最新二次函数的心得体会(案例13篇)

格式:DOC 上传日期:2023-11-02 08:25:16
最新二次函数的心得体会(案例13篇)
时间:2023-11-02 08:25:16     小编:XY字客

写心得体会可以帮助我们更好地追求进步和提高自己。如何写一篇较为完美的心得体会是许多人的关注焦点。如果你正在为心得体会的写作而烦恼,不妨参考以下范文,或许能够给你启示和指导。

二次函数的心得体会篇一

从课本的体系来看,这节课明显是要让学生明白什么是二次函数,能区别二次函数与其他函数的不同,能深刻理解二次函数的一般形式,并能初步理解实际问题中对定义域的限制。

重新思索教材的编写意图,发现课本这部分内容大部分篇幅是在讲三个实际问题,由此引出了二次函数,我才意识其实这节课的重点实际上应该放在“经历探索和表示二次函数关系的过程,获得用二次函数表示变量之间关系的体验,从而形成定义”上,有了这个认识,一切变得简单了!

对于实际问题的选择,我将4个问题整和于同一个实际背景下,这样设计既能引起学生兴趣,也尽量减少学生审题的时间,显得非常有层次性,这些实际问题贯穿整个课堂的始终,使整个课堂有浑然天成的感觉。

对于练习的设计,仍然采取了不重复的原则性,尽量做到每题针对一个问题,并进行及时的小结,也遵循了从开放到封闭的原则,达到了良好的效果。

二次函数的心得体会篇二

学习数学,二次函数是一个不可避免的话题。它是高中数学中的一个重要部分。学好二次函数的知识对于学生来说非常有必要,不仅可以提高数学成绩,也可以应用到实际生活中。然而,二次函数不是一项轻松的任务。在备考二次函数的过程中,我积攒了一些心得体会,想和大家分享一下。

第二段:正文1——建立数学思维。

在备考二次函数的过程中,首先要建立数学思维。这是因为二次函数是数学中的一门较为抽象的学问,需要更强的逻辑性和抽象思维能力。我们需要通过理解和掌握二次函数的概念和方法,进一步发展数学思维,提高数学素养。我们可以从一些简单的例子入手,逐渐熟悉二次函数的表达式和图像,明确二次函数的定义和范围。

第三段:正文2——切实掌握知识点。

掌握二次函数的知识点是备考的核心,因此在备考中务必要认真、深度地学习二次函数。这需要我们掌握二次函数的特征和性质,深入理解其图像、根、顶点、对称轴等概念。在实践中,我们需要通过做题来加深对知识点的理解和掌握。同时,我们可以适当画图、动手操作等方式,加深对二次函数的认识,激发学习兴趣,提升学习效率。

第四段:正文3——练习和提高能力。

在备考二次函数中,大量的练习是必不可少的。我们可以系统地做一些例题、习题和试卷,逐步提高自己的应试能力。而且要注意实践中的方法和技巧,如观察题目中的特征信息,灵活应用解题方法,正确理解题意,等等。除此之外,我们可以多了解一些数学应用知识,培养逻辑思维能力和判断力,从而提高实际生活中解决问题的能力。

第五段:总结。

备考二次函数,需要我们建立数学思维,掌握知识点,练习和提高能力。而这些在一定程度上也反映出了数学学习的方法和精神。不论是备考二次函数,还是学习其它数学知识,我们都应该在学习中体会学习的乐趣、深度、广度和实际价值。当我们克服了困难,真正掌握了二次函数的知识,我们就会发现数学之美。

二次函数的心得体会篇三

二次函数是中学数学中的重要内容,也是高考数学中的必考内容之一。作为学生,我们在备考过程中应该如何有效地掌握和应用二次函数呢?在这篇文章中,我将分享一些我在备考二次函数过程中的心得体会。

第二段:理解二次函数的定义及性质。

在二次函数备考中,首先需要掌握的是二次函数的定义和基本性质。二次函数的标准形式为$f(x)=ax^2+bx+c$,其中$a\neq0$。二次函数的图像是一个抛物线,其开口方向由$a$的正负号决定。在掌握了二次函数的定义之后,我们需要学习二次函数的性质,包括函数的单调性、极值、对称轴、零点和图像的方程等。

第三段:掌握二次函数的变形和运用。

掌握二次函数的变形是备考成功的关键之一。在二次函数的变形中,常见的有平移、伸缩、翻转等变化,它们都会影响到函数的图像和性质。因此,我们需要掌握这些变形的规律和方法,以便于在实践中准确地运用。

第四段:熟练掌握二次函数的解析式。

掌握二次函数的解析式也是备考二次函数的重点之一。在练习中,我们需要熟练地运用解析式,解决各种与二次函数相关的问题,如求函数的零点、极值、对称轴等,这些问题在高考中也是常见的考点。

第五段:多做例题,加深理解。

在备考过程中,多做例题是加深理解的重要方法。通过做例题,我们可以运用所学知识,增强对二次函数的理解和掌握。在做题过程中,我们还要注意归纳总结,找出问题的规律和解题方法,加深对二次函数的认识。

结语:

通过以上几点,我们可以有效地备考二次函数,掌握并巩固相关知识点。我们需要注重理论学习,掌握二次函数的定义和基本性质,熟练掌握二次函数的解析式,并且通过练习加深对二次函数的理解和掌握。相信在备考过程中,只要我们持之以恒地学习和练习,就一定能够取得良好的成绩。

二次函数的心得体会篇四

二次函数是数学中的一门重要的内容,由于其应用广泛,所以在学习中也是需要加以重视的。在对二次函数进行复习的过程中,我深切体会到了二次函数的性质和应用的重要性。以下将就此展开,以此作为一次全面的复习心得体会。

第一段:复习的初衷和方法。

对二次函数的复习是因为即将到来的考试,而在复习的过程中我发现了很多之前未曾注意到的细节。我选择了查看以往的课堂笔记,复习相关的知识点,做了一些习题和例题,并且结合了一些实际问题进行了思考。通过这样的方式进行复习,我不仅巩固了基础知识,还对二次函数的性质和应用有了更深入的了解。

在复习的过程中,我重点关注了二次函数的性质,包括定义域、值域和单调性等。通过大量的例题演算,我发现二次函数的定义域和值域都与二次函数的开口方向和平移有关。而在研究二次函数的单调性时,我发现二次函数在某个范围内可能是增函数,而在另一个范围内却是减函数。这些性质的理解对于解决实际问题中的建模和求解非常重要。

第三段:二次函数的应用。

在学习中,我发现了二次函数在实际生活中的广泛应用。例如,在物理学中,自由落体运动的高度和时间之间的关系可以用二次函数来描述;在经济学中,利润和产量之间的关系也可以用二次函数来表示。这些实际问题的建模和求解都需要我们对二次函数的性质有深刻的理解,以便找到最优解或者预测未来的趋势。

第四段:解二次方程。

二次函数的一个重要应用是解二次方程。在复习中,我重新温习了求解一元二次方程的方法,包括配方、因式分解和求根公式。同时,我还探究了一元二次方程的根与系数之间的关系。通过这些练习,我对于解二次方程和二次函数之间的联系有了更深刻的理解,同时也提高了解决实际问题时的应用能力。

第五段:进一步提高。

二次函数的复习不仅是为了考试,更重要的是希望能够深入理解其性质和应用。在今后的学习中,我还要继续加强对二次函数的掌握,同时加强与实际问题的结合,培养自己的应用能力。此外,我还计划进一步深入研究其他高级数学知识,以不断提高自己的数学水平。

通过对二次函数的复习,我不仅对二次函数的性质和应用有了更深入的认识,而且意识到了数学知识的重要性。掌握好二次函数的知识将有助于解决实际问题和提高自己的思维能力。我会在今后的学习中持之以恒,在数学学习方面更进一步,同时也将通过数学来提升我的综合素质。

二次函数的心得体会篇五

近日,我在数学课上进行了二次函数的复习,通过这一过程,我深深体会到了二次函数的重要性和应用价值。以下是我对此的心得体会。

在复习过程中,我首先意识到了二次函数在现实中的广泛应用。二次函数可以描述物理学、经济学、生物学等各个领域的现象。例如,在物理学中,抛物线的轨迹就可以由二次函数来描述。另外,数学模型也常常采用二次函数来分析和预测实际问题的发展趋势。因此,了解和掌握二次函数的知识对我们理解和处理各种实际问题具有重要意义。

其次,我对二次函数的图像和性质有了更深入的认识。通过画图和求解方程,我发现二次函数的图像是一个抛物线。这个抛物线在坐标轴上的交点称为零点,也就是方程的解。而顶点则是抛物线的最高点(对于开口向上的抛物线)或最低点(对于开口向下的抛物线)。了解这些性质有助于我们更方便地分析和解决问题,比如在最值求解或方程解析方面。

进一步地,我也深入研究了二次函数的预测和建模。通过给定一些历史数据,我们可以使用二次函数来预测未来的趋势和结果。例如,在经济学中,我们可以利用二次函数来预测某个市场的发展趋势,帮助企业做出更准确的决策。此外,二次函数还可以用于优化问题的建模,比如求解最值问题。通过对二次函数进行求导,我们可以得到函数的最值点,从而可以找到问题的最优解。

最后,我认识到二次函数对于我们的数学思维能力和解决问题的能力的培养具有重要意义。在学习二次函数的过程中,我们需要通过观察和分析,运用数学知识来解决问题。这种思维方式的培养,不仅可以帮助我们更好地理解和掌握二次函数,还可以提升我们的数学思维能力,培养良好的逻辑思维和问题解决能力。这对于我们未来的学习和工作都十分重要。

通过本次二次函数的复习,我对二次函数的重要性和应用价值有了更深入的理解。在实际生活中,我们不仅要关注数学知识的学习和应用,更要培养好的数学思维能力和解决问题的能力。只有这样,我们才能更好地应对未来的挑战,发现数学背后的美妙和智慧。

二次函数的心得体会篇六

在高中数学教学中,二次函数是一个十分重要的内容,因为它在生活中有着广泛的应用。其中一项常见的应用就是在测量中。通过实验数据,我们可以得到一个二次函数的模型,从而对实验数据进行预测和分析。在我学习二次函数的过程中,也有幸进行了一些测量实验,并对二次函数的应用有了更深刻的体会。

第二段:实验过程。

实验过程中,我选择了抛物线的测量,通过测量物体的高度、时间和落地点坐标,我们可以得到一个二次函数的模型,从而计算出物体的初始速度、最大高度等一系列数据。在测量过程中,我们需要非常仔细地进行实验,例如保证实验地点平整、避免风的影响等。同时还需要使用专业的测量设备,例如光电门、计时器等。

第三段:实验数据。

通过实验得到的数据,我们可以将其代入二次函数的模型中,从而得出真实的情况。通过这些数据,我们可以进行更多的分析,例如绘制出物体的抛物线轨迹图、比较不同物体的抛物线图形、计算出物理量等。这些数据不仅可以用于学术研究,也可以应用到实际生活中,例如建造各种结构或者选购适当的工具等。

二次函数在生活中有着广泛的应用。例如在物理学中,我们经常使用二次函数来计算物体的运动情况;在经济学中,我们可以利用二次函数来研究产品销量与销售价格的关系等。二次函数也常常被应用到工程设计中,因为它可以很好地表示众多物理量的关系。这些应用都需要我们深入理解二次函数,从而得出更为准确和实用的数据。

第五段:结论。

二次函数测量实验不仅需要我们对数学知识的掌握,还需要我们有耐心和细心地分析实验数据。通过实验,我们可以更深刻地理解二次函数,掌握其应用技巧,并将其运用到更多领域中。在今后学习过程中,我们应该对二次函数的知识保持持续关注和深入学习,从而更好地理解它的神奇之处。

二次函数的心得体会篇七

在整个中学数学知识体系中,二次函数占据极其关键且重要的地位,二次函数不仅是中高考数学的重要考点,也是线性数学知识的基础。那老师应该怎么教呢?今天,小编给大家带来初三数学二次函数教案教学方法。

一、重视每一堂复习课数学复习课不比新课,讲的都是已经学过的东西,我想许多老师都和我有相同的体会,那就是复习课比新课难上。

四、要多了解学生。你对学生的了解更有助于你的教学,特别是在初三总复习间断,及时了解每个学生的复习情况有助于你更好的制定复习计划和备下一堂课,也有利于你更好的改进教学方法。

将本文的word文档下载到电脑,方便收藏和打印。

二次函数的心得体会篇八

在整个中学数学知识体系中,二次函数占据极其关键且重要的地位,二次函数不仅是中高考数学的重要考点,也是线性数学知识的基础。那老师应该怎么教呢?今天,小编给大家带来初三数学二次函数教案教学方法。

一、重视每一堂复习课数学复习课不比新课,讲的都是已经学过的东西,我想许多老师都和我有相同的体会,那就是复习课比新课难上。

四、要多了解学生。你对学生的了解更有助于你的教学,特别是在初三总复习间断,及时了解每个学生的复习情况有助于你更好的制定复习计划和备下一堂课,也有利于你更好的改进教学方法。

二、立足课堂,提高效率:做到教师入题海,学生出题海.教师应多做题、多研究近几年的中考试题,并根据本班学生的实际情况,从众多复习资料中,选择适合本班学生的最佳练习,也可通过对题目的重组。

三、教师在设计教学目标时,要做到胸中有书,目中有人,让每一节课都给学生留有时间,让他们有独立思考、合作探究交流的过程,最大限度的调动学生的参与度,激发他们的学习兴趣,达到最佳的复习效果.

四、激发兴趣,提高质量:兴趣是学习最好的动力,在上复习课时尤为重要.因此,我们在授课的过程中,在关注知识复习的同时,也要关注学生的学习欲望和学习效果,要让学生在学习的过程中体验成功的快感.这样他们才会更有兴趣的学习下去.

1.质疑问难是学生自主学习的重要表现,优化课堂结构,激活学生的主体意识,必须鼓励学生质疑问难。教师要创造和谐融合的课堂气氛,允许学生随时“插嘴”、提问、争辩,甚至提出与教师不同的看法。

2.二次函数是初中阶段继一次函数、反比例函数之后,学生要学习的最后一类重要的代数函数,它也是描述现实世界变量之间关系的重要的数学模型。

3.学生有疑而问、质疑问难,是用心思考、自主学习、主动探究的可贵表现,理应得到老师的热情鼓励和赞扬。现在对学生的随时“插嘴”,提出的各种疑难问题,应抱欢迎、鼓励的态度给与肯定,并做出正确的解释。

4.初中阶段主要研究二次函数的概念、图像和性质,用二次函数的观点审视一元二次方程,用二次函数的相关知识分析和解决简单的实际问题。

1.教学案例、教学设计、教学实录、教学叙事的区别:教学案例与教案:教案(教学设计)是事先设想的教育教学思路,是对准备实施的教育措施的简要说明,反映的是教学预期;而教学案例则是对已发生的教育教学过程的描述,反映的是教学结果。

2.教学案例与教学实录:它们同样是对教育教学情境的描述,但教学实录是有闻必录(事实判断),而教学案例是根据目的和功能选择内容,并且必须有作者的反思(价值判断)。

4.教学案例必须从教学任务分析的目标出发,有意识地选择有关信息,必须事先进行实地作业,因此日常教育叙事日志可以作为写作教学案例的素材积累。

二次函数的心得体会篇九

作为一门重要的数学学科,函数课程对于学生的数学思维培养和问题解决能力的提升起着非常关键的作用。在经历了一学期的函数课学习后,我深深地感受到了函数的魅力和价值。通过这门课程的学习,我不仅对函数的概念和特性有了更深刻的理解,而且在实践中更加熟练地运用函数解决各种数学和实际问题。本文将以五段式的形式,总结我在函数课中的心得体会。

首先,在函数课程中,我对函数的概念和特性有了更深刻的理解。函数作为数学中的一种重要关系,它的定义和性质对我而言一度感觉晦涩难懂。在老师的耐心讲解下,我慢慢明白了函数的定义是一种对应关系,其中每个输入都对应唯一的输出。而函数的特性更是引人入胜,例如奇偶性、单调性等。通过理论知识的学习和数学模型的实践应用,我全面了解了函数的内涵和外延,对函数有了更加深入的了解。

其次,函数课程为我提供了丰富的问题解决能力的训练机会。函数作为数学工具的一种,它在实际问题中的广泛应用,使我在课程中接触到了各种丰富的问题。通过解决这些问题,我渐渐体会到函数的威力。例如,在函数的图像中,我可以推测出函数的性质,根据函数的解析式计算各种函数的值,并运用函数图像画出问题的解释图。通过这些问题的解决,我深刻理解到了函数在数学问题解决中的重要性,并培养了自己的问题解决能力。

再次,函数课程在帮助我提高数学思维方面发挥了重要的作用。函数的学习要求我们具备抽象思维和逻辑思维能力,这对于培养我个人的数学思维起到了非常重要的作用。例如,当遇到复杂的函数关系时,我需要运用抽象思维将其简化为更简单的形式,然后通过逻辑思维进行推理和证明。通过这样的思维过程,我逐渐培养了自己的数学思维方式,让我对数学问题能够拥有更加清晰的思路,更加灵活的思考方式。

此外,在函数课程中,老师不仅给予了我们广泛的知识和技能,更加重视培养学生的创新意识和实践能力。通过老师的引导和启发,我们被鼓励去探索和发现数学规律。在课程中,我有幸参加过许多个人和小组的研究项目,这些项目给予了我动手实践的机会,在实践中不断锻炼和提升自己的数学应用能力。通过这样的实践活动,在函数课程中积累了丰富的经验和技巧,对未来的学习和应用都非常有益。

总之,函数课程对我的数学学习和思维能力的发展起到了至关重要的作用。通过函数课程的学习,我深刻认识到了函数的概念与特性,提高了自己的问题解决能力和数学思维,培养了创新意识和实践能力。在未来的学习和工作中,我将更加充分地运用函数的知识和方法,发挥函数的巨大潜力,为解决更多的数学和实际问题做出自己的贡献。函数课程给予了我非常宝贵的经验和收获,这将伴随我一生,不断推动我前进。

二次函数的心得体会篇十

学习目标:

1、能够分析和表示变量间的二次函数关系,并解决用二次函数所表示的问题。

2、用三种方式表示变量间二次函数关系,从不同侧面对函数性质进行研究。

3、通过解决用二次函数所表示的问题,培养学生的运用能力。

学习重点:

能够分析和表示变量之间的二次函数关系,并解决用二次函数所表示的问题。

能够根据二次函数的不同表示方式,从不同的侧面对函数性质进行研究。

学习难点:

能够分析和表示变量之间的二次函数关系,并解决用二次函数所表示的问题。

学习过程:

一、学前准备。

函数的三种表示方式,即表格、表达式、图象法,我们都不陌生,比如在商店的广告牌上这样写着:一种豆子的售价与购买数量之间的关系如下:

x(千克)00。511。522。53。

y(元)0123456。

二、探究活动。

(一)合作探究:

交流完成:

(1)一边长为xcm,则另一边长为cm,所以面积为:用函数表达式表示:=________________________________。

(2)表格表示:

123456789。

10—。

(3)画出图象。

(二)议一议。

(1)在上述问题中,自变量x的取值范围是什么?

(2)当x取何值时,长方形的面积最大?它的最大面积是多少?你是怎样得到的?请你描述一下y随x的变化而变化的情况。

点拨:自变量x的取值范围即是使函数有意义的自变量的取值范围。请大家互相交流。

(1)因为x是边长,所以x应取数,即x0,又另一边长(10—x)也应大于,即10—x0,所以x10,这两个条件应该同时满足,所以x的取值范围是。

(2)当x取何值时,长方形的面积最大,就是求自变量取何值时,函数有最大值,所以要把二次函数y=—x2+10x化成顶点式。当x=—时,函数y有最大值y最大=。当x=时,长方形的面积最大,最大面积是25cm2。

可以通过观察图象得知。也可以代入顶点坐标公式中求得。。

(三)做一做:学生独立思考完成p62,p63的函数表达式,表格,图象问题。

(1)用函数表达式表示:y=________。

(2)用表格表示:

(3)用图象表示:

三、学习体会。

本节课你有哪些收获?你还有哪些疑问?

四、自我测试。

1、把长1。6米的铁丝围成长方形abcd,设宽为x(m),面积为y(m2)。则当最大时,所取的值是()。

a0。5b0。4c0。3d0。6。

2、两个数的和为6,这两个数的积最大可能达到多少?利用图象描述乘积与因数之间的关系。

二次函数的心得体会篇十一

函数是计算机编程中非常重要的一个知识点,尤其在现代软件领域中,函数更是无处不在。作为一名程序员,我们需要深入理解函数的概念,能够灵活运用函数来编写高效的代码。在大量的实践中,我对函数有了一些心得体会。

一、函数的概念

函数是计算机编程的基本概念之一,它是一组语句的集合,通常用于完成一项特定的任务。函数可以接受输入,处理数据,执行操作,最终返回输出。利用函数可以将大型程序拆分成多个小型问题,有助于代码的可读性和维护性。另外,函数还可以重复使用,避免重复编写相同的代码。在实际的编程中,理解函数的概念是十分关键的。

二、函数的组成

函数通常包含函数名、输入参数、输出参数和函数体。函数名是由程序员自行定义,用于调用函数的标识符。输入参数是函数需要接受的外部数据,可以是零个或多个参数。输出参数是函数最终返回的结果,用于外部调用使用。函数体包含了完成功能的代码,通常使用花括号括起来。一个完整的函数由这四部分构成,程序员需要根据实际需求进行合理的构建。理解函数的组成有助于我们更好地进行函数的使用与编写。

三、函数的语法

函数有自己的语法规则,我们在编写函数时需要遵循这些规则。函数的语法通常包括函数名称、参数列表、指令块和返回值。其中,函数名称用于唯一标识一个函数,参数列表用于定义函数需要使用的输入参数,指令块包含了完成功能的代码,返回值用于将函数的结果返回给调用者。熟练掌握函数的语法规则可以帮助我们更好地完成编程工作。

四、函数的应用

函数在编程中有着非常广泛的应用,它可以用于各种场景中。常见的应用包括:简化程序结构、提高代码重用性、增加代码可读性、提升程序性能等。利用函数,我们可以将程序拆分成多个小型问题,每个问题由一个函数来解决,减少代码冗余,防止出现大量重复代码。此外,对于特定的场景和需求,函数还可以实现一些高级功能,如递归、闭包等。

五、总结

函数是计算机编程中非常重要的一个概念,掌握函数的核心概念和实际应用,对于编写高效的程序非常有帮助。在编程学习的过程中,结合实际案例对函数的使用和理解加深,有利于我们更好地掌握函数的各方面应用和技巧,提高自身的技能水平和编程能力。希望我的这些心得体会可以对大家有所帮助。

二次函数的心得体会篇十二

让学生经历根据不同的条件,利用待定系数法求二次函数的函数关系式。

:各种隐含条件的挖掘。

:引导发现法。

(一)诊断补偿,情景引入:

(先让学生复习,然后提问,并做进一步诊断)。

(二)问题导航,探究释疑:

(三)精讲提炼,揭示本质:

分析如图,以ab的垂直平分线为y轴,以过点o的y轴的垂线为x轴,建立了直角坐标系。这时,涵洞所在的抛物线的顶点在原点,对称轴是y轴,开口向下,所以可设它的函数关系式是。此时只需抛物线上的一个点就能求出抛物线的函数关系式。

解由题意,得点b的坐标为(0。8,-2。4),

又因为点b在抛物线上,将它的坐标代入,得所以因此,函数关系式是。

例2、根据下列条件,分别求出对应的二次函数的关系式。

(1)已知二次函数的图象经过点a(0,-1)、b(1,0)、c(-1,2);

(2)已知抛物线的顶点为(1,-3),且与y轴交于点(0,1);

(3)已知抛物线与x轴交于点m(-3,0)(5,0)且与y轴交于点(0,-3);

(4)已知抛物线的顶点为(3,-2),且与x轴两交点间的距离为4。

分析(1)根据二次函数的图象经过三个已知点,可设函数关系式为的形式;(2)根据已知抛物线的顶点坐标,可设函数关系式为,再根据抛物线与y轴的交点可求出a的值;(3)根据抛物线与x轴的两个交点的坐标,可设函数关系式为,再根据抛物线与y轴的交点可求出a的值;(4)根据已知抛物线的顶点坐标(3,-2),可设函数关系式为,同时可知抛物线的对称轴为x=3,再由与x轴两交点间的距离为4,可得抛物线与x轴的两个交点为(1,0)和(5,0),任选一个代入,即可求出a的值。

解这个方程组,得a=2,b=-1。

(2)因为抛物线的顶点为(1,-3),所以设二此函数的关系式为,又由于抛物线与y轴交于点(0,1),可以得到解得。

(3)因为抛物线与x轴交于点m(-3,0)、(5,0),

所以设二此函数的关系式为。

又由于抛物线与y轴交于点(0,3),可以得到解得。

(4)根据前面的分析,本题已转化为与(2)相同的题型请同学们自己完成。

(四)题组训练,拓展迁移:

1、根据下列条件,分别求出对应的二次函数的关系式。

(1)已知二次函数的图象经过点(0,2)、(1,1)、(3,5);

(2)已知抛物线的顶点为(-1,2),且过点(2,1);

(3)已知抛物线与x轴交于点m(-1,0)、(2,0),且经过点(1,2)。

2、二次函数图象的对称轴是x=-1,与y轴交点的纵坐标是–6,且经过点(2,10),求此二次函数的关系式。

(五)交流评价,深化知识:

确定二此函数的关系式的一般方法是待定系数法,在选择把二次函数的关系式设成什么形式时,可根据题目中的条件灵活选择,以简单为原则。二次函数的关系式可设如下三种形式:(1)一般式:,给出三点坐标可利用此式来求。

(2)顶点式:,给出两点,且其中一点为顶点时可利用此式来求。

(3)交点式:,给出三点,其中两点为与x轴的两个交点、时可利用此式来求。

本课课外作业1。已知二次函数的图象经过点a(-1,12)、b(2,-3),

(2)用配方法把(1)所得的函数关系式化成的形式,并求出该抛物线的顶点坐标和对称轴。

二次函数的心得体会篇十三

在面向对象编程中,虚函数是一种十分重要的概念。通过虚函数,我们可以在父类中定义一个函数,而在子类中通过重写这个虚函数来实现不同的功能。虚函数不仅能够提高代码的复用,还能帮助我们实现多态。在我学习和使用虚函数的过程中,我深刻地认识到了它的重要性和优越性。

二、认识虚函数

虚函数是指在基类中申明为虚函数的某个函数,在派生类中可以被重新定义的函数。虚函数是C++中实现多态的重要手段之一。C++通过虚函数实现了运行时多态,即在程序运行时根据情况选择不同的函数实现。而非虚函数只能通过函数名来确定调用的函数实现,在程序编译时就已经确定。

三、虚函数的优越性

虚函数的出现可以大大提高代码的可维护性和可拓展性。通过定义虚函数,我们可以将父类和子类的接口统一起来,使得子类可以从父类中继承一些方法和属性。当我们需要为不同的子类实现相似的接口时,虚函数可以帮助我们减少冗余的代码。虚函数还可以帮助实现多态,让程序更加灵活和具有弹性。

四、虚函数的具体应用

在具体的实践中,我们可以经常使用虚函数。例如在一个图形编辑器中,我们可以通过定义一个基类Shape和其子类Rectangle、Circle、Triangle等等,通过虚函数draw()来实现绘制不同形状的图形。在OpenGL中,通过定义虚函数的方式实现多态特性,最终在运行时选择对应的实现。当然,虚函数不仅限于这些特定的场景,只要我们能够想到多态的应用场景,就能够找到虚函数的合理应用。

五、总结

通过学习和实践虚函数,我认识到了它对于代码结构、可维护性和可拓展性的重要影响。虚函数的出现大大简化了代码的实现,使得程序更加灵活和具有弹性。但是,在使用虚函数的过程中也需要注意一些问题,如在虚函数中使用动态内存分配时,需要在析构函数中删除申请的内存。虚函数是C++中实现多态性的重要手段,对于理解和掌握C++的核心思想和技术都非常重要。

【本文地址:http://www.xuefen.com.cn/zuowen/6643730.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档