精选初一数学湘教版教案(模板17篇)

格式:DOC 上传日期:2023-11-02 12:20:10
精选初一数学湘教版教案(模板17篇)
时间:2023-11-02 12:20:10     小编:书香墨

教案可以帮助教师预测学生的学习反应,从而更好地调整教学策略。教案中的教学方法和教学资源要与教学目标相匹配。《历史》教案范文

初一数学湘教版教案篇一

情感态度:通过师生、生生合作学习,促进交流,激发兴趣。

a、准备活动:

1、师生游戏“唱反调”:我们知道在小学学过的0以外的数前面加上负号“-”的数就是负数。现在我说一个正数,你们给它添上“-”号说出来,我如果说一个负数,你们反过来说出对应的正数。+3、+1、-1/2、-18.4、0.75,学生很快说出-3、-1、1/2、18.4、-0.175。

2、上述“唱反调”的两个数3与-3,1与-1,-1/2与1/2……,在数轴上对应的点的位置如何?可建议生择两组在数轴上表示以后作答(在原点两侧到原点的距离相等,真可谓从原点背道而驰“唱反调”)。

提问:数轴上与原点距离是4的点有几个?这些点表示的数是多少?

归纳:设a是一个正数,数轴上与原点距离是a的点有两个,分别在原点左右表示-a和a,我们说这两点关于原点对称。

b、学习概念:

1、像3和-3,1和-1,-1/2和1/2这样,只有负号不同的两个数给它一个什么样的关系名称合适呢?生:互为相反数,师:很好,我们把上述只有负号不同的两个数叫做互为相反数(oppositenumber)。也就是说3的相反数是-3,-3的相反数是3。可见:相反数是成对出现的,不能单独存在。

一般地,a和-a互为相反数。“-a”可读成“a的相反数”。

2、在数轴上看,表示相反数的两个点和原点有什么关系?(关于原点对称)。

3、从上述意义上看,你看如何规定0的相反数更为合理?

商讨得:0的相反数仍是0,即0的相反数等于它本身。

c、应用举例:

1、两人一组,一人任说一个有理数,请同伴说出它的相反数。

2、如果a=-a,那么表示数a的点在数轴上的什么位置?a=?(a=0)。

3、在正数前面添上“-”号,就得到这个数的相反数,同样地,在任意一个数前面添上“-”号,新的数就表示原数的相反数,如:-(+5)=-5,-(-5)=5,-0=0。

4、化简下列各数p124练习,你愿意继续尝试化简下列各式吗?

+(-2/3),-(-2/3),-(+2/3),+(+2/3)。

你能试着总结规律吗?(括号内外同号结果为正,括号内外异号结果为负)。

5、若a=-5,则-a=;若-x=7,则x=。

课题应用举例中的2。

活动引例应用举例中的4(学生练习),5。

概念。

1、教科书p18/3;。

2、如图是正方形纸盒的侧面展示图,请你在正方形内分别填上6个不同的数,使折成正方体后相对的面上的两个数互为相反数(写出满足条件的一种情形即可)。

初一数学湘教版教案篇二

1.图形的三种变化方式:点动成_______,线动成_______,_______动成体.

2.矩形绕其一边旋转一周形成的几何体叫______________,直角三角形绕其中一条直角边旋转一周形成的几何体叫_______.

3.右图中的图形2可以看作图形1向下平移_______格,再向左平移格得到.

4.下列现象中是平移的是()。

a.将一张纸沿它的中线折叠。

b.飞碟的快速转动。

c.电梯的上下移动。

d.翻开书中的每一页纸张。

初一数学湘教版教案篇三

1.火车票价是根据两站距离的远近而定的,距离越远,票价越高.如果一段铁路上共有五个站点,每两站间的距离都不相等,那么这段铁路上的火车票价共有________种.

知识点2线段、直线的性质。

2.建筑工人砌墙时,经常在两个墙角的位置分别插一根木桩,然后拉一条直的参照线.这个实例体现的数学知识是()。

a.两点之间,线段最短。

b.过已知三点可以画一条直线。

c.一条直线通过无数个点。

d.两点确定一条直线。

初一数学湘教版教案篇四

【学习目标】:。

1、掌握有理数的概念,会对有理数按一定标准进行分类,培养分类能力;。

2、了解分类的标准与集合的含义;。

3、体验分类是数学上常用的处理问题方法;。

【学习重点】:正确理解有理数的概念。

【学习难点】:正确理解分类的标准和按照一定标准分类。

初一数学湘教版教案篇五

2,通过归纳相反数在数轴上所表示的点的特征,培养归纳能力;。

3,体验数形结合的思想。

教学难点归纳相反数在数轴上表示的点的特征。

知识重点相反数的概念。

教学过程(师生活动)设计理念。

设置情境。

引入课题问题1:请将下列4个数分成两类,并说出为什么要这样分类。

4,-2,-5,+2。

允许学生有不同的分法,只要能说出道理,都要难予鼓励,但教师要做适当的引导,逐渐得出5和-5,+2和-2分别归类是具有较特征的分法。

(引导学生观察与原点的距离)。

思考结论:教科书第13页的思考。

再换2个类似的数试一试。

培养学生的观察与归纳能力,渗透数形思想。

深化主题提炼定义给出相反数的定义。

学生思考讨论交流,教师归纳总结。

规律:一般地,数a的相反数可以表示为-a。

思考:数轴上表示相反数的两个点和原点有什么关系?

练一练:教科书第14页第一个练习体验对称的图形的特点,为相反数在数轴上的特征做准备。

深化相反数的概念;“零的相反数是零”是相反数定义的一部分。

强化互为相反数的数在数轴上表示的点的几何意义。

给出规律。

解决问题问题3:-(+5)和-(-5)分别表示什么意思?你能化简它们吗?

学生交流。

分别表示+5和-5的相反数是-5和+5。

练一练:教科书第14页第二个练习利用相反数的概念得出求一个数的相反数的方法。

小结与作业。

课堂小结1,相反数的定义。

2,互为相反数的数在数轴上表示的点的特征。

3,怎样求一个数的相反数?怎样表示一个数的相反数?

本课作业1,必做题教科书第18页习题1.2第3题。

2,选做题教师自行安排。

本课教育评注(课堂设计理念,实际教学效果及改进设想)。

1,相反数的概念使有理数的各个运算法则容易表述,也揭示了两个特殊数的特征.这两个特殊数在数量上具有相同的绝对值,它们的和为零,在数轴上表示时,离开原点的距离相等等性质均有广泛的应用.所以本教学设计围绕数量和几何意义展开,渗透数形结合的思想.

2,教学引人以开放式的问题人手,培养学生的分类和发散思维的能力;把数在数轴上表示出来并观察它们的特征,在复习数轴知识的同时,渗透了数形结合的数学方法,数与形的相互转化也能加深对相反数概念的理解;问题2能帮助学生准确把握相反数的概念;问题3实际上给出了求一个数的相反数的方法.

3,本教学设计体现了新课标的教学理念,学生在教师的引导下进行自主学习,自主探究,观察归纳,重视学生的思维过程,并给学生留有发挥的余地.

初一数学湘教版教案篇六

2.能进行简单的线段长度计算.

【学习重、难点】线段中点的概念及简单的计算.

【导学提纲】。

想一想:怎样比较两个同学的高矮?把你的想法和同学们交流.

初一数学湘教版教案篇七

2.使学生学会由数轴上的已知点说出它所表示的数,能将有理数用数轴上的点表示出来;

3.使学生初步理解数形结合的思想方法.。

重点:初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数.。

难点:正确理解有理数与数轴上点的对应关系.。

1.小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?

2.用“射线”能不能表示有理数?为什么?

3.你认为把“射线”做怎样的改动,才能用来表示有理数呢?

待学生回答后,教师指出,这就是我们本节课所要学习的内容——数轴.。

与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(边说边画):

提问:我们能不能用这条直线表示任何有理数?(可列举几个数)。

在此基础上,给出数轴的定义,即规定了原点、正方向和单位长度的直线叫做数轴.。

通过上述提问,向学生指出:数轴的三要素——原点、正方向和单位长度,缺一不可.。

例1画一个数轴,并在数轴上画出表示下列各数的点:

例2指出数轴上a,b,c,d,e各点分别表示什么数.。

课堂练习。

示出来.。

2.说出下面数轴上a,b,c,d,o,m各点表示什么数?

1.在下面数轴上:

(1)分别指出表示-2,3,-4,0,1各数的点.。

(2)a,h,d,e,o各点分别表示什么数?

2.在下面数轴上,a,b,c,d各点分别表示什么数?

3.下列各小题先分别画出数轴,然后在数轴上画出表示大括号内的一组数的点:

(1){-5,2,-1,-3,0};(2){-4,2.5,-1.5,3.5};

初一数学湘教版教案篇八

1.把一个立方体沿着某些棱剪开,使其既相连又能展开成平面图形,那么至少需要剪开_______条棱.

2.若要使图中平面展开图折叠成正方体后,相对面上两个数之和为6,则x=_______,y=_______.

3.如图,四个三角形均为等边三角形,将图形折叠,得到的立体图形是()。

a.三棱锥。

b.圆锥体。

c.棱锥体。

d.六面体。

2.葛藤是一种刁钻的植物,它自己腰杆不硬,为争夺雨露阳光,常常绕着树干盘旋而上,它还有一手绝招,就是它绕树盘升的路径,总是沿最短路线——螺旋上升.

(1)想一想怎样找出最短路径?

(2)若树枝周长为3cm,绕一圈升高4cm,则它爬行路程是多少厘米?

(画图设计成3cm,4cm的实际长度,再测量)。

初一数学湘教版教案篇九

2.会用字母表示一些简单问题中的数量关系和变化规律。

3.在探索规律的过程中感受从具体到抽象的归纳的思想方法。

学习重点:会用字母表示一些简单问题中的数量关系和变化规律。

学习难点:经历探索用字母表示一些简单问题中的数量关系和变化规律过程,感受数学学习的方法.

初一数学湘教版教案篇十

1.知识与技能.

理解商品销售中所涉及的进价、原价、售价、利润及利润率等概念;能利用一元一次方程解决商品销售中的一些实际问题.

2.过程与方法.

经历运用方程解决销售中的盈亏问题,进一步体会方程是刻画现实世界的有效数学模型.

重、难点与关键。

2.难点都是如何把实际问题转化为数学问题,列方程解决实际问题.

3.关键:理解销售中,相关词语的含义,建立等量关系.

教具准备。

投影仪.

教学过程。

一.引入新课.

前面我们结合实际问题,讨论了如何分析数量关系,利用相等关系列方程以及如何解方程,可以看出方程是分析和解决问题的一种很有用的数学工具,本节我们将进一步探究如何用一元一次方程解决实际问题.

二.新授.

初一数学湘教版教案篇十一

2.知道底数、指数和幂的概念,会求有理数的正整数指数幂;。

3.会用科学记数法表示较大的数.

教学重点。

1.有理数乘方的意义,求有理数的正整数指数幂;。

2.用科学记数法表示较大的数.

教学难点有理数乘方结果(幂)的符号的确定.

教学过程(教师)。

问题引入。

乘方的有关概念。

试一试:

将一张报纸对折再对折……直到无法对折为止.你对折了多少次?请用算式表示你对折出来的报纸的层数.

你还能举出类似的实例吗?

初一数学湘教版教案篇十二

1.使学生会辨认直角、锐角和钝角;

2.通过结合生活实际的活动,在学习新知的同时培养学生的数学兴趣。

教学过程:

一、导入新课。

出示图,生活中含有角的物体。

师:“你看到了什么?谁能说一说?”

师:“如果请你们再从数学的角度去观察这些物体,你又能发现什么?”

师:“是吗?让我们来看一看。”

师:“果然如此!你观察得真仔细。”

“生活中存在着许许多多的角。通过以往的学习,你已经知道了哪些关角的知识?同桌互相说一说。”

贴上课题“角”,学生交流后回答:略。

师:“仅仅知道这些,你们就满足了吗?”

“那你们还想知道哪些有关角的知识呢?“

师:“看到同学们这么虚心好学,老师真的是非常高兴。好吧,那今天我们就继续学习有关角的知识。”

二、新课教学。

师:“请大家拿出四张卡片,用水彩笔和尺出画四个不同大小的角。每张卡片画一个。比一比谁画的又好又快!”

学生在卡片上画角。

师:“请组长将大家画的角收集起来,平铺在桌面上。比一比哪一组动作最快!”

师:“下面我们要给这些角分分类。在分类之前,老师要说几点要求:1.每人先要认真的观察这些角。2.为了提高我们小组合作学习的效度,分类前组长一定要带领大家展开充分的讨论,确定分法后再分。3.分好后,每组选一名发言人,准备向大家汇报分类的情况。”

小组合作学习,给角分类。教师巡视,做好记录。

师:“哪一组愿意汇报?”

小组汇报,汇报时请其用三角尺验证。贴出直角。

师:“你们认为他们分的怎么样?”

师:“你能给比直角小的角起一个名字吗?”

学生起名。

师:“在数学上,我们把比直角小的角叫做锐角。”

贴上“锐角”。(钝角同上。)

师:“对于这些,你们还有什么想问的问题吗?”

学生提问。

师:“通过对角的'分类,我们知道了角可以分成直角、锐角和钝角等几种。”

贴上“的分类”。

三、巩固练习。

师:“请组长将这些角分还给大家。同学们可以在角的旁边写上角的名称。”

学生写角的名称。

师:“写好的人互相说一说你刚才都画了哪些角。”

学生互说,教师指名说。

师:“如果老师给你一些角,你能分辨出是哪种角吗?请大家拿出练习纸,按要求填空。”

请一名学生在实物投影上写。集体订正。

师:“让我们回到生活中的物体。”

点击,回到生活中的物体。

师:“你能用刚才所学的知识,说一说这些角都是什么角吗?”

师:“生活中还有哪些地方有这些角?”

师:“第五个任务需要大家合作完成,大家把三角尺凑在一起试着拼一拼。”

学生合作拼。

师:“能拼成什么角?你愿意上来拼一拼吗?”

学生在黑板上用学具拼。

师:“这个角是由几个什么角拼成的?还有其他的拼法吗?”

四、小结。

师:“通过今天的学习,你又知道哪些有关角的知识?”

初一数学湘教版教案篇十三

教学目标:

1、知识目标:初步认识角,知道角的各部分名称,知道角的大小与两边叉开大小有关,与两边的长短无关。

2、能力目标:培养学生动手操作能力,使学生学会画角、做角,能从实物或平面图形中辨认角。

3、情感目标:培养学生学习数学的兴趣,以及认真倾听他人意见,虚心向他人学习的习惯。并让学生体会到数学源于实践的思想.

教学重点:初步认识角,知道角的各部分名称,学会画角和能从实物或平面图形中辨认角。

教学难点:初步认识到角的大小与两边叉开大小有关,与边的长短无关。

教具学具:课件、手工纸、活动角。

教学流程

一、创设情境,导入新课:

生:三角形。

师:对,三角形是我们以前学过的平面图形中的一种。在三角形中你能找到什么?

生:角。

师:角也是平面图形中的一种,这节课我们就来学习和研究角。

板书:角的初步认识。

二、联系实际,整体感知角。

1、师:角无处不在,在我们的校园中就有很多,不信你就试着找找吧!(多媒体演示:美丽校园的主题图。突出:门窗上的角、钟面上的角、操场中场地的角、小朋友做操时上下肢组成的角……)

2、师:同学们观察得很仔细,找到了这么多角。在我们的日常生活中许多物品上也有角,我们一起来看看。(多媒体出示图:剪刀、饮料吸管和水管实物图片,指出在物品上显出角)

3、师:在我们的教室中也有角你能找一找,并试着把它找出来吗

三、抽象图形,形成表象。

1、指名指角。

生:不是,这是个点。

4、想看看老师是怎样指得吗?(师示范指角)

5、师:请同学们从身边选取一个角,像老师这样来指一指。

四、自主探究,创造角

1、师:刚才我们认识了角,你们想不想自己动手创造一个角。

2、学生用不规则的纸折角。

3、集体交流自己创造的角,完整的指出每个角。

4、摸摸你折的角有什么感觉和发现?

5、学生汇报。

6、师:尖尖的地方是角的顶点,两条直直的线是角的边。

五、动手操作,画画角

2、教师示范画角,边画边讲解怎么画角。(课件演示)

3、学生尝试画角,指几名同学板画。(学生看书,勾画出画角的方法,边画边读。)

小结:角是由一个顶点和两条边组成的

六、游戏活动,比比角

师:想玩游戏吗?我们就来玩一个超级变变变的游戏。

1、师:变变变,把角变大,变更大。变变变,把角变小,变更小。

2、小组内玩这个游戏,并说说发现了什么?

3、指名汇报:角的大小与角的两条边张开的大小有关,张开的越大,角就越大,张开的越小,角就越小。

4、同桌两人把角张开同样的角度,看看会发现什么?

5、生汇报:角的大小和边的长短无关。

6、师总结。

七、巩固练习。

课件演示;练习八中第7题。

八、课堂总结。

同学们,这节课我们一起认识了角,动手做了角,画了角,还在生活中找到了很多的角,其实,只要你善于观察,生活中处处都有数学。

初一数学湘教版教案篇十四

借助“线段图”分析复杂的行程问题中的数量关系,从而建立方程解决实际问题,发展分析问题,解决问题的能力,进一步体会方程模型的作用。

重点、难点

1.重点:列一元一次方程解决有关行程问题。

2.难点:间接设未知数。

1.列一元一次方程解应用题的一般步骤和方法是什么?

2.行程问题中的基本数量关系是什么?

路程=速度×时间速度=路程/时间

画“线段图”分析,若直接设元,设小张家到火车站的路程为x千米。

1.坐公共汽车行了多少路程?乘的士行了多少路程?

2.乘公共汽车用了多少时间,乘出租车用了多少时间?

3.如果都乘公共汽车到火车站要多少时间?

4,等量关系是什么?

如果设乘公共汽车行了x千米,则出租车行驶了2x千米。小张家到火车站的路程为3x千米,那么也可列出方程。

可设公共汽车从小张家到火车站要x小时。

设未知数的方法不同,所列方程的.复杂程度一般也不同,因此在设未知数时要有所选择。

教科书第17页练习1、2。

有关行程问题的应用题常见的一个数量关系:路程=速度×时间,以及由此导出的其他关系。如何选择设未知数使方程较为简单呢?关键是找出较简捷地反映题目全部含义的等量关系,根据这个等量关系确定怎样设未知数。

教科书习题6.3.2,第1至5题。

初一数学湘教版教案篇十五

用因式分解法解一元二次方程.

难点

让学生通过比较解一元二次方程的多种方法感悟用因式分解法使解题更简便.

一、复习引入

(学生活动)解下列方程:

(1)2x2+x=0(用配方法)(2)3x2+6x=0(用公式法)

老师点评:(1)配方法将方程两边同除以2后,x前面的系数应为12,12的一半应为14,因此,应加上(14)2,同时减去(14)2.(2)直接用公式求解.

二、探索新知

(学生活动)请同学们口答下面各题.

(老师提问)(1)上面两个方程中有没有常数项?

(2)等式左边的各项有没有共同因式?

(学生先答,老师解答)上面两个方程中都没有常数项;左边都可以因式分解.

因此,上面两个方程都可以写成:

(1)x(2x+1)=0(2)3x(x+2)=0

因为两个因式乘积要等于0,至少其中一个因式要等于0,也就是(1)x=0或2x+1=0,所以x1=0,x2=-12.

(2)3x=0或x+2=0,所以x1=0,x2=-2.(以上解法是如何实现降次的?)

因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法.

例1解方程:

思考:使用因式分解法解一元二次方程的条件是什么?

解:略(方程一边为0,另一边可分解为两个一次因式乘积.)

练习:下面一元二次方程解法中,正确的是()

c.(x+2)2+4x=0,∴x1=2,x2=-2

d.x2=x,两边同除以x,得x=1

三、巩固练习

教材第14页练习1,2.

四、课堂小结

本节课要掌握:

(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其应用.

(2)因式分解法要使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.

五、作业布置

教材第17页习题6,8,10,11

初一数学上册教案

初一数学湘教版教案篇十六

一、学习与导学目标:

情感态度:通过师生、生生合作学习,促进交流,激发兴趣。

二、学程与导程活动:

a、准备活动:

1、师生游戏“唱反调”:我们知道在小学学过的0以外的数前面加上负号“-”的数就是负数。现在我说一个正数,你们给它添上“-”号说出来,我如果说一个负数,你们反过来说出对应的正数。+3、+1、-1/2、-18.4、0.75,学生很快说出-3、-1、1/2、18.4、-0.175。

2、上述“唱反调”的两个数3与-3,1与-1,-1/2与1/2……,在数轴上对应的点的位置如何?可建议生择两组在数轴上表示以后作答(在原点两侧到原点的`距离相等,真可谓从原点背道而驰“唱反调”)。

提问:数轴上与原点距离是4的点有几个?这些点表示的数是多少?

归纳:设a是一个正数,数轴上与原点距离是a的点有两个,分别在原点左右表示-a和a,我们说这两点关于原点对称。

b、学习概念:

1、像3和-3,1和-1,-1/2和1/2这样,只有负号不同的两个数给它一个什么样的关系名称合适呢?生:互为相反数,师:很好,我们把上述只有负号不同的两个数叫做互为相反数(oppositenumber)。也就是说3的相反数是-3,-3的相反数是3。可见:相反数是成对出现的,不能单独存在。

一般地,a和-a互为相反数。“-a”可读成“a的相反数”。

2、在数轴上看,表示相反数的两个点和原点有什么关系?(关于原点对称)

3、从上述意义上看,你看如何规定0的相反数更为合理?

商讨得:0的相反数仍是0,即0的相反数等于它本身。

c、应用举例:

1、两人一组,一人任说一个有理数,请同伴说出它的相反数。

2、如果a=-a,那么表示数a的点在数轴上的什么位置?a=?(a=0)。

3、在正数前面添上“-”号,就得到这个数的相反数,同样地,在任意一个数前面添上“-”号,新的数就表示原数的相反数,如:-(+5)=-5,-(-5)=5,-0=0。

4、化简下列各数p124练习,你愿意继续尝试化简下列各式吗?

+(-2/3),-(-2/3),-(+2/3),+(+2/3)

你能试着总结规律吗?(括号内外同号结果为正,括号内外异号结果为负)。

5、若a=-5,则-a=;若-x=7,则x=。

三、笔记与板书提纲:

课题应用举例中的2

活动引例应用举例中的4(学生练习)

概念

四、练习与拓展选题:

1、教科书p18/3;

2、如图是正方形纸盒的侧面展示图,请你在正方形内分别填上6个不同的数,使折成正方体后相对的面上的两个数互为相反数(写出满足条件的一种情形即可)。

初一数学湘教版教案篇十七

1.使学生正确理解数轴的意义,掌握数轴的三要素;

2.使学生学会由数轴上的已知点说出它所表示的数,能将有理数用数轴上的点表示出来;

3.使学生初步理解数形结合的思想方法.

重点:初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数.

难点:正确理解有理数与数轴上点的对应关系.

1.小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?

2.用“射线”能不能表示有理数?为什么?

3.你认为把“射线”做怎样的改动,才能用来表示有理数呢?

待学生回答后,教师指出,这就是我们本节课所要学习的内容――数轴.

与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(边说边画):

提问:我们能不能用这条直线表示任何有理数?(可列举几个数)

在此基础上,给出数轴的定义,即规定了原点、正方向和单位长度的直线叫做数轴.

通过上述提问,向学生指出:数轴的三要素――原点、正方向和单位长度,缺一不可.

例1画一个数轴,并在数轴上画出表示下列各数的点:

例2指出数轴上a,b,c,d,e各点分别表示什么数.

课堂练习

示出来.

2.说出下面数轴上a,b,c,d,o,m各点表示什么数?

1.在下面数轴上:

(1)分别指出表示-2,3,-4,0,1各数的点.

(2)a,h,d,e,o各点分别表示什么数?

2.在下面数轴上,a,b,c,d各点分别表示什么数?

3.下列各小题先分别画出数轴,然后在数轴上画出表示大括号内的一组数的点:

(1){-5,2,-1,-3,0}; (2){-4,2.5,-1.5,3.5};

【本文地址:http://www.xuefen.com.cn/zuowen/6722542.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档