点:理解的意义,理解的代数定义与几何定义的一致性.

难点:多重符号的化简.

课堂教学过程设计。

一、从学生原有的认知结构提出问题。

二、师生共同研究的定义。

特点?

引导学生回答:符号不同,一正一负;数字相同.

像这样,只有符号不同的两个数,我们说它们互为,如+5与。

应点有什么特点?

引导学生回答:分别在原点的两侧;到原点的距离相等.

这样我们也可以说,在数轴上的原点两旁,离开原点距离相等的两个点所表示的数互为.这个概念很重要,它帮助我们直观地看出的意义,所以有的书上又称它为的几何意义.

3.0的是0.

这是因为0既不是正数,也不是负数,它到原点的距离就是0.这是等于它本身的的数.

三、运用举例变式练习。

例1(1)分别写出9与-7的;。

例1由学生完成.

在学习有理数时我们就指出字母可以表示一切有理数,那么数a的如何表示?

引导学生观察例1,自己得出结论:

数a的是-a,即在一个数前面加上一个负号即是它的.

1.当a=7时,-a=-7,7的是-7;。

2.当-5时,-a=-(-5),读作“-5的”,-5的是5,因此,-(-5)=5.

3.当a=0时,-a=-0,0的是0,因此,-0=0.

么意思?引导学生回答:-(-8)表示-8的;-(+4)表示+4的;。

例2简化-(+3),-(-4),+(-6),+(+5)的符号.

能自己总结出简化符号的规律吗?

括号外的符号与括号内的符号同号,则简化符号后的数是正数;括号内、外的符号是异号,则简化符号后的数是负数.

课堂练习。

1.填空:

(1)+1.3的是______;(2)-3的是______;。

(5)-(+4)是______的;(6)-(-7)是______的.

2.简化下列各数的符号:

-(+8),+(-9),-(-6),-(+7),+(+5).

3.下列两对数中,哪些是相等的数?哪对互为?

-(-8)与+(-8);-(+8)与+(-8).

四、小结。

指导学生阅读教材,并总结本节课学习的主要内容:一是理解的定义——代数定义与几何定义;二是求a的;三是简化多重符号的问题.

五、作业。

1.分别写出下列各数的:

2.在数轴上标出2,-4.5,0各数与它们的.

3.填空:

(1)-1.6是______的,______的是-0.2.

4.化简下列各数:

5.填空:

(3)如果-x=-6,那么x=______;(4)如果-x=9,那么x=______.

课堂教学设计说明。

教学过程是以《教学大纲》中“重视基础知识的教学、基本技能的训练和能力的培养”,“数学教学中,发展思维能力是培养能力的核心”,“坚持启发式,反对注入式”等规定的精神,结合教材特点,以及学生的学习基础和学习特征而设计的.由于内容较为简单,经过教师适当引导,便可使学生充分参与认知过程.由于“新”知识与有关的“旧”知识的联系较为直接,在教学中则着力引导观察、归纳和概括的过程.

探究活动。

有理数a、b在数轴上的位置如图:

将a,-a,b,-b,1,-1用“”号排列出来.

分析:由图看出,a1,-1。

解:在数轴上画出表示-a、-b的点:

由图看出:-a-1。

点评:通过数轴,运用数形结合的方法排列三个以上数的大小顺序,经常是解这一类问题的最快捷,准确的方法.

七年级数学相反数课件篇十六

本节课是在七年级上册学习过线、角的有关知识的基础上,进一步研究两直线位置关系的第一课时。对顶角是几何求解、证明中的一个基本图形,其中对顶角相等也是证明中常用的结论,以此实现角之间的相互转化。内容相对简单,但又非常重要。

从剪刀引入相交线,从相交线引导学生发现对顶角并探究其关系。但是,在从相交线引出对顶角概念时,学生所描述的位置关系不能切合老师的预设(或课本的定义),而老师又不想一开始就被动,所以都表现得很“主动”,导致这个环节有点别捏。

在辨别给出图形是否为对顶角的一组题目中,果然如课前所料,学生的几何语言运用不够熟练、严谨,我耐心地纠正,原因是几何开始一定要让学生重视几何语言的表述,养成好习惯。在这个题目中我始终让学生对照定义辨别,加强认识。在第二个问题中,对于如何有条理地不重不漏地找对应角这个问题涉及分类策略问题,为防止跑题,所以简单提及,并未在课堂上解决。

探究对顶角相等这个性质是本课的重难点,所以我的设计是先画图量角,让学生有个感性认识,同时让学生认识到度量是有误差的,所以叫学生记下角的读数,提出可不可以根据一个角的'度数,计算出其对顶角的度数这样一个问题。其实这个问题设计是承上启下的,因为证明比较困难,所以通过具体的度数计算以作铺垫。结果证明这个设计是利于学生的思考的,因为在证明时我听到他们说出“和刚才计算一样”的话。

七年级数学相反数课件篇十七

相反数这一课是有理数第三节的内容,本节课的学习目标是借助数轴了解相反数的概念,相反数的代数意义和几何意义;掌握一对相反数的特点并会写出已知数的相反数;会化简一个数的多重复号。学习的重难点是理解相反数的意义。

本节课首先复习数轴的有关知识,在让学生在数轴上标出+5,-5,+2,-2,观察+5,-5到原点的距离,+2,-2到原点的距离。引出相反数的.概念,加深对概念的理解。归纳相反数的意义,代数意义和几何意义。从学生的学习效果来看,学生会求一个数的相反数,也会求数a的相反数,但是有些学生在求用字母表示的数的相反数时往往会犯几类错误,第一,求a+b的相反数,学生会写成a-b,或者把a-b的相反数写成a+b;第二,求a-b的相反数时,写成-a-b,不把a-b用括号括起来。

学习了负数之后,学生存在一个理解的误区,容易误认为带负号的数就是负数。比如学生通常会认为-a就是负数,事实上,-a是什么数取决于a。如果a是正数,那么-a是负数;如果a是负数,那么-a是正数。

还有部分学生对相反数的意义理解不清,一、相反数必须是成对出现的,不能单独存在,而单独的一个数不能说成相反数;二、“只有”是指除符号以外,两个数完全相同,应与“只要符号不同”区分开,如+3和-3互为相反数,而+3与-2虽然符号不同,但它们不是相反数;三、对于相反数的代数意义不会运用,比如题目告诉我们说a+b与a-b互为相反数,学生根据这一句话不会列式,这可能是对相反数的代数意义理解不深。

通过这节课的学习和练习,我认为知识的学习,不仅是要把每个概念弄清楚,更重要的是这些概念的意义和运用。会正确的解题就是要求学生能够把学到的知识活学活用,因此,在今后的教学中,要加强训练,通过练习来巩固学生学到的知识点。

七年级数学相反数课件篇十八

本节课我是根据“新课标”的教学思想设计并实施的。我尽力激发学生学习的积极性,向学生提供活动的机会,帮助他们在自主探索和合作交流的过程中真正地理解和掌握基本的数学知识和技能、数学思想和方法,获得广泛的数学活动经验。在整个教学过程中,学生是学习的主人,我是组织者、引导者和合作者。

在整节课的教学中我觉得做得比较好的地方是:一个操作、三个讨论。

相反数这节课是在数轴一节课后学习的,而数轴又是初中数形结合的一个重要图形,所以我重点利用数轴对相反数进行讲解。我让学生在一张白纸上画数轴,并将数轴沿原点对折,感受互为相反数的两数的'对称性。通过对折还比较容易地解决了0的相反数是0这一难点。(因为对折后原点与本身重合。)。

本节课我设计了三个地方让学生分组讨论。第一次讨论是通过观察两个互为相反数的两数,讨论它们的异同点及在数轴上的位置关系;第二次讨论是让学生讨论是否任何有理数都有相反数;第三次讨论是让学生讨论化简双重符号的数的规律。通过参与其中某些组的讨论,我感觉到学生通过讨论既加深了对数学知识的理解,又增强的合作交流的能力。特别是对0是否有相反数的讨论,同学们都很投入,讨论得很激烈,有的认为有,有的认为无,他们都各持己见,最后在我的引导下得出0的相反数是0的结论。

本节课的教学我也觉得有不足的地方。首先是我的普通话讲得不够流利,在表达感情时受到了一定的影响,我以后在这方面会多作锻炼。其次就是我设置的三次讨论的时间都比较短,每次都只有2——3分钟,学生讨论得不够深入。可能设置少一两次讨论,而讨论的时间长一点会更好。最后就是这节课针对中考的练习少了一点。这些都是我以后在教学中要加强的。

七年级数学相反数课件篇十九

1了解相反数的概念。

3根据a的相反数是-a,能把多重符号化成单一符号。

二、教学过程。

师:请同学们画一条数轴,在数轴上找出表示+6和-6的点,看一看表示这两个数的点有什么特点,这两个数本身有什么特点。先独立思考,然后在小组里交流。

生:人人动用手画数轴,独立思考后,在小组内进行交流。

师:深入了解各小组的交流情况,讨论结束后,提问1、2人,帮助全班同学理清思考问题的思路。

师:请同学们阅读课本,知道什么叫相反数,给出一个数能求出它的相反数。

生:阅读课本第59页,并完成练习一第(1)~(4)题。

师:提问检查学生的学习情况,强调“0的相反数是0”也是相反数定义的`一部分。

师:请同学们先想一想,a可以表示一个什么数,a与-a有什么关系。然后阅读课本第60页,并完成剩余的练习题,由小组长负责检查练习情况。

师:认真了解各小组的学习情况,特别是对简化符号的题和学习困难的学生,要重点对待。

生:认真思考,阅读课本,完成练习。小组长、教师对学习困难生及时进行辅导。

师:请同学们先小结一下本节课的学习内容。然后,看一看习题2.3中,哪些题你能不动笔说出结果,请在四人小组里互相说一说。(除a组第2题外都可以直接说出结果)。

生:小结。完成习题1.3中的有关练习。

练习。

1在下列各式中分别填上适当的符号,使等号左右两端的数相等;

-(+19)=____________19;

____________10.2=+(+10.2);

____________(+12)=-12;

____________(-25)=+25。

2把下面的多重符号化成单一符号:

-[-(-0.3)]=____________;

-[-(+4)]=____________;

+[+(+5)]=____________;

-[+(-50)]=____________。

3根据a+(-a)=0,那么(-8)+x=0可得x=________________________;由y+(+3.75)=0,可得y=____________。

4下面的说法对不对?请举列说明。

(1)一个有理数的相反数的相反数就是这个有理数本身。

(2)一个有理数的相反数一定比原来的有理数小。

(3)-a是一个负数。

作业。

在数轴上记出2,-4.5,0各数与它们的相反数,并指出表示这些数的点离开原点的距离是多少。

【本文地址:http://www.xuefen.com.cn/zuowen/6868318.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档