深入了解历史文化是培养孩子综合素质的重要途径。在写总结之前,我们需要先梳理一下所要总结的事物的背景和过程。如果你正在纠结如何写一篇好的总结,不妨看看下面这些范文,或许能给你一些启示。
长方体的表面积教学设计及反思篇一
今天,我进行了《长方体、正方体表面积》的新授教学。这部分知识是学生学习的重点和难点,因为求表面积的问题,与生活联系得特别紧密,要想正确解决这些问题,就需要学生有一定的空间想象能力和灵活解决问题的能力,即思维的灵活性。而这些能力的培养必须建立在学生对长方体、正方体特征的切实掌握、对面与棱关系的正确分析的基础之上的。其实要想让学生记住长方体、正方体表面积的计算方法并不难,难的是正确理解。以前在教学这部分知识时,学生在解决问题时的正确率并不高,有些学生甚至到期末的时候还会出错,究其原因就是他们并没有正确理解表面积的意义,以及理解表面积计算方法的实质。所以在上这节课之前,我认真备课,既备知识点,更要备怎样才能让学生学会的方法。
首先给学生留课前的思考题:长方体有六个面,每个面的长和宽与长方体的长、宽、高有怎样的关系?之所以把这个问题让学生有充分的时间去思考,是因为我认为这个问题想通了,更有利于培养学生的空间想象能力,而且不同学生这方面的能力不同,所需要的时间不同,有了充分的时间,才能更有利于今后的学习。如果我把这个问题让学生在课堂上思考,一是所需要思考的时间会多,而能想通这个问题的人只占少数,剩下的学生听了别人的发言,也不一定会真正地理解,一节课下来,能够真正完成教学目标的人仅占三分之一不到,这样的教学不是我所想要的,更不是成功的。我的目标是实实在在地上课,让所有学生真正地学会。
在今天的课堂上,我从汇报这个思考题入手。我先让学生们把昨天的思考题在小组内交流一下,然后再进行全班汇报。第一个回答的学生是左一男,他是上个学期才转到我们班的,刚转来时成绩倒数,但他非常努力,他的答案非常正确,我表扬他说:“他在家对老师的问题做了充分地研究,归纳得非常到位。”“但是说得太快,可能有人没听清楚,谁能先来告诉我上下两个面的长和宽与长方体的长、宽、高有怎样的关系?”一位同学回答:“上下两个面的长就是长方体的长,宽就是长方体的宽。”“前后两个面呢?”“前后两个面的长是长方体的长,宽是长方体的高。”“左右两个面呢?”“左右两个面的长是长方体的宽,宽是长方体的高。”“谁能把这三句话连在一起说一遍?”金意林完整地说了一遍后,我又让同桌在一起说一遍。最后我问谁还不太懂?只有郑浩一个人不太明白,我安排了两个同学课下再跟他研究一下。
弄清了这个关系,再让学生研究一个计算表面积的方法。学生说太简单了,我说简单就用数学语言表示出来,写在你的练习本上。在巡视的过程中,有的学生写:上下面+左右面+前后面,我提醒:上下面的面积怎么求呢?他则改成了长乘宽乘2+长乘高乘2+宽乘高乘2;有的学生嫌写字麻烦,直接用字母来表示……我看到绝大多数学生都找到了正确的方法,全班汇报时,他们脸上显现的笑容特别灿烂!
走在学生热烈的交流中,我欣喜地感受到了,学生们不是套用公式,而是真正地理解了表面积的计算方法。更说明本节我抓住关键问题,引发思考,想通了这个问题,也就解决了本节课的重点和难点。这是我几次教学表面积这节课最成功的一次。
长方体的表面积教学设计及反思篇二
1、使学生在具体的情境中,经历操作、讨论、交流、归纳的过程,理解长方体、正方体表面积的含义,探索并掌握长方体和正方体表面积的计算方法。
2、使学生会运用表面积的意义,解决生活中的一些简单实际问题; 能根据实际情况计算长方体和正方体部分面的面积和,进一步培养学生的探索意识和空间观念,提高解决简单实际问题的能力。
3、运用多媒体辅助教学,发展学生的空间观念,培养探究立体图形的兴趣。
重点:理解表面积的意义;探索长方体和正方体表面积的计算方法。
难点:根据给出的长方体的长、宽、高,想象出每个面的长和宽各是多少。
教师:多媒体课件,长方体纸盒。
学生:长方体纸盒
一、复习铺垫
同学们,上节课我们认识了长方体和正方体,通过学习你知道了什么?
生答。(教师强调面的知识)
二、创设情境 、引入问题
生:长方体纸盒的表面积。
师板书课题:长方体和正方体的表面积
师:看了课题同学们想问什么?
师生共议研究课题:
(1)什么叫长方体和正方体的表面积?
(2)怎样求长方体和正方体的表面积?
三、合作探究、学习新知
1. 探索长方体表面积的计算方法。
什么叫长方体的表面积呢?请看大屏幕。
多媒体出示长方体展开图。
师:同学们看完后有什么想说的?
生:围成长方体的是6个长方形。
生:长方体的表面积就是展开后6个面的总面积。
师归纳后板书:长方体或正方体6个面的总面积,叫做它的表面积。
多媒体出示长方体粘合图
师:同学们看完后,又想到了什么呢?
生:求出长方体6个面的面积,也就知道了做纸盒所需要的面积。
生:要知道做这个纸盒用多大面积的纸板就是求它的表面积。
多媒体出示长方体图形
师:现在同学们能求出它的表面积吗?
生:不能。
师:为什么?
生:没有数据。
师课件出示数据,引导学生把数据放到长方体相应的位置。
2.探究每个面的长和宽与长方体的长、宽、高有什么关系?
多媒体展示,引导学生讨论:
上、下每个面的长和宽分别是长方体的()和();
前、后每个面的长和宽分别是长方体的()和(); 左、右每个面的长和宽分别是长方体的()和()。
小组讨论交流(学生汇报)得出长方体的长、宽、高与每个面长和宽的关系:
上、下每个面的长和宽分别是长方体的(长)和(宽);
前、后每个面的长和宽分别是长方体的(长)和(高); 左、右每个面的长和宽分别是长方体的(高)和(宽)。
3、尝试计算
问:现在你能求出做这纸盒至少需要多大面积的纸板吗?
学生尝试计算,出示活动要求:
(1) 小组讨论,想办法求出做这个纸盒需要多大面积的纸板。
(2) 把自己的计算方法和小组内的同学交流。
教师参与学生的活动。
学生板演后说明想法:
生1:我先用30x10求出上面的面积,因为上下面的面积相同,所以再乘2就是上下面的面积;用30x15求出前面的面积,再乘2就得出了前后两个面的面积;用15x10求出右面的面积,再乘2,就是左右两个面对面积,然后把6个面的面积加起来。
生2:我先求出上面、前面、左面3个面的面积,因为长方体相对的面完全相同,所以再乘2就求出6个面个的面积。
教师注意引导学生语言叙述的完整性,准确性。
师多媒体展示学生的汇报结论。
指两生把板书上的数字换成对应的长、宽、高,引导学生总结出:长方体的表面积=(长x宽+长x高+宽x高)x2或者长方体的表面积=长x宽x2+长x高x2+宽x高x2。
多媒体出示:长方体的表面积=(长x宽+长x高+宽x高)x2或者长方体的表面积=长x宽x2+长x高x2+宽x高x2。
4探究正方体的表面积计算方法。
多媒体出示:棱长为5厘米的正方体的表面积是多少?
学生尝试计算,指生汇报并说明想法,引导学生得出:正方体的表面积=棱长x棱长x6.
四,巩固新知、拓展运用
1、课件出示“我会选”,学生口答。同时在多媒体上出示答案。教师了解学生对新知识的掌握情况。
2、课件出示“说一说”,学生口答,同时在多媒体上出示答案。运用生活中的问题,让学生体会数学与生活的联系,提高学习兴趣。
3、课件出示“聪明的你”,引导学生注意:
(2)计算时,关键是找准数据。
学生独立完成后,在班内汇报,鼓励学生运用多种方法解决问题。
4、课件出示“攀登高峰”,引导学生分析计算时应考虑几个面,问题课后讨论完成。
五、课堂小结
通过学习,你有哪些收获?还有那些不懂的问题?
长方体的表面积教学设计及反思篇三
我们都知道刚学长方体和正方体的时候,学生最容易把表面积的计算和体积搞混。为了帮助学生理解概念,便于今后能清晰辨析解题,我在教学《长方体与正方体表面积的计算》这一课时,采取了“提纲挈领,层层深入”的方法来教学,自我感觉效果还不错。
所谓“提纲挈领,层层深入”就是精讲精炼,由表及里,从直观到抽象,从理解到运用,逐步掌握并形成技能的过程。
学生之所以在今后解决问题或运算过程中会让表面积和体积“打架”,其中最主要的原因还是对概念的不理解,因此理解概念是计算之源。
1、初步感知概念。
提问:“看到表面积一词,同学们就字面意思,说说你对表面积是怎样理解的呢?”让学生讨论自己想法,理解表面积它首先是个面积;其次它是物体表面的面积;就长方体和正方体来说它就是6个面面积之和。
2、具体理解概念。
想:你能举一个这样的例子么?
3、深刻明确概念。
长方体和正方体表面的面积就是长方体和正方体6个面面积之和。
1、了解长方体和正方体的特征是掌握表面积计算的基础。长方体有3组对面相等,正方体6个面全相等,在学生认知的基础上归纳出长方体与正方体表面积的计算公式,学生自然记忆深刻。
2、理解表面积的概念是掌握表面积计算的精髓。前面我们为什么要花很久去理解概念?俗话说:磨刀不误砍柴工。学生理解的表面积的内涵,除了常规长方体和正方体表面积的计算,即便以后遇上各种“变式”的(无盖的,少2个面的等情况)就没有什么难以理解的了。
3、积累生活经验是掌握表面积计算的重要途径。
小学生的空间观念还不健全,很多习题还依赖直观物体或模型来构建表像。因此老师要设计各种典型的习题让学生去看实物、做模型、画草图,学生感知的经验丰富了,题意理解了,今后解决问题还能有什么困难呢。
长方体的表面积教学设计及反思篇四
《长方体和正方体的表面积》这部分内容,是人教版五年级数学下册第3单元《长方体和正方体》的一个重点,也是难点。它是在学生认识掌握了长方体和正方体特征的基础上教学的。学习的难点在于,学生刚接触立体图形,空间观念不强,往往因不能根据给出的长方体的`长、宽、高,想象出每个面的长和宽各是多少,以至在计算中出现错误。针对这一点,我在教学中给学生更多的动手操作实验与实践的空间,让学生通过剪一剪、看一看、比一比,自主探究等方式来认识概念,理解概念。
我在设计《长方体和正方体的表面积》这节课时,考虑到班级学生较多,所以活动主要以小组进行。思路主要是沿着什么是长方体的表面积——怎样求长方体的表面积——长方体的表面积在生活中的应用这样一条线来让学生自主探究的。在小组交流的过程中,我发现对教材的深度钻研和对学生的预设显得尤为重要。如课前在预设学生求长方体的表面积时,我只考虑到学生可能会出现三种情况:一个面一个面的面积依次相加;二个面二个面的一对对相加;先求出三个面的面积和再乘2,但是有的学生只说出了其中的一种简便情况。如果我在课前有更深入的研究,还可拓展学生思维,引导学生找出另外的方法。对于长方体、正方体表面积公式的归纳,学生和我也只总结出了文字公式,还应简化成字母公式,便于记忆和书写。另外在让学生做当堂检测第三关时,我发现有学生做错了,只是把错题通过投影仪呈现了出来,由于受条件限制,未能结合原题给学生好好评讲,这一点比较遗憾。
实践表明,只有深入研究、充分预设的课堂教学才能使不同学生得到不同的发展,才可能出现意外的惊喜和美丽的风景。以后教学中我将在课前加大研讨、分析力度,提高课堂教学实效性。
长方体的表面积教学设计及反思篇五
本节课在制定目标的时候,从数学研究方法这个方面着手,在学生掌握知识的同时,更注重让学生了解科学的数学研究的过程。一堂课的知识目标是很容易达成的,但是如果要渗透数学思想方法或科学的研究方法,往往会给我们一线教师带来很多困难。在这节课中,我引导学生通过“猜想——验证——结论”三个流程进行研究,最后得到正确的数学结果,并进行应用。
当我们说要研究2、5的倍数的特征时,学生想当然地会认为只要一个数一个数地研究就可以了。如果让他们实际操作,他们很可能会写了几个数后,就下结论,当然这时候他们下的结论也很可能是正确的。大部分老师在这样的情况下,就会肯定学生的结论,然后进行练习巩固。
但是教师并没有满足于此,而是抱着科学严谨的态度。仅仅几个数就能得出结论了吗?答案显然是否定的,一项结论的得出不是这样草率的。如果教师如此这般教学,一次两次不要紧,长久以来,学生也会形成草率的态度,以偏概全,缺乏一种科学的严谨,这是很可怕的。所以我们看到,首先教师引导学生确定了“小范围”的意识,在数据比较多的时候,我们可以先确定一个范围,在有限的时间里研究这个范围中的数的特征,得到在1-100这个范围内5的倍数的特征,个位上的数字是5或0。这时候教师没有满足于此,而是引导学生认识到这个结论仅仅适用于1-100这个小范围,是不是在所有不等于0的自然数中都使用呢?还需要研究。所以接下来在教师的引导下,学生开始认识到还要继续拓展范围,研究大于100的自然数中所有5的倍数是不是也是个位上的数字是5或0。只有进行了研究,才能得到正确的结论,最后在学习和生活中进行应用。
在教学2、5的倍数的特征之前,教师找了几个学生访谈,想了解学生学习的前在状态,当然所找的学生是各种层次都有的'。对于2、5的倍数的特征,应该说比较简单,所以中等学生和优等生都已经知道了它们的特征——2的倍数肯定是双数,5的倍数末尾是5或0,只有个别学困生一无所知。同时有个奇怪的现象,所有知道这个结论的同学都认为这个结论非常正确,以后就能用这个结论来进行判断,不需要进行验证,当然他们的结论获得也仅仅是“知道”的过程,没有经历“探究”过程。如果长此以往,学生仅仅是知识的接受者,而不是知识的探究者,以后将只习惯于被动接受,而不会主动发现。
有了这样的猜想,最后通过举例的方法验证后,学生没有找到反例,这时教师才告诉学生,一开始的猜想现在变成了结论。虽然同样是一句话,不同的时候有不同的界定,没有经过验证前,只是猜想;只有研究后,猜想才可能变成结论。
相信学生不断经历这种过程后,他们才会具备科学的态度,才会学会对自己所说的话负责,才不会贸然下结论,当然我们教师也要鼓励学生大胆猜想。并用适当的方法来验证自己的猜想,从而得到正确的结论。
随着新课改的不断深入,我们教师在制定教学目标时,不要再仅仅关注学生知识目标,更重要的是要关注学生的能力目标,只有从小培养,从小渗透,那么我们学生对数学的认识才会更深刻,也才会在数学上有更大的造诣。
长方体的表面积教学设计及反思篇六
1、使学生理解长方体表面积的意义,掌握长方体表面积的计算方法,能够正确地进行计算,并能运用所学知识解决一些实际问题。
2.在探索学习中建立初步的空间观念,发展初步合情推理能力量。
3.培养学生的动手操作能力和共同研究问题的习惯。
4.通过亲身参与探索实践活动,去获得积极的成功的情感体验。
5.体验数学问题的探索性、感受数学思考过程的合理性,并从中体验数学活动充满着探索与创造。
长方体表面积计算的基本思路和方法。
根据长方体的长、宽、高,确定每个面的长、宽是多少。
1、使学生理解长方体表面积的意义,掌握长方体表面积的计算方法,能够正确地进行计算,并能运用所学知识解决一些实际问题。
分组操作,探索长方体的表面积的含义、并建立它们的联系。
请在展开图中,分别用上下前后左右标明6个面。
学生分小组合作操作。
板书:(长×宽+长×高+宽×高) × 2 。
板书:(长×2+宽×2)底面周长×高+长×宽×2
长方体或正方体6个面的总面积,叫做它的表面积。在日常生活和生产中,经常需要计算一些长方体或正方体的表面积。
1、做一个微波炉的包装箱,至少要用多少平方米的硬纸板?
说明"至少"的意思。
独立计算,说说你是怎么计算的?
2、给出课前长方体纸盒的长、宽、高的数据,让学生计算包装这个盒子至少用多少平方分米的包装纸。
3、一个正方体礼品盒,棱长1.2分米,包装这个礼品盒至少用多少平方分米的包装纸?
想一想怎样计算正方体的表面积呢?
体验今天你运用了什么学习方法?学习上有什么收获?你感受最深是什么?学生之间互相评价。
1、看书
2、实际测量
长方体是一种很常见的物体,在我们的周围随时都可以看到长方体,同学们在教室内找一个长方体并求出它的表面积。学生交流测量和计算的情况。
板书设计:
长方体的表面积
长方体或正方体6个面的总面积,叫做它的表面积。
长方体的表面积= (长×宽+长×高+宽×高) × 2
长方体的表面积教学设计及反思篇七
长方体和正方体的表面积是在学生已经掌握了一些简单的平面图形知识的基础上,过渡到初步的立体图形上学习的。本节课的学习目标是让学生进一步认识长方体和正方体的特征,掌握长方体和正方体表面积的计算,体现立体平面立体螺旋上升、循序渐进的教学思想,并通过平面图形和立体图形的'联系沟通,培养和发展学生初步的空间想象能力。课堂教学是素质教育的主渠道,素质教育是以全面提高全体学生的基本素质为根本目的,以弘扬学生的主体性和主动精神为主要特征,注重开发学生的智慧潜能,注重形成人的健全个性。
创设一个能够吸引学生的、源于生活的、有趣的、有用的、可操作的、可探索的情景,有利于激发学生的学习兴趣和愿望,使学生处于积极主动的学习状态,有利于学生自主探索。新课标强调要让学生在现实情境中和已有知识的基础上体验和理解数学知识要提供丰实的现实背景任何知识源于生活又服务于生活。生活中处处有数学,让现实的生活数学走进学生视野,使生活数学与数学问题有机地结合起来,使学生体会在生活中做数学的乐趣。设计时应从生活实际出发,引导学生明确学习求长方体、正方体表面积的必要性,以激发学生的求知欲。
知识的形成发展是有层次的,且与旧知识紧密相连。新课展开必须以学生原有生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程。为此,新课的组织展开以有利于教材结构与学生的认知结构产生同化,有利于学生主动建构为目的。
学生计算长方体、正方体表面积必须具有较强的空间观念,这是教学的难点。为此,借助于实物投影、模型、多媒体课件,让学生观察、触摸、拼拆、抽拉、展示,全方位感知,培养空间观念,寻找知识的结合点,让各种现代化教学手段协同互补在提高课堂教学效率与质量上发挥更好的媒介作用,实现信息技术与数学教学的整合。
长方体的表面积教学设计及反思篇八
一、继续抓好计算。我发现有很大一部分学生方法懂了,计算却出错了,孩子们的借口是数字太大容易出错。所以计算应是常抓不懈的。
二、进一步培养学生的抽象思维能力。学生出错的原因之一是分不清底面是哪两条棱相乘的面积,之所以这样是因为对长方体革面的人是没有理解透彻。
三、进一步在学生“乐学”方面下功夫,从这一节课看数字是大点,算起来复杂些,孩子们就觉得没趣了,有部分学生对数学有了畏惧的念头,这是最不利于我们教学的因素之一。
四、通过让学生自己动手剪、看观察分析得出表面积的几种计算方法,学生能自主探索出表面积的计算方法,学习兴趣较浓,且对计算方法也掌握的较好,避免了死记公式的办法。
五、在学生掌握了表面积的计算方法后,再出示一些生活实际应用题,既练习了实际又提高了学生学习的兴趣。
长方体的表面积教学设计及反思篇九
老师们在讨论《长方体的表面积》一节时,常常会有几点疑惑:一是前节刚上过《展开与折叠》,这节有什么必要再把长方体再展开?二是教材为什么要安排“估算”?三是教材中的正方体图形有什么必要同时给出三个棱长的数据?对这几个问题,我是这样看的:
立体图形的表面积,求的是面积。既是面积,就是平面几何的研究对象,因此,从逻辑上说,教材在这里必须要把立体问题转化为平面问题,才能用面积的概念去给表面积下定义。在平面几何里,所讨论问题的前提都是“在同一平面上”,因此,要再次展开。
三维立体空间与二维平面空间的图形的相互转换,是空间想象能力的重要组成部分。由于技术的限制,对于立体图形,目前我们在教材里呈现给学生的只能是“三维示意图”(实际上是二维图形)。因此,学生的三维空间想象能力常常具体地体现为“让‘三维示意图’立起来”。而学过立体几何的人都知道,未来学生解决立体几何问题时,最重要的意识与能力就是“转化”,即把三维问题转化为二维。本节对立体图形与平面展开图形的对应关系的讨论,意在加强面与体的联系,培养学生的转化意识,进一步发展学生的空间想象能力。
教材在“估一估,算一算”的小标题下,提出:“做上面的纸盒,至少需要用多少纸板?先估一估,再精确计算。”
我认为,这首先是一个实际应用问题,是做纸盒时必然要遇到、要解决的问题。既然从生活中提出了做纸盒,就理所当然地要服从生活逻辑。
其次,这里说的是“至少”,也就是,估算时应当“往大里去”。因此,可以是用最大面的面积乘以6,也可以是把整个展开图看成一个大的长方形的局部。这样处理,就不会跟后面精确计算的过程重复,也就不会显得多余。
更重要的是,估算技能是一种重要的数学技能,估算意识是一种重要的数学意识,重视估算,是新课标、新课程对传统数学教学的最显著、最重要的改进之一。本节的引例又确有估算的实际需要,因此,教材在本节安排估算是很有道理的。
本节的课题是《长方体表面积》,而非过去教材的《长方体、正方体的表面积》。在教材的正文中实际上只讨论了长方体的表面积,而对正方体表面积只是在“试一试”中作为长方体表面积的一个应用给出。在“试一试”里给出的条件是“棱长为0.8米的正方体”,而在紧接着的“练一练”中,给出的正方体图形则标明了三维的数据。
我认为,这段教材的意图是:让学生由“正方体是特殊的长方体”,套用长方体表面积的算法来计算正方体的表面积。教师在教学中,不应当把“正方体的表面积等于棱长平方乘以6”处理为学生的“已知”,而必须让学生经历简单的推理过程。也就是,要把“棱长为0.8米的正方体”转化为“长、宽、高都是0.8米的长方体”,然后,套用长方体表面积的计算方法,再简化为“棱长平方乘以6”。否则,在数学逻辑上就是不严密的。
长方体的表面积教学设计及反思篇十
学生在高年级学习了“长方体表面积的计算”以后,对标准长方体的表面积计算问题都能够熟练掌握,但是对现实生活中触及计算长方体表面积的问题就不能正确进行计算,比如以下几道题:。
这几道要正确计算不但要掌握长方体表面的计算方法,而且要求学生计算时要能够正确判断计算的是哪几个面的面积之和。刚开端教学时学生呈现了错误就给学生阐发、改正,但是效果并不明显,学生遇到这些问题时又发生了错误。后来经过认真阐发、寻找缘故原由,发现学生不能够正确进行表面积的计算是对长方体的认识掌握不扎实,没有树立正确的空间观念,缺乏对物体的空间想象力。
随着新课程的学习,在进行长方体表面积计算的教学中重视了学生空间想象力的训练,学生在学习完好长方体表面积之后办理了这一类问题错误明显减少了。
(一)让学生拿出自已做的长方体模型,指出长方体的长宽高,说出如何计算上下、前后、左右每个面的面积,随后变换长方体模型放置方向进行练习。
(二)脱离长方体模型,一名同学口述长方体放置方法,其它学生想象判断上下、前后、左右每个面如何计算。
(三)针对长方体实例或者详细放置好的长方体模型,比如长八厘米、宽六厘米、高五厘米的长方体,八×六求的哪一个面的面积?……通过这样练习,学生在头脑中正确的把长方体图形和详细实物能够联系起来,能够凭据实物想象出基本图形,而且能够凭据想象把立体图形剖析成简单的平面图形,这现实上就是我们所说的空间观念的培养。学生办理上面三道现实问题,就是对学生空间观念的评测。学生空间观念是否正确,通过在现实操作、在办理现实问题中进行检验,随时发现问题、改正毛病,逐步形成正确的空间观念。
当我把问题:“用八个一立方厘米的小正方体凭借想象表现出一个表面积最大的长方体、一个表面积最小的长方体”展现在学生面前时,发现并不如我所预料的学生无法办理。有的学生说出了:长八厘米、宽一厘米、高一厘米,长四厘米、宽二厘米、高一厘米,长二厘米、宽二厘米、高二厘米,另有的`学生画出草图。让我深深体会到学生的确拥有不可估量的潜力。只要我们为学生创设出一个能展现他们才气的时间和空间,隐藏在学生头脑中的潜力就会如埋藏在地下的能量喷涌而出。
长方体的表面积教学设计及反思篇十一
今天教学《长方体的表面积》不大顺畅,除了课堂上魏博宇、毕峻伟同学因理解出现偏差,交流纠正浪费时间外,我认为教师的设计也存在很大问题。
一、教学设计要删繁就简。
1、复习导入内容可以再精炼一点。没必要从长方体和正方体的点、面、棱的方面挨个去比较,去订正,直接设计说出长方体和正方体的异同点,形式也没必要挨个抽学生回答,可以同桌互相交流,抽一组代表回答即可,这样既节省时间也抓住了重点。第二个练习题的设计可以直接让学生说出面积即可,其他学生判断,因为是复习内容,没必要像新课一样都是重点去分析。
2、重点的内容重点突破。长方体的表面积探索是本节课的重点,也是在之前学习了长方体的特征和展开面的基础上进行的,所以可直接让学生借助实物或者展开图去探究长方体的表面积,关键是让学生理清弄顺长方体展开面的长和宽和原长方体的长宽高的关系,将小组合作“议一议”的内容作为重点,让学生们自己去探究、去发现、去总结,占用的时间也应该是比较重要的时间。
二、牢记数学课的“三必讲、三不讲”。比如这节课上“什么是长方体的表面积?”在学生用自己的话说出来后,没必要定义读三遍,然后又抽取了10个同学依次回答问题。包括温故知新里的练习内容,只要学生回答正确,或者知错能改,没必要一道又一道的讲解。
三、数学课应该精讲多练。而本节课学生说的多,而且环节过于罗嗦,将简单问题复杂化了,导致教学任务没有完成,练习又少之又少。
以上原因都是老师个人的原因造成的,初次带五年级数学,对教材内容以及重难点内容抓不准、吃不透,设计上不敢求新颖只求能正确的教学下来就好,针对以上不足,我以后一定要勤学习,勤请教,争取快速提高自己的数学教学水平。
长方体的表面积教学设计及反思篇十二
“追问”,顾名思义就是追根究底地问。它是前次提问的延伸和拓展,是为了使学生弄懂弄通某一内容或某一问题,在一问之后又再次补充和深化、穷追不舍,直到学生能正确解答、深入理解、沟通联系。
在教学《长方体的表面积》时,我采用“追问”方式,沟通“体和面”之间的关系。有效的“追问”,让课堂上高潮迭起,精彩纷呈。
在课堂上,我首先让学生找出长方体展开图与长方体各个面之间的关系,将长方体和展开图向对应的部分涂上颜色;找出长方体的长、宽、高与展开图的各个边之间的关系,填写展开图各个边的长,教学至此,我没有马上进入到下一环节“长方体表面积的计算”中,而是“追问明理”:
生:3和7,3是右面的宽,7是右面的长。
生:(补充)3既是右面的宽也是这个长方体的高。
师:多聪明呀,用了一个关联词“既……又……”表示出这个3的双重身份:对于右面它是宽,对于长方体它是高。
追问:你能找到长方体的下面所对应的数据吗?(全班学生都跃跃欲试)。
生:3和5,5是下面的长,3是下面的宽。
【评析:接下来的追问,调动的所有学生的积极性,大家不约而同的.积极寻找答案。】。
生:3和7,7是左面的长,3是左面的宽。
生:(补充)长方体的相对的面的面积相等,因此左面的数据和右面的数据应该是一样的。
【评析:学生的思维越来越活跃,通过互相启发,得出越来越简便的判断方法。】。
在上面的教学片段中,我先从“体”到“面”,接着通过有效的“追问”,让学生再从“面”回到“体”,这样学生经历了“体——面——体”的转化过程,为长方体表面积的计算打下了坚实基础。
总之,“追问”是促进学生学习、实现“有效学习”的重要教学指导策略。而追问不在于多,在于是否能让学生感受到进行智力劳动的乐趣。在有效的追问中,教师和学生都是思考着、发展着的主体,并互相影响着,数学课堂因“追问”而精彩纷呈。
长方体的表面积教学设计及反思篇十三
一、利用旧知识,激发学生的学习兴趣。
二、通过实际操作,解决生活中的实际问题。
在学习长方体的表面积之前,首先要求学生拿出自己制作好的长方体实物,然后教师也拿同样的长方体教具进行教学。在没有展开长方体的表面之前,教师引导学生分别用手点出长方体的上、下、前、后、左、右这六个面,并说出这六个面各自的长和宽,然后启发学生想:要求它的表面积,这六个面可以分为几组,每组有几个面?各组的长和宽又是长方体相对应的长、宽、高的哪个长度?接着让学生进行学习小组讨论,并要求每个小组派一人汇报自己小组的讨论结果,从而归纳出:可分为三组:分别是上、前、左,每组有2个面,各自的长和宽分别是长方体的长和宽、长和高、宽和高,要求长方体的表面积就是把上面加前面再加左面的和乘以2,用长方体的长、宽、高表示就是:(长×宽+长×高+宽×高)×2,这时,要强化学生记住,长×高、长×宽、宽×高各是长方体的哪个面,有利于下面教学求长方体的四个面或五个面的面积。在学生掌握了长方体的表面积的公式以后,教师就举出实际生活中的一些长方体实物,给出长方体的长、宽、高,引导学生运用公式进行计算长方体的表面积。
三、根据实际,在教学中教会学生灵活运用公式。
在学生掌握了求六个面的长方体的表面积时,教师要注意引导学生怎样去解决实际生活中碰到实物,如粉刷一截明水渠、教室、烟囱等。要求它们的表面积,又怎样求呢?这时教师可以引导学生画出“一截明水渠的立体图”,指导学生观察教室和烟囱,它们要粉刷的是哪几个面?要求这些立体图形的表面积就是求几个面的面积,要求这几个面的面积与上面所学的求六个面的面积的公式有哪些变化?然后又让学生进行小组讨论,找出求长方体三、四、五个面的表面积的公式。
我记得新课程标准里面有这样的一句话:教师是科学学习活动的组织者、引领者和亲密的伙伴。我在教学中就注意到了这一点,做到引导让学生自主探讨、合作学习,使学生体会到成功的喜悦,从而又提高了学生的学习积极性。
长方体的表面积教学设计及反思篇十四
教学内容:
教学目的:
1、使学生理解长方体表面积的意义,掌握长方体表面积的计算方法,能够正确地进行计算,并能运用所学知识解决一些实际问题。
2.在探索学习中建立初步的空间观念,发展初步合情推理能力量。
3.培养学生的动手操作能力和共同研究问题的习惯。
4.通过亲身参与探索实践活动,去获得积极的成功的情感体验。
5.体验数学问题的探索性、感受数学思考过程的合理性,并从中体验数学活动充满着探索与创造。
教学难点:根据长方体的长、宽、高,确定每个面的长、宽是多少。
一、出示课题,学习目标。
1、使学生理解长方体表面积的意义,掌握长方体表面积的计算方法,能够正确地进行计算,并能运用所学知识解决一些实际问题。
二、自主探索。
分组操作,探索长方体的表面积的含义、并建立它们的联系。
请在展开图中,分别用上下前后左右标明6个面。
学生分小组合作操作。
三、各小组学生交流汇报结果。
板书:(长×宽+长×高+宽×高)×2。
板书:(长×2+宽×2)底面周长×高+长×宽×2。
长方体或正方体6个面的总面积,叫做它的表面积。在日常生活和生产中,经常需要计算一些长方体或正方体的表面积。
四、实践运用。
1、做一个微波炉的包装箱,至少要用多少平方米的硬纸板?
说明“至少”的意思。
独立计算,说说你是怎么计算的?
2、给出课前长方体纸盒的长、宽、高的数据,让学生计算包装这个盒子至少用多少平方分米的包装纸。
3、一个正方体礼品盒,棱长1.2分米,包装这个礼品盒至少用多少平方分米的包装纸?
五、评价。
体验今天你运用了什么学习方法?学习上有什么收获?你感受最深是什么?学生之间互相评价。
六、、作业:
1、看书。
2、实际测量。
长方体是一种很常见的物体,在我们的周围随时都可以看到长方体,同学们在教室内找一个长方体并求出它的表面积。学生交流测量和计算的情况。
板书设计:
长方体或正方体6个面的总面积,叫做它的表面积。
长方体的表面积教学设计及反思篇十五
教科书第16页例5及相应的“试一试”“练一练”,练习四第6~10题及思考题。
1、让学生通过探索,理解并掌握长方体、正方体表面积的计算。
2、让学生掌握并会运用所学知识解决实际问题。
3、让学生在观察、分析、抽象、概括和交流的过程中,感受长方体和正方体的表面积,发展初步的抽象能力;在学习和探索的过程中,培养独立思考和与人合作的能力。
根据实际情况判断出应该求出长方体或正方体的哪几个面之和。
一、复习铺垫,导入新课:
1、谈话:上节课我们学习了表面积,谁还记得?
2、计算下面物体的表面积。
(1)一个长方体长5厘米、宽6厘米、高12厘米。
(2)一个正方体的棱长5分米。
指名板演,集体订正。
二、探索领悟,总结方法:
谈话:在实际生产中,有时还要根据实际需要计算长方体或正方体中某几个面的面积和。
1、 谈话:请同学们说一说鱼缸的样子。
提问:求需要多少玻璃,就是求什么?
使学生明确,求需要多少玻璃,就是求这个鱼缸的表面积。
启发学生思考:
根据实际情况,需要计算几个面的面积的和?其中哪两个面的面积是相同的?
学生交流,指名口答。
明确:分别求出前、后、左、右和下面的面积,再相加。也可以先求出6个面的总面积,再减去上面的面积。
2、列式解答:
请学生独立完成。
谈话:你能说说你列式的根据吗?让学生明确算式的含义。
相机出示:
5×3.5+5×3+3×3.5+3×3.5+5×3
(5×3+5×3.5+3×3.5)×2-5×3
3、谈话:还有其他的方法吗?选择一种方法算出结果,再互相交流。
4、练一练:
第1题,让学生明确这张商标纸的面积就是这个长方体前、后、左、右四个面的面积和,也就是长方体的侧面积。
第2题,做让学生先弄清楚需要计算几个面的面积的和,然后独立完成,指名板演。
完成后,集体订正,指名说出列式根据。
三、巩固练习:
练习四第6 题,思考问题是要计算哪几个面的面积之和?根据给出的条件,这几个面的长和宽分别是多少?然后让学生独立解答。
四、课堂作业:
1. 练习四第7题 要学明确木板是上、下、左、右四个面,沙网是前后两个面。
2. 练习四第8题 明确教室的地面(也就是相应长方体的下面),不需要粉刷;算出顶面和四面墙壁的总面积后,还应该扣除门窗及黑板的面积。
3. 练习四第9题 帮助学生理解台阶占地面积应为各级台阶的上面的面积之和,即0.3×6×5=9(平方米)。铺地砖的面积则是各级台阶的上面和前面的面积总和,即9+0.2×6×5=15(平方米)。
4. 练习四第10题 要提醒学生以厘米作单位测量有关数据。测量结果可保留一位小数。
五、思考题:
提示学生:这个物体中的每一组相对的面的面积都相等。由此,表面积的计算方法是:(7+7+6)×2=40(平方厘米)。按要求补成的最小正方体棱长是3厘米。
长方体的表面积教学设计及反思篇十六
《长方体的表面积》是在学生认识并掌握了长方体、正方体特征的基础上教学的,也是学生学习几何知识由平面计算扩展到立体计算的开始,是本单元的重要内容。
讲长方体的表面积之前给学生布置了任务,要求学生自己制作一个长方体和正方体学具,调动学生感兴趣的学习情境,开课时我用学生亲手制作的长方体学具引入新课,学生自己观察长方体有六个面,要想知道长方体的六个面到底有多大,请你利用小组中的学具帮助老师解决。学生通过思考与交流,认识到“要想知道长方体的六个面到底有多大,必须计算出六个面的面积总和”,这时我因势利导指出:“长方体六个面的面积之和叫做它的表面积”,然后再让学生摸一摸、说一说。这样设计既能刺激学生产生好奇心,又能唤起学生强烈的参与意识,产生学习的需求,使学生在自主的观察与思考中理解了表面积的意义,为探索长方体和正方体表面积的计算打下了良好的基础。
数学来源于生活,同时又服务于生活。应用学到的知识解决实际生活中的问题,不但能使学生感受数学与实际生活是密切联系的,而且能培养学生的创新精神。为此,我出示了以下几种情况的练习:比如无盖的玻璃鱼缸、没有底面的洗衣机罩,学生认识到长、正方体的表面积也会遇到许多特殊情况,我们求表面积不可以千篇一律要根据实际情况具体问题具体分析。
因为是从平面到立体,成人看似简单,而对小学生却有一定的难度。学生的作业反映出来的问题屡见不鲜,因为与实际生活联系比较密切的例子比比皆是,有些题学生考虑不全面,有些却是无所适从,刚刚学过长方体和正方体的表面积,有个别学生不分青红皂白,不认真审题,如果在课堂上我能够抓住学生实践的过程适时把展开的`平面图做出点拨效果会更好。有些学生缺乏空间想象力,还是分不清楚具体的面应该怎样求才是它的面积,而且学生缺乏耐心细致,做不到具体情况具体分析,因此在解决实际问题时,失误较多。以后的教学中我应注重通过观察物体、制作模型、设计图案等活动,发展学生的空间观念。例如,礼堂中有四根长方体形状的木柱,底面是正方形,边长是5分米,高5米,这四根柱子占地面积是多少分米?有个别学生依然把底面积和表面积混淆,把简单问题复杂化。
数学知识从生活中来,但是他们生活常识较少,思维跟不上,对所学的知识没有吃透,似懂非懂又不及时追问。应该对教材有更深入的研究,也应该全方位的去拓展学生思维,尤其是长方体和正方体这一部分内容,在生活中学生对长方体可以说司空见惯,在学习新知时学生也是兴味盎然,积极性很高,但数学知识具有高度的抽象性,今后要多引导学生在动手操作中思考加工,培养技能技巧,促进思维发展,在平时的教学中有时怕学生在课堂上忘乎所以,不好组织,所以尽量避免让学生动手操作,今后也应吸取本次的经验,尽可能的让学生多动手,动手的同时也会拓展学生的思维,达到举一反三,触类旁通的效果。
以后的教学中我应注重通过观察物体、制作模型、设计图案等活动,将抽象的知识变成了学生能看得见、摸得着的现实东西,使学生在观察和操作中,对知识的思考与实物模型的演示和操作有机的结合起来,在学生头脑中形成表象,建立概念,以动促思。并给学生机会,让学生充分发表自己的见解。
【本文地址:http://www.xuefen.com.cn/zuowen/6684141.html】