精选数学建模论文感悟(案例20篇)

格式:DOC 上传日期:2023-11-02 05:07:49
精选数学建模论文感悟(案例20篇)
时间:2023-11-02 05:07:49     小编:念青松

感悟是生活中最真实的写照,每个人都有自己的感悟。换位思考和拓展观点,可以帮助我们获得更广阔的感悟能力。下面是一些关于感悟的精选篇章,希望可以给你带来一些心灵上的感悟。

数学建模论文感悟篇一

一、在高等数学教学中运用数学建模思想的重要性

(1)将教材中的数学知识运用现实生活中的对象进行还原,让学生树立数学知识来源于现实生活的思想观念。

(2)数学建模思想要求学生能够通过运用相应的数学工具和数学语言,对现实生活中的特定对象的信息、数据或者现象进行简化,对抽象的数学对象进行翻译和归纳,将所求解的数学问题中的数量关系运用数学关系式、数学图形或者数学表格等形式进行表达,这种方式有利于培养、锻炼学生的数学表达能力。

(3)在运用数学建模思想获得实际的答案后,需要运用现实生活对象的相关信息对其进行检验,对计算结果的准确性进行检验和确定。该流程能够培养学生运用合理的数学方法对数学问题进行主动性、客观性以及辩证性的分析,最后得到最有效的解决问题的方法。

二、高等数学教学中数学建模能力的培养策略

1.教师要具备数学建模思想意识

在对高等数学进行教学的过程中,培养学生运用数学建模思想,首先教师要具备足够的数学建模意识。教师在进行高等数学教学之前,首先,要对所讲数学内容的相关实例进行查找,有意识的实现高等数学内容和各个不同领域之间的联系;其次,教师要实现高等数学教学内容与教学要求的转变,及时的更新自身的教学观念和教学思想。例如,教师细心发现现实生活中的小事,然后运用这些小事建造相应的数学模型,这样不仅有利于营造活跃的课堂环境,而且还有利于激发学生的学习兴趣。

2.实现数学建模思想和高等数学教材的互相结合

教师在讲解高等数学时,对其中能够引入数学模型的章节,要构建相关的数学模型,对其提出相应的问题,进行分析和处理。在该基础上,提出假设,实现数学模型的完善。教师在高等数学的教学中融入建模意识,让学生潜移默化的感受到建模思想在高等数学教学中应用的效果。这样有利于提高学生数学知识的运用能力和学习兴趣。例如,在进行教学时,针对学生所学专业的特点,选择科学、合理的数学案例,运用数学建模思想对其进行相应的加工后,作为高等数学讲授的应用例题。这样不仅能够让学生发现数学发挥的巨大作用,而且还能够有效的提高学生的数学解题水平。另外,数学课结束后,转变以往的作业模式,给学生布置一些具有专业性、数学性的习题,让学生充分利用网络资源,自主建立数学模型,有效的解决问题。

3.理清高等数学名词的概念

教材中,导数和定积分是其中的比较重要的概念,因此,教师在进行教学时,要引导学生理清这两个的概念。比如导数概念是由几何曲线中的切线斜率引导出来的,定积分的概念是由局部取近似值引出的,将常量转变为变量。

4.加强数学应用问题的培养

高等数学中,主要有以下几种应用问题:

(1)最值问题

在高等数学教材中,最值问题是导数应用中最重要的问题。教师在教学过程中通过对最值问题的解题步骤进行归纳,能够有效地将数学建模的基本思想进行反映。因此,在对这部分内容进行教学时,要增加例题,加大学生的练习,开拓学生的思维,让学生熟练掌握最值问题的解决办法。

(2)微分方程

在微分方程的教学中运用数学建模思想,能够有效地解决实际问题。微分方程所构建的数学模型不具有通用的规则。首先,要确定方程中的变量,对变量和变化率、微元之间的关系进行分析,然后运用相关的物理理论、化学理论或者工程学理论对其进行实验,运用所得出的定理、规律来构建微分方程;其次,对其进行求解和验证结果。微分方程的概念主要从实际引入,坚持由浅入深的原则,来对现实问题进行解决。例如,在对学生讲解外有引力定律时,让学生对万有引力的提出、猜想进行探究,了解到在其发展的整个过程中,数学发挥着十分重要的作用。

(3)定积分

微元法思想用途比较广泛,其主要以定积分概念为基础,在数学中渗入定积分概念,让学生对定积分概念的意义进行分析和了解,这样有利于在对实际问题进行解决时,树立“欲积先分”意识,意识到运用定积分是解决微元实际问题的重要方法。教师在布置作业题时,要增加该问题的实例。

三、结语

总之,在高等数学中对学生的数学建模能力进行培养,让学生在解题的过程中运用数学建模思想和数学建模方法,能够有效地激发学生的学习兴趣,提高学生的分析、解决问题的能力以及提高学生数学知识的运用能力。

数学建模论文感悟篇二

计算数学建模是用数学的思考方式,采用数学的方法和语言,通过简化,抽象的方式来解决实际问题的一种数学手段。数学建模所解决的问题不止现实的,还包括对未来的一种预见。数学建模可以说和我们的生活息息相关,尤其是如今科技发达的今天。数学建模应用领域超乎我们的想象,甚至达到无所不及的程度,随着数学建模在大学教学中的广泛使用,使数学建模不止成为一种学科,更重要的是指导新生代更好的利用现代科学技术,成为高科技人才,把我国人才强国,科教兴国的战略推向一个新的高度。

1.1数学建模引进大学数学教学的必要。教学过程,是教师根据社会发展要求和当代学生身心发展的特点,借助教学条件,指导学生通过认识教学内容从而认识客观世界,并在此基础之上发展自身的过程,即教学活动的展开过程。以往高工专的数学教学存在着知识单一,内容陈旧,脱离实际等缺陷,已经不能满足时代的发展,如今的数学教学过程不是单纯的传授数学学科知识,而是通过数学教学过程引导学生认识科学,理解科学,从而指导实践,促进学生的德智体美劳全面的进步和发展。因此数学建模成为一门学科,被各大高等院校广泛引用和推广,其实数学建模不止应用在大学数学教学中,其他一切教学过程多可引进数学建模。1.2数学建模在大学数学教学中的运用。大学数学教师通过这个数学建模过程来引导学生解决问题和指导实践的能力。再次建模结果对现实生活的指导,这是大学数学教学中数学建模所需要达到的效果和要求。不再停留在理论学习,而是通过理论指导实践,从而为科学的进步和人才综合水平的提高提供可能。

2.1数学建模对数学学科和其他学科学生的巨大影响力学习数学建模,能够使一个单独的数学家变成经济学家,物理学家还有金融学家,甚至是艺术家,只要正握数学建模就能指导学生通过掌握数学建模的思维和方法向其他领域学习和进步。数学建模成为连接数学和其他领域的纽带,是当今数学科学在其他领导应用的桥梁,是数学技术转化为其他技术的途径,数学建模在学生中越来越受到关注和欢迎,越来越多的学生开始学习数学建模,尤其是数学界和工程界的学生,这成为当今学生成为现代科技工作者必须掌握的只是能力之一。

2.2数学建模对学生综合能力的提高数学建模是大学数学教师运用数学科学去分析和解决实际问题,在数学建模学习的过程中,大学生的数学能力得到提高,其分析问题、解决问题的能力得到提高,这对大学生毕业走向社会具有着重大意义。通过数学建模的学习和应用,激发大学生学习数学和应用数学的能力,运用数学的思维和方法,利用现代计算机科学,来解决数学及其他领域的问题。

数学建模引入大学数学教学,这是时代的进步,是时代对当代大学教师提出的新要求,尤其是大学数学教师,其不再停留在以往的单纯的数学知识讲授方向,而是将数学科学作为基础,引导当代大学生发散思维,发挥主观能动性,从而学习数学科学,并运用数学科学解决现实问题。在这个过程中大学教师的专业知识得到提高,其创新精神也得到了极大的丰富。大学数学教师不止完成数学教学,更重要的是培养了高科技的人才,这对大学数学教师的社会地位也有了相应的改变,在尊重人才,尊重科学的氛围中,大学数学教师及其他学科的教师得到了鼓舞,得到了进步,得到了认可。数学建模越来越重要,关于数学建模的各种国内国际大赛频频举办,这对大学数学教师在知识,体力和创新性上都提出新的要求,为了更好的参与数学建模比赛,大学数学教师投入更多的时间和经历在学生教育和数学建模中,他们成为真正的台前和幕后的指挥者。

随着现代大学学科的丰富,尤其是计算机科学的广泛应用,大学数学教学的跨时代发展,数学建模成为各个高校数学教学的重点内容,数学建模教学吸纳数学家,计算机学家等多个学科专家的意见,从而为培养出综合行的高科技人才做好充分的准备。可以说数学建模教学是当今大学数学教学的主旋律,是数学科学和其他科学进步发展的方向和原动力。

[1]李进华.教育教学改革与教育创新探索.安徽:安徽大学出版社,20xx.8.

[2]于骏.现代数学思想方法.山东:石油大学出版社,1997.

数学建模论文感悟篇三

为了培养小学生良好的数学学习兴趣,激发他们的数学潜能,教师需要采取必要的措施注重数学建模思想的有效培养,促进学生的全面发展。在制定相关培养策略的过程中,教师应充分考虑小学生的性格特点,提高数学建模思想培养的有效性。基于此,文章将从不同的方面对小学生数学建模思想的培养策略进行初步的探讨。

作为小学数学教学中的重要组成部分,数学建模思想的渗透及相关教学活动的顺利开展,有利于提高复杂数学问题的处理效率,保持数学课堂教学的高效性。要实现这样的发展目标,增强小学生数学建模思想的实际培养效果,需要加强对学生动手实践能力的培养,激发学生的更高兴趣。建模的过程涉及问题表述、求解、必要解释及有效验证,在这四个环节中,可能会存在一定的问题,影响着数学教学计划的实施。因此,教师需要利用学生动手实践能力的作用,实现数学建模思想的有效培养,促使小学生能够在数学建模过程中享受到更多的快乐。比如,在讲解“认识角”知识的过程中,某些学生认为边越长角度也越大。为了使学生能够对其中的知识点有更加正确而全面的认识,教师可以通过在黑板上设置一些能够活动的三角板,让学生亲自动手操作,以此得出角与边长的正确关系,为后续教学计划的实施打下坚实的基础。通过这种教学方法的合理运用,可以激发出学生们在数学建模学习中的更高兴趣,丰富他们的想象力,从而使他们对数学建模思想有一定的了解,在未来学习过程中能够保持良好的`数学建模能力。

通过对小学阶段各种数学实践教学活动实际概况的深入分析,可知构建良好的数学模型有利于加深学生对各知识(福建省莆田市秀屿区东峤前江小学,福建莆田351164)点的深入理解,增强其主动参与数学建模教学活动的积极性。因此,为了使小学生数学建模思想培养能够达到预期的效果,教师需要结合实际的教学内容,建立必要的数学参考模型,提升学生对数学建模思想的整体认知水平。比如,在讲授“异分母分数加减法”这部分知识的过程中,可以设置“0.8千克+300克”“1.6千克-400克”等问题,向学生提问是否可以直接计算,并说出原因。当学生通过对问题的深入思考,总结出“单位不同不能直接计算”的结论后,继续向学生提问小数计算中为什么每一位都要对齐,实现“计数单位统一后才能计算”这一数学模型的构建。在这样的教学过程中,学生可以加深对知识点的理解,实现数学建模思想的有效培养。

加强小学生数学建模思想的有效培养,需要在具体的教学活动开展中注重对数学思想的灵活运用,增强相关模型构建的可靠性,促使学生在长期的数学学习中能够不断提高自身的数学能力,运用各种数学知识处理实际问题。比如,在“角的度量”这部分内容讲解的过程中,为了提高学生对角的分类及画角相关知识点的深入理解,教师可以将所有的学生分为不同的小组,让学生们通过小组讨论的方式,对角的正确分类及如何画角有一定的了解,并让每个小组代表在讲台上演示画角的过程。此时,教师可以通过对多媒体教学设备的合理运用,利用动态化的文字与图片对其中的知识要点进行展示,确保学生们能够在良好的教学模式中提升自身的认知水平,并在不断的思考过程中逐渐形成良好的创造性思维,强化自身的创新意识。比如,在讲解“图形变换”中的轴对称、旋转知识点的过程中,教师应通过对学生的正确引导,运用三角板、圆柱等教学辅助工具,让学生从不同的角度对各种轴对称图形、旋转后得到的图形进行深入思考,提高自身数学建模过程中的创新能力,从不同的角度深入理解图像变换过程,对这部分内容有更多的了解。因此,教师应注重小学生数学建模思想培养中多方位思考方式的针对性培养,提高学生的创新能力,优化学生的思维方式,全面提升小学数学建模教学水平。

总之,加强小学生数学建模思想培养策略的制定与实施,有利于满足素质教育的更高要求,实现对小学生数学能力的有效锻炼,确保相关的教学计划能够在规定的时间内顺利地完成。与此同时,结合当前小学数学教育教学的实际发展概况,可知灵活运用各种科学的数学建模思想培养策略,有利于满足学生数学建模学习中的多样化需求,为相关教学目标的顺利实现提供可靠的保障。

[1]童小艳.小学数学教学中培养学生建模思想的策略[j].学子(教育新理念),20xx(6).

[2]白宁.先学而后教——小学生数学建模思想培养的捷径[j].数学学习与研究,20xx(16).

数学建模论文感悟篇四

1、从应用数学出发数学建模主要是通过运用数学知识解决生活中遇到实际问题的全过程。要让数学建模思想与大学数学教学课程进行有效的融合,最佳切入点就是课堂上把用数学解决生活中的实际问题与教学内容相融合,以应用数学为导向,训练学生综合运用数学知识去刻画实际问题、提炼数学模型、处理实际数据、分析解决实际问题的能力,培养学生运用数学原理解决生活问题的兴趣和爱好。授课过程中,要改变以往单纯地进行课堂灌输的行为,多引入应用数学的内容,通过师生互动、课堂讨论、小课题研究实践等多种形式灵活多样的教学方法,培养引导学生树立应用数学建模解决实际问题的思想。

2、从数学实验做起要加强独立学院学生进行数学实验的行为,笔者认为数学建模与数学实验有着密切的联系,两者都是从解决实际问题出发,当前的大学生数学实验基本上是应用数学软件、数值计算、建立模型、过程演算和图形显示等一系列过程,因此进行数学实验的全过程就是数学建模思想的启发过程。但是我国的教育资源和教学方针限制了独立学院学生的学习环境和学习资源,能够进行数学实验的条件还是有限的。即使个别有实验能力的学校,也未能进行充分利用,数学实验课的内容随意性较大,有些院校将其降格为软件学习课程或初级算法课。根据调研,目前大部分独立学院未开设此类课程,这是数学建模思想与大学数学教学课程融合的一大损失,不利于学生创新思维能力的提高。各校应当积极创造条件,把数学实验课设为大学数学的必修课,争取设立数学建模选修课,并积极探索、逐步实现把数学建模的思想和方法融入大学数学的主干课程。

3、从计算机应用切入数学是为理、工、经、管、农、医、文等众多学科服务的基础工具,它在不同的领域因为应用程度不同而导致被重视的程度不同。但在当今的信息化时代,计算机的广泛应用和计算技术的飞速发展,使科学计算和数值模拟已成为绝大多数学科的必要工具和常用手段。数学在不同学科领域有了共同的主题,即应用数学建模,通过计算机对各自领域的科学研究、生活问题等进行模拟分析,这成为数学建模思想在跨学科领域交流和传播的一个重要途径。每个领域的教学可以计算机应用为切入点,让数学建模思想与数学授课无缝结合,在提高学生掌握知识能力、挖掘培养创新思维的同时,增加了大学数学课程内容的丰富性、实用性,促进教学手段变革和创新。因此,大学应以适应现代信息技术发展的形势和学生将来的需求为契机,加快改进大学数学课程教学方式,把数学建模的思想和方法以及现代计算技术和计算工具尽快融入大学数学的主干课程当中。

大学数学课程是大学工科各专业培养计划中重要的公共基础理论课,其目的在于培养工程技术人才所必备的数学素质,为培养我国现代化建设需要的高素质人才服务。数学建模课程的必修化,要从能够扩充学生的知识结构,培养学生的创造性思维能力、抽象概括能力、逻辑推理能力、自学能力、分析问题和解决问题能力的角度出发,建立适合独立学院学生的数学建模教学内容。日前独立学院开展数学建模活动涉及内容较浅,缺少相应的数学建模和数学实验方而的教材。笔者近几年通过承担此类课题的研究,认为应该加强以下内容的建设:

。2、开设选修课拓展知识领域,让学生可以通过选修数学建模、运筹学、开设数学实验(介绍matlab、maple等计算软件课程),增加建立和解答数学模型的方法和技巧。比如以前用的“文曲星”电子词典里的贷款计算,就是一个典型的运用数学模型方便百姓自己计算的应用。这个模型单靠数学和经济学单方面的知识是不够的,必须把数学与经济学联系在一起,才能有效解决生活中的问题。

3、积极组织学生开展或是参加数学建模大赛比赛是各个选手充分发挥水平、展示自己智慧的途径,也是数学建模思想传播的最好手段。比赛可以让各个选手发现自己的不足,寻找自身数学建模出发点的缺陷,通过交流,还可以拓展学生思维。因此,有必要积极组织学生参入初等数学知识可以解决的数学模型、线性规划模型、指派问题模型、存储问题模型、图论应用题等方面的模拟竞赛,通过参赛积累大量数学建模知识,促进数学建模在教学中扮演更重要的`角色。教师应该对历年的全国大学生数学建模竞赛真题进行认真的解读分析,通过对有意义的题目,如20xx年的《葡萄酒的评价》、《太阳能小屋的设计》,20xx年的《交巡警服务平台的设置与调度车灯线光源的计算》、20xx年的《眼科病床的合理安排》等,与生活相关的例子进行讲解分析,提高学生对数学建模的兴趣和对模型应用的直观的认识,实现学校应用型人才的培养。

4、加快教育方式的转变高等教育设立数学这门学科就是为了应用服务,内容应重点放在基本概念、定理、公式等在生活中的应用上。而传统的高等数学,除了推导就是证明,因此,要对传统内容进行优化组合,根据教学特点和学生情况推陈出新,要注重数学思想的渗透和数学方法的介绍,对高等数学精髓的求导、微分方法、积分方法等的授课要重点放在解决实际生活的应用上。要结合一些社会实践问题与函数建立的关系,分析确定变量、参数,加强有关函数关系式建立的日常训练。培养学生对一些问题的逻辑分析、抽象、简化并用数学语言表达的能力,逐步将学生带入遇到问题就能自然地去转化成数学模型进行处理的境界,并能将数学结论又能很好反向转化成实际应用。

21世纪我国进入了大众教育时期,高校招生人数剧增,学生水平差距较大,需要学校瞄准正确的培养方向。通过对美国教学改革的研究,笔者认为我国的数学建模思想与大学数学教学课程融合必须尽快在大学中广泛推进,但要注意一些问题:第一,数学教学改革一定要基于学生的现实水平,数学建模思想融入要与时俱进。第二,教学目标要正确定位,融合过程一定要与教学研究相结合,要在加强交流的基础上不断改进。第三,大学生数学建模竞赛的举办和参入,要给予正确的理解和引导,形成良性循环。要根据个人兴趣爱好,注重个性,不应面面强求。第四,传统数学思想与现在数学建模思想必须互补,必修与选修课程的作用与角色要分清。数学主干课程的教学水平是大学教学质量的关键指标之一,具备数学建模思想是理工类大学生能否成为创新人才的重要条件之一。两者的融合必将促进我国教学水平和质量的提高,为社会输送更多的实用型、创新型人才。

数学建模论文感悟篇五

优秀高教社杯全国大学生数学建模竞赛题目

(请先阅读“全国大学生数学建模竞赛论文格式规范”)

a题城市表层土壤重金属污染分析

随着城市经济的快速发展和城市人口的不断增加,人类活动对城市环境质量的影响日显突出。对城市土壤地质环境异常的查证,以及如何应用查证获得的海量数据资料开展城市环境质量评价,研究人类活动影响下城市地质环境的演变模式,日益成为人们关注的焦点。

按照功能划分,城区一般可分为生活区、工业区、山区、主干道路区及公园绿地区等,分别记为1类区、2类区、??、5类区,不同的区域环境受人类活动影响的程度不同。

现对某城市城区土壤地质环境进行调查。为此,将所考察的城区划分为间距1公里左右的网格子区域,按照每平方公里1个采样点对表层土(0~10厘米深度)进行取样、编号,并用gps记录采样点的位置。应用专门仪器测试分析,获得了每个样本所含的多种化学元素的浓度数据。另一方面,按照2公里的间距在那些远离人群及工业活动的自然区取样,将其作为该城区表层土壤中元素的背景值。

附件1列出了采样点的位置、海拔高度及其所属功能区等信息,附件2列出了8种主要重金属元素在采样点处的浓度,附件3列出了8种主要重金属元素的背景值。

现要求你们通过数学建模来完成以下任务:

(1)给出8种主要重金属元素在该城区的空间分布,并分析该城区内不同区域重金属的污染程度。

(2)通过数据分析,说明重金属污染的主要原因。

(3)分析重金属污染物的传播特征,由此建立模型,确定污染源的位置。

数学建模论文感悟篇六

使学生的综合应用能力、实践创新能力和综合应用素质等多方面均能得到提升和发展。

对于医学专业的学生来说,在校所学的数学基础理论课程比较有限,并且学生对纯粹的数学知识与复杂的理论推导已经极为厌倦,如果数学建模还是以传统的“灌输式”和教师“主导型”为主、简单的应用案例为主要教学内容的话,其结果势必会使学生有一种再讲数学课和做应用题的感觉,既不能很好地激发学生的学习兴趣,也不能体现数学建模的思想方法和本质特色。

因此,如何使学生摆脱这种尴尬的现状已成为我们教学的一大难点。针对这种情况,在教学模式上,我们大胆尝试研究型教学模式,即采用“从实践中来,到实践中去”的教学理念。一方面,从最现实、最热门的医学话题出发,从学生最感兴趣的.问题入手,激发学生的学习兴趣和进一步学习的主动性,使他们从一开始就能进入到学习的角色中去;另一方面,通过开展多种方式的实践教学活动,使学生在实践中掌握数学建模的常用方法和基本技能,忽略繁琐的数学推导过程,让学生体会发现问题和思考问题的过程,培养学生解决问题的创新能力。

近些年来,我们开设的医药数学建模课受到了学生的一致好评,其关键之处在于我们一改传统的教学模式,通过组织数学建模兴趣研讨班,让每位同学都能充分地参与到研究中去并且使每位学生都有发言的机会。这些举措旨在进一步激发学生的创新意识,提高学生的数学建模实践能力。研讨班面向全校各类医学专业的学生,并以三人为单位,划分成若干个组,通过专题研讨的形式开展活动。实践证明:通过这种研讨过程,学生不仅对所学的医学知识有了更深刻的理解与认识,在文献资料查阅、计算机编程、语言表达能力等诸多方面也都有了显著的提高。通过这个过程的学习,为学生今后从事医学科研工作打下了良好的基础。

为了有效的培养学生综合应用能力和深层次学习的习惯与意识,我们在教学方法上一改往日的“讲透,讲懂”的方法,忽略纯理论的繁琐推导,突出知识的应用思想和应用意识,让学生带着问题上课,尝试在解决问题中与教师进行交流,下课带着问题回去。

在课堂教学中,重点讲解发现问题和解决问题的方法与技巧。通过课前作业,引导学生自我发现问题;通过课堂讲解和研讨,引导学生解决问题;通过课后作业,总结和巩固所学知识,学习应用与拓展知识。这种完全以学生为主,教师为辅的做法,有利于培养学生树立勇于探索求知的信心和探索新知识的能力与意识,提高学生的创新能力和敏锐的洞察力及想象力,从而提升学生的综合应用素质。

在现实生活中的实际问题是比较复杂的,往往单一的方法是难以解决的,通常是需要多种方法的综合应用方能解决。

因此,以实际问题驱动的教学模式,主要是引导学生如何将复杂的实际问题分解为一系列简单的小问题,在解决每一个小问题的过程中,让学生学习并掌握相关的数学知识与方法。这种在应用中学习的教学方法,在很大程度上解决了学生普遍存在的“学数学有什么用、学了数学不知怎么用”的困惑。

在整个教学过程中,贯穿以学生为主体,通过案例分析引导学生的思维方法,针对一个案例的解决过程和方法,要求实现举一反三,促使学生对所掌握的知识进行重组再现和优化构建,让学生在学习和问题的解决中学会不断地总结与归纳,用成功的方法再去演绎解决新的问题,通过不断地归纳演绎、对比分析、总结经验、弥补不足,进一步学习相关知识和方法,再进行实践,从而不断增强自身的综合应用能力和素质。

随着医学院校教育理念的转变以及教育体制改革的深入,对培养适应科学技术迅速发展的创新型医学人才提出了更高的要求。如何培养出具有创新能力、综合素质高的专业人才已成为亟待解决的问题之一。本文探讨了医药数学建模课程的开设对培养大学生实践创新能力的几点做法。教学实践证明:数学建模课充分锻炼了学生的各项能力,是提高医学专业学生综合应用素质行之有效的方法。

数学建模论文感悟篇七

高校数学教育是高等教育的基础学科,占据重要的一席之地。如何改变学生对数学枯燥乏味的学习状态,让学生轻松愉快地参与到数学学习中,是当前高校数学教学者面临的一个重要课题。在高校数学教学中开展数学建模竞赛,不仅能培养学生的创新思维,还能有效提高提高学生的创新能力、综合素质和对数学的应用能力。本文对高校开展数学建模竞赛与创新思维培养进行了分析阐述,并对此进行了一定的思考。

数学建模是一种融合数学逻辑思想的思考方法,通过运用抽象性的数学语言和数学逻辑思考方法,创造性的解决数学问题。当前很多高校中开始引入数学建模思想来加强学生创新能力的培养,可以使学生的逻辑思维能力和运用数学逻辑创新解决问题的能力得到提升。数学建模竞赛起源于1985年的美国,几年后国内几所高校数学建模教师组织学生开始参与美国的数学建模大赛,促进了数学建模思维的快速发展。直到1992中国首届数学建模大赛召开,而后一发不可收拾,至今仍以每年20%左右的速度增长,呈现一派繁荣景象。

2.1数学建模竞赛自主性较强。自主性首先体现在在数学建模过程中学生可以根据自己的建模需要通过一切可以利用的资源、工具来进行资料查阅和收集,建模比赛队员可以根据自己的意见和思维进行灵活自由解答,形式不拘一格。其次体现在数学建模竞赛的组织形式呈现多元化特点,组织制度上也较为灵活多样,数学建模主要侧重于分析思想,没有标准答案可以参考分享。2.2建模队伍呈日益燎原之势。1992年首届中国数学建模大赛开展以来,其影响力与日俱增,高校和社会各界对数学建模颇为重视,参赛队伍、参赛学生的质量一直处于上升状态,数学模型也日渐合理科学,学生团队在国际数学建模大赛中屡创骄人战绩。2.3组织培训日益加强。数学建模竞赛对学生数学知识的掌握及灵活运用、口套表达、语言逻辑思维、综合素质都有着非常高的要求,因此高校遴选参赛选手都投入了很大的精力,组织培训的时间很长,培训内容也很丰富,为数学建模竞赛取得好成绩奠定了坚实的基础。

3.1学生的团队协作能力和意识得到增强。数学建模竞赛的团队组织形式活泼自由,通常采用学生组队模式开展,数学建模竞赛队伍形成一个团结战斗的整体,代表着不仅仅是学校的声誉,还一定程度上展示着国家的形象。经过长时间的培训,对数学模型的研究和分析,根据学生训练中的优势和特长,进行合理科学的小组分工,让学生快速高效地完成整个数学建模,在建模过程中学生统筹协作、密切配合,发挥各自的优势和长处,确保数学建模取得最大效用,学生的团队协作能力和意识得到锻炼,责任感和荣誉感进一步增强,通过建模竞赛彰显团队的合作能力和中国数学建模方面的发展。

3.2高校学生参赛积极性高涨。近年来大学生数学建模竞赛的参与性高涨,参赛人数保持着20%左右的上涨幅度,参赛成绩也较为理想,创新能力得到了较好的锻炼和培养,综合素质得到提高,数学的应用能力提升。

3.3高校学生数学逻辑思维能力和灵活运用知识的能力得到提升。数学建模竞赛充满着刺激性和挑战性,是学生各方面综合能力的一个展示。在数学建模竞赛中,学生不仅要需要扎实丰厚的数学知识储备,还需要具备清晰的数学逻辑思维和语言表达能力。同时要有机智的临场发挥能力和应变能力,不怯场、不惊慌,有充分的思想准备,能轻松应对其他参赛选手和评委的提问,能组织条理性、逻辑性的语言进行表述,将参赛小组数学模型的含义和设计清晰完整的传达给评委和其他参赛选手。在这个过程中,无疑会使学生的数学逻辑思维和语言表达能力及灵活运用数学知识的能力有一个较大的提升。

3.4学生的自学能力和意志力得到锻。数学建模竞赛对参赛学生的综合知识和能力要求非常高,难度也非常大,需要与众不同的智慧和能力。可以说数学建模过程中,有许多高深的知识难于理解,有的日常学习过程中根本接触不到,需要数学建模参赛小组成员的互助合作,充分发挥各自优势和平时培训中的知识积淀,通过借助大量的工具书及参考资料,加上团队的`理解分析去摸索,探寻数学建模所需要的基础知识,无疑这对学生的自学能力培养是一个很好的锻炼。另外,搜寻资料、学习数学建模知识的过程是枯燥乏味的,需要长久的耐力和信心,无疑这对学生的坚毅不畏难的品质是一个很好的培养和磨炼。

3.5创新思维与能力得到有效提升。经过艰苦复杂的数学建模训练,高校学生信息收集与处理复杂问题的能力得到培养锻炼,学生数量观念得到增强,能够养成敏锐观察事物数量变化的能力,数学的严谨推导也使学生养成认真细心、一丝不苟的习惯,逻辑思维能力得到提高,思路变得更加富有条理性,能灵活地处理各种复杂问题,有效解决数学疑难,数学理论能更好第应用于实践,数学素养进一步得到提升。

综上所述,高校学生数学建模竞赛的开展,能较高地提升学生的创新能力和综合素养,团队合作能力、竞争能力、表达交流能力、逻辑思维能力、意志品质能力等都能得到良好的塑造。高校要积极组织和开展数学建模竞赛,使学生的综合素质得到发展和锻炼。学校用重视和鼓励全体学生参与数学建模竞赛,通过竞赛实现学生各方面能力尤其是创新能力的培养。

[1]赵刚.高校数学建模竞赛与创新思维培养探究[j].才智,20xx(06).

[2]陈羽,徐小红,房少梅.数学建模实践及其对培养学生创新思维的影响分析[j].科技创业月刊,20xx(08).

[3]赵建英.数学建模竞赛对高校创新人才培养的促进作用分析[j].科技展望,20xx(08)5.

[4]毕波,杜辉.关于高校开展数学建模竞赛与创新思维培养的思考[j].中国校外教育,20xx(12).

数学建模论文感悟篇八

摘要:数学建模课堂中学生的自主探究、合作学习与教师的科学引导并不矛盾而是相辅相成的。只有在教师科学、适时、适当地引导下才能更好地突出学生的主体地位,从而打造出自主探究、合作学习、愉悦发展的高效数学建模课堂。

关键词:数学建模;教师

一、新课的引入需要发挥教师的作用

教师在数学建模课堂上的引导作用首先体现在教师对新课的引入上。教师一段精彩的导入会点燃学生学习的热情、激发学生的学习兴趣、唤起学生的好奇心,能把学生的注意力迅速集中到要学的知识上来。这对提高教学质量、提高学生的学习效果起着不可估量的作用。同时,新课前的导入环节是对学生进行情感教育的最佳时刻。学生只有在教师的引导下才能够体会到数学建模的价值、增强学好数学建模的信心。俗话说:“好的开始是成功的一半。”数学建模课堂也是这样。因此,在新课引入时要充分发挥教师的作用。

二、在教学任务的设计上需要发挥教师的作用

数学建模课堂一般应采用任务型教学模式,是让学生通过自主探究、合作学习、交流展示的方式完成一系列学习任务来达到特定的教学目标和学习目标。学生在课堂中的主体作用能否得到有效发挥取决于教师对问题设计质量的高低。教师应通过设计一系列高质量的问题把复杂的数学建模问题分解成若干简单问题来引导学生更好地发挥其主动性。学生也只有在这些问题的正确引导下才能突破难点并向着学习目标努力,有效防止学生思考、探究、交流的内容偏离学习目标等现象的出现。这些任务的制订需要充分发挥教师的作用。

三、在新旧知识的联系点上需要发挥教师的作用

建构主义强调新知识是在学生已有知识的基础上通过学生自身有意义的建构获得的。笔者认为,学生自主建构知识应在教师的科学引导下进行。尤其是对于数学建模这样高难度的知识更是这样。失去了教师的科学引导,学生易产生疲倦感,久而久之会丧失学习数学建模的兴趣和信心。因此,在新旧知识联系点上应发挥教师的作用。教师应在准确掌握教学目标、难点的基础上,充分考虑学生的认知能力、习惯、思维方式,通过有针对性的具体问题唤起学生对旧知识的回忆,再通过启发性问题引导学生去发现新知识,从而实现温故知新的目的。在教师引领下学生自主建构知识可以使学生少走弯路,从而使学生更加高效地自主探究、掌握新知识。

四、在教学重点、难点上需要教师的引导

教学的重点、难点是每一节课的核心和主线,只有准确把握了重点、突破了难点才能更好地掌握本节课的内容。在强调学生自主探究、小组合作学习的课堂教学模式中,数学建模教材的重点、难点学生往往把握不准、难以突破。这就需要教师科学引导学生主动去发现重点、突破难点。教师引导学生发现重点、突破难点并不是让教师直接告诉学生本节课的重点是什么、怎样突破难点,而是通过具体问题的引导让学生自己找到重点、并通过学生自己的思考、讨论解决疑难问题。学生在教师的引导下通过自己的努力、讨论解决了疑难后,学生会非常兴奋,从而会越来越喜欢数学建模课。相反,在没有教师引导的数学建模课堂中,学生经常被困难吓倒,从而对数学建模课产生畏惧感。由此可见,教师对学生的科学引导是学生学好数学建模必不可少的环节。在以学生为本、注重学生全面发展、提倡课堂中突出学生主体地位的背景下,教师的引导仍是数学建模课堂中不可缺失的要素。数学建模课堂中学生的自主探究、合作学习与教师的科学引导并不矛盾而是相辅相成的。只有在教师科学、适时、适当地引导下才能更好地突出学生的主体地位,从而打造出自主探究、合作学习、愉悦发展的高效数学建模课堂。

数学建模论文感悟篇九

:随着经济的快速发展,我国的科学技术也得到了长足的进步,在计算机应用方面,从对计算机技术尚存新鲜感到运用成熟,可以说有了质的飞跃。在日常生活以及技术操作当中,计算机已经融入其中,广泛地应用于各行各业,笔者以数学建模为例,分析了数学建模与计算机应用之间的关系,与此同时,也探寻了计算机应用技术在数学建模的辅助之下发挥的作用,并对数学建模进行概念定义,使得读者能够对数学建模的意义有着更深层次的了解,希望能够起到促进二者之间的良性发展。

数学建模;计算机技术;计算机应用

随着经济的快速发展,我国的科学技术也有了长足的进步,而与之密不可分的数学学科也有着不可小觑的进步,与此同时,数学学科的延伸领域从物理等逐渐扩展到环境、人口、社会、经济范围,使得其作用力逐渐增强。不仅如此,数学学科由原本的研究事物的性质分析逐渐转变到研究定量性质范围,促进了多方面多层次的发展,由此可见,数学学科的重要性质。在日常生活中,运用数学学科去解决实际问题时,首要完成的就是从复杂的事物中找到普遍的规律现象存在,并用最为清晰的数字、符号、公式等将潜在的信息表达出来,再运用计算机技术加以呈现,形成人们所要完成的结果。笔者以数学建模为例,分析了数学建模与计算机应用之间的关系,与此同时,也探寻了计算机应用技术在数学建模的辅助之下发挥的作用,并对数学建模进行概念定义,使得读者能够对数学建模的意义有着更深层次的了解,希望能够起到促进二者之间的良性发展。

从宏观角度上来讲,数学建模是更侧重于实际研究方面,并不仅仅是通过数字演示来完成事物的一般发展规律,与一般的理论研究截然不同。其研究范围之广,能够深入到各个领域当中,从任何一个相关领域中都能够找到数学学科的发展轨迹,从中不难看出数学学科的实际意义与鲜明特点。数学为一门注重实际问题研究的学科,这一性质方向决定了其研究的层次,其研究范围大到漫无边际的宇宙,小到对于个体微生物或者单细胞物体,综合性之强形成了研究范围广的特点。多个学科之间互相影响,从中找到互相之间存在的相互联系,其中有许多不能够被忽视的数学元素,且这些元素都是至关重要的,所以这个计算过程十分复杂,计算量与数据验算过程也十分耗费时间,因此需要充足的存储空间支持这一过程的运行。在数学建模的过程当中,所涉猎的数学算法并不是很简单,而建立的模型也遵循个人习惯,因此建成的模型也不是一成不变的,但是都能够得出相同的答案。正因如此,在数学建模的过程当中,就需要使用各种辅助工具来完成这一过程。由于计算机软件具有的高速运转空间,使得计算机技术应用于数学学科的建模过程当中,与数学建模过程密不可分息息相关。由此可见,计算机技术的应用水平对于数学学科的重要作用。

2。1计算机的独特性与数学建模的实际性特点计算机的独特性与数学建模的实际性特点,使得二者之间有着密不可分的联系,正是因为这种联系使得双方都能够有长足的发展,在技术上是起着互相促进的作用。计算机的广泛应用为数学建模提供了较为便利的服务,在使用过程当中,数学建模也能够起到完成对计算机技术的促进,能够在这一过程中形成更为便捷高速的使用方法与途径,使得计算机技术应用更为灵活,也可以说数学建模为计算机技术的实际应用提供了更为广阔的应用空间,从中不难发现,数学建模对于计算机应用技术的支持性。计算机应用技术需要合成的是多方面的技术支持,而数学建模则是需要首要完成的,二者之间是相互影响共同促进的作用。

2。2计算机为数学建模提供了重要的技术支持数学建模对于计算机应用技术的重要的指导意义与作用。第一点,计算机在其技术的支持之下,有着大量的存储空间能够完成存储资料的这一过程,许多重要资料在计算机技术的保护之下,存储时间较为长久,且保护力度较大,不容易被破坏及减少了不必要的人力以及物力;第二点,计算机是多媒体的一个分支,运用其成熟的互联网思维技术,能够完成数学建模从平面到空间的转化,能够提供更为成熟的模拟环境,从而提高实践的效率。由于数学建模过程的复杂化及对于实际问题的研究方向的特质,使得对于各项技术的要求就很高,所以,需要涉及的操作与数据量非常大,过程也十分复杂,常见的过程有三维打印、三维激光扫描等。这些都是需要计算机技术的支持才能够完成的,所以对于计算机技术的要求非常高,与此同时,计算机应用技术为数学建模提供了更为便捷、快速的解决方案与途径。

2。3数学建模为计算机的发展提供了基石计算机的产生起源于数学建模的过程,在二十世纪八十年代,由于导弹在飞行时的运行轨迹的计算量过大,人工无法满足这一高速率的运算条件,基于这一背景条件,产生了计算机,计算机应用技术由此拉开了序幕。数学建模的过程是需要计算机来完成的,在全部的过程当中,计算机参与计算的比重很大,从某种意义程度上来讲,计算机技术对于数学建模的发展是起着推动性的作用的,二者之间是有着联系的。

数学建模论文感悟篇十

摘要:随着现代社会的发展,数学的广泛用途已经无需质疑,他深入到我们生活的方方面面。现阶段,数学建模已经成为应用数学知识解决日常问题的一个重要手段。本文通过简述数学建模的方法与过程,以及应用数学建模解决实际经济问题的应用,展现的了数学学习的重要意义,以及数学在经济问题解决中的重要作用。

关键词:数学;数学建模;经济;应用

经济现象具有多变性,随着经济社会的发展,国际间贸易往来的日趋紧密,日常经济形势受到的影响因素越来越复杂多变。而日常经济生活中所遇到的经济现象同样存在着诸多的变化的影响因素。如何应对这些难以把控的变量,做好风险的预估、成本的核算、进行最大成本的规划,所有这些都可以借助数学知识、应用数学建模为工具进行较为理性的计算,为经济决策、企业规划提供重要的帮助。

一、数学建模

数学建模,其实就是建立数学模型的简称,实际上数学建模可以称之为解决问题的一种思考方法,借助数学工具应用已知的定理定义进行合理的运算,推导出一种理性的结果的过程。数学建模是可以联系数学和外部世界的一个中介和桥梁,在工业设计、经济领域、工程建设等各个方面,运用数学的语言和方法进行问题的求解和推导,实际上,都是一种数学建模的过程。数学建模的主要过程可以总结为如下的框图形式:实际上,数学模型的最终建立是一个反复验证、修改、完善的动态过程,很少能够通过一次过程就建立起完美适合实际问题的数学模型。通过上述过程的多次循环执行:1.模型准备:分析问题,明确建模的目的,统计各种信息数据;2.模型假设:根据建模目的,结合实际对象的特性,对复杂问题进行简化,提取主要因素,提炼精确的数学语言;3.模型建立:根据提炼的主要因素,选择适当的数学工具,建立各个量(变量、常量)间的数学关系,化实际问题为数学语言;4.模型求解:对上述数学关系进行求解(包括解方程、图形分析、逻辑运算等);5.模型分析:将求解结果与实际问题结合,综合分析,找到模型的缺陷和不足,进行数学上的优化,建立稳定模型;6.模型检验:将模型得到的结果与实际情况相验证,检验模型的合理性和适用性。

二、经济问题数学模型的建立

经济类问题因为其特有的特点,可以按照变量的性质分为两类:概率型和确定型。概率型应用于处理具有随机性情况的模型,可以解决类似风险评估、最优产量计算、库存平衡等问题;确定型则可以基于一定的条件与假设,精确的对一种特定情况的结果做出判断,如成本核算、损失评估等。对经济问题的建模计算实际上是一个从经济世界进入数学世界再回到经济世界的过程。建立经济数学模型,需要首先对实际经济问题和情况有一个较为深入的认识,然后通过细致的观察梳理,抽出最为本质的特征性的东西。将原始的复杂的经济问题简化提炼为一个较为理想的自然模型,然后基于这个原始模型应用数学知识建立完整的数学经济模型。

三、建模举例

四、结语

综上所述,我们可以看到,数学建模在经济中的应用可以非常广泛,对很多的决策和工作都可以提供参考和指导,如提高利润、规避风险、降低成本、节省开支等各个方面。上文只提供了一个简单的例子,和初步的介绍,其深入的理念和概念更加值得我们去努力的学习和思考。

数学建模论文感悟篇十一

摘要:在新课改以后,要求教师要在教学中重视学生的主体地位,提升学生学习兴趣,培养他们的自主学习能力。本文从小学数学教学过程中数学建模入手,对如何将数学建模运用到学生解题过程中进行了分析。

关键词:小学数学;建模;运用

数学建模是指利用数学模型的形式去解决实际中遇到的问题,换句话说,就是利用数学思维、数学方法解决各种数学问题。数学建模是在新课程改革后出现的新概念,经过一段时间的观察我们可以发现,数学建模的方法能够有效的提高学生的学习兴趣,培养学生的数学能力。这种方式能够将复杂的数学问题利用简单的方式找到解决方案,是提高小学数学课堂效率及课堂质量的有效手段。小学数学是小学学习中的重要课程之一,也是培养学生数学思维的重要阶段。可以说,小学数学的学习是学生学习数学的关键,对今后的学习起到极大的影响。因此,对于小学数学教师来说,不断的完善教学手段,提高数学课堂质量是教学工作中的重中之重。而数学建模就是为了解决数学在生活中的实际问题,能够让学生感受到数学本身的魅力,培养他们的数学思维,提高数学学习能力,从而让小学数学教学质量也得到大幅度的提升。小学数学与数学建模之间有着密不可分的作用,两者相互联系、相互促进,如何有效的将数学建模运用在小学数学教学过程中,是每个小学数学教师都值得思考的问题。

一、培养学生数学建模意识

数学建模是为了解决数学中遇到的问题,数学本身特别是小学数学也是一门较贴近学生生活的学科。因此在数学学习中,教师要首先培养学生的数学学习意识,让他们感受到数学与生活的紧密联系,然后再引导学生用数学建模去解决遇到的问题。在这一过程中,数学教师要注意以下两个问题:(一)在教学中一定要贴近学生的生活,课堂中所提出的问题也必须要符合生活实际,让学生对所学内容感到亲切。积极引导学生利用多种方式解决同一问题,尤其是利用数学建模的方式,以达到培养他们的数学思维以及想象能力的目的。(二)在学生进行数学建模的过程中要利用多鼓励的方式调动他们对数学学习的积极性,让他们在数学建模中获得成就感,增加自信心,以此来提高学生在今后学习中使用数学建模方法的热情。

二、提高学生想象力,用数学建模简化问题

对于小学生来说,他们的思维与其他年龄段相比极其活跃,拥有了丰富的想象力。在数学学习中,如果能将想象力与数学学习结合在一起,一定会得到意想不到的效果。教师可以根据小学生这一特点,提高他们的想象力,然后再引导他们利用数学建模解决问题,让题目简单化。具体来说,就是在面对复杂的'数学问题时,教师可以先为学生创建教学情境,以这样的方式提高学生的学习兴趣,让他们愿意主动去深入的研究遇到的题目。之后教师再去对他们进行引导,让他们能够理解题目中所提问题的含义,并能够运用他们的想象能力思考解决问题的方式。最后再引导他们进行数学建模,解决问题。这样的方式充分的利用了学生的想象能力,将所需解决的问题简单化。

三、选择合适的题目作为建模案例

在数学建模过程中,教师也要时刻牢记题目应该贴近学生的生活,符合实际,并且具有一定的趣味性,让他们有兴趣投入到数学建模的过程中去,然后再反复练习之后达到提高他们建模能力的目的。在选择数学建模案例时教师主要应该注意以下两点:首先,教师在选择建模案例时要尽量选择比较典型的问题,能够让学生在学习了该题目以后掌握这一类的解题方法,达到小学数学教学的目的。所以,这就需要教师对题目进行深入的分析,看是否在拥有趣味性、真实性的同时符合教学要求。其次,题目最好能够拥有可变性,教师能够通过对题目中已知条件的改变让学生进行不同方面的建模练习,以此提高他们数学建模的能力。

四、引导学生主动进行数学建模

在教师经过反复的教学后,学生都已经拥有了基本的数学建模知识,了解了数学建模过程,并且能够在解题过程中简单的使用数学建模。此时,教师在教学中就可以引导学生利用数学建模解决数学题目了。引导学生用数学建模方法解决数学问题,就要在解题过程中多对学生进行这一方面的鼓励,让他们提高建模信心。在这一过程中,教师还可以尝试让学生之间利用合作的方式让他们进行数学建模方法的探讨,并在探讨的过程中吸取他人的经验,提高自己数学建模水平,同时这样的方式能够让数学建模深入到每一个学生的心中,逐渐影响每一个学生的解题思路,让他们能够在解题过程中熟练运用建模的方式,提高解题能力。数学建模的方法能够有效的改变过去的传统教学思路,增加学生对数学的学习兴趣,提高数学解题能力。这种教学方法对于小学数学教师来说,值得不断的探讨研究,并应用在教学中,以此提高数学课堂的教学效率和教学质量。

数学建模论文感悟篇十二

信息化时代,数学科学与其他学科交叉融合,使得数学技术变成了一种普适性的关键技术。大学加强数学课程的应用功能,不但可以为学生提供解决问题的思想和方法,而且更为重要的是可以培养学生应用数学科学进行定量化、精确化思维的意识,学会创造性地解决问题的应用能力。数学建模课程将数学的基本原理、现代优化算法以及程序设计知识很好地融合在一起,有助于培养学生综合应用数学知识将现实问题化为数学问题,并进行求解运算的能力,激发学生对解决现实问题的探索欲望,强化数学课程本身的应用功能,凸显数学课程的教育价值,适应大学数学课程以培养学生创新意识为宗旨的教育改革需要。

大学传统的数学主干课程,如高等数学、线性代数、概率论与数理统计在奠定学生的数学基础、培养自学能力以及为后续课程的学习在基础方面发挥奠基作用。但是,这种原有的教学模式重在突出培养学生严格的逻辑思维能力,而对数学的应用重视不够,这使得学生即使掌握了较为高深的数学理论,却并不能将其灵活应用于现实生活解决实际问题,更是缺乏将数学应用于专业研究和军事工程的能力,与创新教育的基本要求差距甚远。教育转型要求数学教学模式从传统的传授知识为主向以培养能力素质为主转变,特别是将数学建模的思想方法融入到数学主干课程之中,在教学过程中引导学生将数学知识内化为学生的应用能力,充分发挥数学建模思想在数学教学过程中的引领作用。数学课程教学改革要适应这一教学模式转型需要,深入探究融入式教学模式的理论与方式,是推进数学教育改革的重要举措。

2.1理清数学建模思想方法与数学主干课程的关系。数学主干课程提供了大学数学的基础理论与基本原理,将数学建模的思想方法有机地融入到数学主干课程中,不但可以有效地提升数学课程的应用功能,而且有利于深化学生对数学本原知识的理解,培养学生的综合应用能力。深入研究数学主干课程的功能定位,主要从课程目标上的一致性、课程内容上的互补性、学习形式上的互促性、功能上的整体优化性等方面,研究数学建模本身所承载的思想、方法与数学主干课程的内容与逻辑关系,阐述数学建模思想方法对提高学生创新能力和对数学教育改革的重要意义,探索开展融入式教学及创新数学课程教学模式的有效途径。

2.2探索融入式教学模式提升数学主干课程应用功能的方式。融入式教学主要有轻度融入、中度融入和完全融入三种方式。根据主干课程的基本特点,对课程体系进行调整,在问题解决过程中安排需要融入的知识体系,按照三种方式融入数学建模的思想与方法。以学生能力训练为主导,在培养深厚的数学基础和严格的逻辑思维能力的基础上,充分发挥数学建模思想方法对学生思维方式的培养功能和引导作用,培养学生敏锐的分析能力、深刻的'归纳演绎能力以及将数学知识应用于工程问题的创新能力。

2.3建立数学建模思想方法融入数学主干课程的评价方式。融入式教学是处于探索中的教学模式,教学成效有待于实践检验。选取开展融入式教学的实验班级,对数学建模思想方法融入主干课程进行教学效果实践验证。设计相应的考察量表,从运用直觉思维深入理解背景知识、符号翻译开展逻辑思维、依托图表理顺数量关系、大胆尝试进行建模求解等多方面对实验课程的教学效果进行检验,深入分析融入式教学模式的成效与不足,为探索有效的教学模式提出改进的对策。

3.1改革课程教学内容,渗透数学建模的思想方法。传统的数学主干课程教学内容,将数学看作严谨的演绎体系,教学过程中着力于对学生传授大学数学的基础知识,而对应用能力的培养却重视不够。使得本应能够发挥应用功能的数学知识则沦为僵死的教条性数学原理,这失去了教学的活力。学生即使掌握了再高深的数学知识,仍难以学会用数学的基本方法解决现实问题。现行的大学数学课程教学内容中,适当地渗透一些应用性比较广泛的数学方法,如微元法、迭代法及最佳逼近等方法,有利于促进学生对数学基础知识的掌握,同时理解数学原理所蕴涵的思想与方法。

这样,在解决实际问题的时候,学生就会有意识地从数学的角度进行思考,尝试建立相应的数学模型并进行求解,拓展了数学知识的深度与广度,提升了学生的数学应用能力四、结语数学建模是数学科学在科技、经济、军事等领域广泛应用的接口,是数学科学转化成科学技术的重要途径。在数学主干课程中融入数学建模的思想与方法,可以推动大学数学教育改革的深入发展,加深学生对相关知识的理解和掌握,有助于从思维方式上培养学生的创新意识与创新能力。

此外,数学建模思想方法融入教学主干课程还涉及到许多问题,比如数学建模与计算技术如何有效结合以进行模拟仿真、融入式教学模式的基本理论、构建新的课程体系等问题,仍将有待于更深入的研究。

数学建模论文感悟篇十三

摘要:数学作为很多学科的计算工具,可以说是现代科学的基础,要想利用数学来解决实际问题,首先要建立相应的数学模型,本文在数学建模思想概念和特点的基础上,从计算机软件、实际生活中的应用等方面,对其应用的发展进行了分析,最后从分析问题、建立模型、校验模型三个阶段,对数学建模的方法,进行了深入的研究。

关键词:数学建模;思想;应用;方法;分析

引言

随着自然科学的发展,利用数学等思想来解决实际问题,越来越受到人们的重视,数学作为一门历史悠久的自然科学,是在实际应用的基础上发展起来,但是随着理论研究的深入,现在数学理论已经非常先进,很多理论都无法付诸实践,在这种背景下,如何利用现有的数学理论来解决实际问题,成为了很多专家和学者研究的问题。通过实际的调查发现,要想利用数学来解决实际问题,首先要建立相应的数学模型,将实际的问题转化成数学符号的表达方式,这样才能够通过数学计算,来解决一些实际问题,从某种意义上来说,计算机就是由若干个数学模型组成的,计算机软件之所以能够解决实际问题,就是根据实际应用的需要,建立了一个相应的数学模型,这样才能够让计算机来解决。

1数学建模思想分析

1.1数学建模思想的概念

数学是一门历史悠久的自然科学,在古时候,由于实际应用的需要,人们就已经开始使用数学来解决实际问题,但是受到当时技术条件的限制,数学理论的水平比较低,只是利用数学来进行计数等,随着经济和科技水平的提高,尤其是在工业革命之后,自然科学得到了极大的发展,对于利用自然科学来解决实际问题,也成为了人们研究的重点,在市场经济的推动下,人们将这些理论知识转化成为产品。计算机就是在这种背景下产生的,在数学理论的基础上,将电路的通和不通两种状态,与数学的二进制相结合,这样就能够让计算机来处理实际问题,从本质上来说,这就是数学建模思想的范畴,但是在计算机出现的早期,数学建模的理论还没有形成,随着计算机软件技术的发展,人们逐渐的意识到数学建模的重要性,发现利用数学建模思想,可以解决很多实际的问题,而数学建模的概念,就是将遇到的实际问题,利用特定的数学符号进行描述,这样实际问题就转化为数学问题,可以利用数学的计算方法来解决。

1.2数学建模思想的特点

如何解决实际问题,从有人类文明开始,就成为了人们研究的重点,随着自然科学的发展,出现了很多具体的学科,利用这些不同的学科,可以解决不同的实际问题,而数学就是其中最重要的一门学科,而且是其他学科的基础,如物理学科中,数学就是一个计算的工具,由此可以看出数学的重要性,进入到信息时代后,计算机得到了普及应用,无论是日常生活中还是工作中,计算机都有非常重要的应用,而在信息时代,注重的是解决问题的效率。与其他解决问题的方式相比,数学建模显然更加科学,现在数学建模已经成为了一门独立的学科,很多高校中都开设了这门课程,为了培养学生们利用数学解决实际问题的能力,我国每年都会举办全国性的数学建模大赛,采用开放式的参赛方式,对学生们的数学建模能力进行考验,而大赛的题目,很多都是一些实际问题,对于比赛的结果,每个参赛队伍的建模方式都有一定的差异,其中选出一个最有效的方式成为冠军。由此可以看出,对于一个实际的问题,可以建立多个数学模型进行解决,但是执行的效率具有一定的差异,如有些计算的步骤较少,而有些计算的过程比较简单,而如何评价一个模型的效率,必须从各个方面进行综合的考虑。

2数学建模思想的应用

2.1计算机软件中数学建模思想的应用

通过深入的分析可以知道,计算机之所以能够解决实际问题,很大程度上依赖与计算机软件,而计算机软件自身就是一个或几个数学模型,在软件开发的过程中,首先要进行需求的分析,这其实就是数学建模的第一个环节,对问题进行分析,在了解到问题之后,就要通过计算机语言,对问题进行描述,而计算机语言是人与计算机进行沟通的语言,最终这些语言都要转化成0和1二进制的方式,这样计算机才能够进行具体的计算。由此可以看出,计算机就是依靠数学来解决实际问题,而每个计算机软件,都可以认为是一个数学模型,如在早期的计算机程序设计中,受到当时计算机技术水平的限制,采用的还是低级语言,由于低级语言人们很难理解,因此在程序编写之前,都会先建立一个数学模型,然后将这个模型转化成相应的计算机语言,这样计算机就可以解决实际的问题,由于计算机能够自行计算的特点,只要输入相应的参数后,就可以直接得到结果,不再需要人为的计算。

2.2数学建模思想直接解决实际问题

经过了多年的发展,现在数学建模自身已经非常完善,为了培养我国的数学建模人才,从1992年开始,每年我国都会举办一届全国数学建模大赛,所有的高校学生都可以参加,大赛采用了开放性的参赛方式,通常情况下,对于题目设置的也比较灵活,会有多个题目提供给队员选择,学生可以根据自己的实际情况,来选择一个最适合自己的问题。而数学建模大赛举办的主要目的,就是让学生们掌握如何利用数学理论,来解决实际问题,在学习数学知识的过程中,很多学生会认为,数学与实践的距离很远,学习的都是纯理论的知识,学习的兴趣很低,与一些实践密切相关的学科相比,选择数学专业的学生很少,而数学建模的出现,在很大程度上改善了这种情况,让人们真正的了解数学,并利用数学来解决复杂的问题。受到特殊的历史因素影响,我国自然科学发展的起步较晚,在建国后经历了很长一段时间封,闭发展,与西方发达国家之间的交流比较少,因此对于数学建模等现代科学,研究的时间比较短,导致目前我国很少会利用数学建模来解决实际问题,相比之下,发达国家在很多领域中,经常会用到数学建模的知识,如在企业日常运营中,需要进行市场调研等工作,而对于这些调研工作的处理,在进行之前都会建立一个数学模型,然后按照这个建立的模型来处理。

2.3数学建模思想应用的发展

从本质上来说,数学是在实际应用的基础上,逐渐形成的一门学科,但是受到当时技术水平的限制,虽然人们已经懂得去计算,却并知道自己使用的是数学知识,随着自然科学的发展,对数学的应用越来越多,而数学自身理论的发展速度很快,远远超过了实际应用的范围,同时随着其他学科的发展,数学变成了一种计算的工具,因此数学应用的第一个阶段中,主要是作为一种工具。随着电子计算机的出现,对数学的应用达到了一个极限,人们在数学和物理的基础上,制作出了能够自动计算的机器,在计算机出现的早期,受到性能和体积上的限制,只能进行一些简单的数学计算,还不能解决实际的问题,但是计算机语言和软件技术的.发展,使其在很多领域得到了应用,在计算的基础上,能够解决很多问题,而软件程序的开发,其实就是建立数学模型的过程,由此可以看出,数学建模思想应用的第二阶段中,主要是以现代计算机等电子设备的方式,来解决实际的问题。

3数学建模思想应用的方法

3.1分析问题

数学模型的应用都是为了解决实际问题,虽然很多问题都可以通过建模的方式来解决,但是并不是所有的问题,因此在遇到实际问题时,首先要对问题进行具体的分析,首先就是看是否能够转化成数学符号,如果能够直接用数学语言来进行描述,那么就可以容易的建立相应的数学模型,但是通过实际的调查发现,随着经济和科技的发展,遇到的问题越来越复杂,其中很多都无法直接用数学语言来描述,这就增加了数学建模的难度。由此可以看出,分析问题作为数学建模的第一个环节,也是最重要的一个环节,如果问题分析的不够具体,那么将无法建立出数学模型,同时对数学模型的建立也具有非常重要的影响,通过实际的调查发现,能够建立高效率的数学模型,都是对问题分析的比较彻底,甚至有些独特的理解,只有这样才能够采用建立一个最简单的模型,而随着数学建模自身的发展,现在建立模型的过程中,对于一个实际的问题,经常需要建立多个模型,这样通过多个数学模型协同来解决一个问题。

3.2数学模型的建立

在分析实际问题后,就要用数学符号来描述要解决的问题,这是建立数学模型的准备环节,要想利用数学来解决实际问题,无论采用哪种方式,都要转化成数学语言,然后才能够通过计算的方式解决,而数学模型的过程,就是在描述完成后,建立相应的数学表达式,通常情况下,在分析问题时,都能够发现某种内在的规律,这个规律是数学建模的基础。如果无法找到这个规律,显然就不能利用现有的一些数学定律,从而建立相应的表达式,最后解决相应的问题,由此可以看出,分析问题的内在规律,是影响数学建模的重要因素,而这个规律的发现,除了在现有的数学知识外,也可以结合其他学科的知识,尤其是现在遇到的问题越来越复杂,对于以往简单的问题,只需要建立一个简单的模型即可解决,而现在复杂的问题,经常需要建立多个模型。因此现在数学建模的难度越来越大,从近些年全国数学建模大赛的题目就可以看出,对于问题的描述越来越模糊,甚至出现了一些历史上的难题,而不同学生根据自己的理解,建立的模型也具有很大的差异,其中一些模型非常新颖,为实际问题的解决提供了良好的参考,目前我国对数学建模的研究有限,尤其是与西方发达国家相比,实践的机会还比较少。

3.3数学模型的校验

在数学模型建立之后,对于这个模型是否能够解决实际问题,具体的执行效率如何,都需要进行校验,因此检验是数学模型建立最后的一个环节,也是非常重要的一个步骤,通常情况下,经过校验都能够发现模型中存在的一些问题,从而进行完善,这样才能够保证严谨性,在实际校验的过程中,要对数学模型的每个部分进行验证,通过输入特定的数据,看得到的结果是否符合理论值,如果没有问题,就说明该模型可以解决实际问题。除了检验模型的准确外,校验还有另外一个作用,就是优化模型,在选定数据后,能够看到数学模型计算的整个过程,这时就可以对具体的细节进行优化,如哪部分可以减少计算的步骤,或者简化计算的方式等,这样可以使整个模型更加科学、合理,由此可以看出,校验工作对于数学模型的建立,具有非常重要的意义。

4结语

通过全文的分析可以知道,对于数学理论的应用,从很久之前就已经开始了,但是数学建模思想的出现,却是随着计算机技术的发展,逐渐形成的一门学科,电子计算机的出现,在很大程度上改变了处理事情的方式,利用计算机软件,只要输入相应的参数,就可以直接得到结果,这正是数学模型完成的任务,只是计算机的出现,省略了中间的计算过程,因此计算机软件的方式,是数学建模思想最好的应用方法,要想解决不同的问题,只要建立不同的模型,然后编写相应的程序。

数学建模论文感悟篇十四

第一条,论文用白色a4纸打印(单面、双面均可);上下左右各留出至少2.5厘米的页边距;从左侧装订。

第二条,论文第一页为承诺书,第二页为编号专用页,具体内容见本规范第3、4页。

第三条,论文第三页为摘要专用页(含标题和关键词,但不需要翻译成英文),从此页开始编写页码;页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号。摘要专用页必须单独一页,且篇幅不能超过一页。

第四条,从第四页开始是论文正文(不要目录,尽量控制在20页以内);正文之后是论文附录(页数不限)。

第五条,论文附录至少应包括参赛论文的所有源程序代码,如实际使用的软件名称、命令和编写的全部可运行的源程序(含excel、spss等软件的交互命令);通常还应包括自主查阅使用的数据等资料。赛题中提供的数据不要放在附录。如果缺少必要的源程序或程序不能运行,可能会被取消评奖资格。论文附录必须打印装订在论文纸质版中。如果确实没有需要以附录形式提供的信息,论文可以没有附录。

第六条,论文正文和附录不能有任何可能显示答题人身份和所在学校及赛区的信息。

第七条,引用别人的成果或其他公开的资料(包括网上资料)必须按照科技论文写作的规范格式列出参考文献,并在正文引用处予以标注。

第八条,本规范中未作规定的,如排版格式(字号、字体、行距、颜色等)不做统一要求,可由赛区自行决定。在不违反本规范的前提下,各赛区可以对论文增加其他要求。

第九条,参赛队应按照《全国大学生数学建模竞赛报名和参赛须知》的要求命名和提交以下两个电子文件,分别对应于参赛论文和相关的支撑材料。

第十条,参赛论文的电子版不能包含承诺书和编号专用页(即电子版论文第一页为摘要页)。除此之外,其内容及格式必须与纸质版完全一致(包括正文及附录),且必须是一个单独的文件,文件格式只能为pdf或者word格式之一(建议使用pdf格式),不要压缩,文件大小不要超过20mb。

第十一条,支撑材料(不超过20mb)包括用于支撑论文模型、结果、结论的所有必要文件,至少应包含参赛论文的所有源程序,通常还应包含参赛论文使用的`数据(赛题中提供的原始数据除外)、较大篇幅的中间结果的图形或表格、难以从公开渠道找到的相关资料等。所有支撑材料使用winrar软件压缩在一个文件中(后缀为rar);如果支撑材料与论文内容不相符,该论文可能会被取消评奖资格。支撑材料中不能包含承诺书和编号专用页,不能有任何可能显示答题人身份和所在学校及赛区的信息。如果确实没有需要提供的支撑材料,可以不提供支撑材料。

第十二条,不符合本格式规范的论文将被视为违反竞赛规则,可能被取消评奖资格。

第十三条,本规范的解释权属于全国大学生数学建模竞赛组委会。

说明:

(1)本科组参赛队从a、b题中任选一题,专科组参赛队从c、d题中任选一题。

(2)赛区可自行决定是否在竞赛结束时收集参赛论文的纸质版,但对于送全国评阅的论文,赛区必须提供符合本规范要求的纸质版论文(承诺书由赛区组委会保存,不必提交给全国组委会)。

(3)赛区评阅前将纸质版论文第一页(承诺书)取下保存,同时在第一页和第二页建立“赛区评阅编号”(由各赛区规定编号方式),“赛区评阅纪录”表格可供赛区评阅时使用(由各赛区自行决定是否使用)。评阅后,赛区对送全国评阅的论文在第二页建立“送全国评阅统一编号”(编号方式由全国组委会规定),然后送全国评阅。

数学建模论文感悟篇十五

大量的应用型技能型人才,有效满足了社会各行各业的用工需求。随着国家对高职教育的重视和不断投入,提高教育的教学质量势在必行[1]。数学建模的核心是以数学模型为基础的实际运用,鉴于数学建模的这种特点,国内高职数学教育逐步把数学建模理念融入到课题教学中,提高学生的应用能力。以数学建模理念的告知书明确教学改革要求学生结合计算机技术,灵活运用数学的思想和方法独立地分析和解决问题,不仅能培养学生的探索精神和创新意识,而且能培养学生团结协作、不怕困难、求实严谨的作风[2]。笔者结合自身的教学工作经验,对基于数学建模理念的高职数学教学改革进行了探索,对教学实践中出现的问题进行了分析梳理,以期为高职数学教学改革提供新思路,推动高职数学教学水平的不断提高,培养出具有良好数学素养和专业技能的新型高职人才。

近年来,随着国内产业结构的不断调整,对于高等职业技术人才需求不断增大,社会对高等职业技术教育寄予厚望。但是传统的高职教育由于专业设置不合理,使用教材落后,实训实践场地不足,培养出的学生动手能力差、专业能力不足,面对社会发展的新形势,高职教育必须进行教学改革,提高学生的职业能力和就业竞争力。高职教育不同于普通本科教育,它有以下几方面的特点。

1人才培养目标不同

高职教育和本科教育人才培养目标不同,高职教育是以技术应用型高技能人才为培养目标,所有的教学课程设计和人才培养体系设计都是基于此目标展开的,高职教育主要是为了向产业发展提供生产、服务、管理等一线工作的高级技术应用型人才,专业能力培养和目标职业匹配度高,所以高职教育教学成果最直接的评价就是毕业生的就业竞争力和上岗后的适应能力。

2两者的教学内容不同

高职教育的教学重点是学生要掌握与实践工作关系较为密切的业务处理能力、动手能力与交流能力,把学生的职业能力建设列为教学重点,课程设计专业性强,一旦就业能为企业创造明显的效益,高职教育各专业课程差别较大。

3生源情况不同

在当前的教育教学体系下,高职教育的生源普遍较差,大多是没有希望考上大学,转而进入高职学习,希望通过掌握一定的技术来实现就业,所以高职学生的基础知识普遍较差,学习兴趣不高。数学建模给高职数学教学改革开辟了新思路,数学建模为数学理论学习和工程实践应用搭建了桥梁,在工学结合的基本原则下,采取数学建模教学理念,培养学生的数学素养及动手应用能力是一个非常有效的手段[3]。

1数学建模的概念数学建模是将数学理论和现实问题相结合的一门科学,它将实际问题抽象、归纳成为相应的数学模型,在此基础上应用数学概念、数学定理、数学方法等手段研究处理实际问题,从定性或者定理的角度给出科学的结果[4]。数学建模的发展为数学知识的应用提供了途径,对于现实中的特点问题,可以用数学语言来描述其内在规律和问题,运用数学研究的成果,结合计算机专业软件,通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,转化成为数学问题,借助数学思想建立起数学模型,从而解决实际问题。2基于数学建模思想的教学理念基于数学建模的这种学科特点,可以把数学知识应用化,因此,基于数学建模思想的教学理念可以概括为三个层次:首先,确立提高学生数学应用能力为目标,以提高学生数学学习兴趣为手段,以学习数学建模为途径;其次,结合教学内容,开发相应的数学建模案例,因地制宜、因生制宜,根据专业不同编写相应的校本教材;最后,改进教学方法,创新课堂教学模式,建立课外数学建模学习兴趣小组,带领学生进行数学应用实践活动,鼓励学生参加各种数学建模竞赛[5]。

传统的数学教学模式以教师课堂讲授为中心,学生只能被动的接受,由于学生的基础知识水平不同,掌握新知识的能力也不同,这种没有区分的教学模式教学效果差,往往带来的结果是造成基础差的学生跟不上,对数学感兴趣的学生失去兴趣。基于数学建模理念的高职数学教学改革,是以学生数学应用能力提高为目标,以数学学习兴趣培养为出发点,以数学建模为途径,以教学方式改革为保障,打造高职数学教学改革新模式,全面提高高职教育应用型人才培养水平。

1结合专业特色,突出数学教育的应用性

数学作为高职教育的基础性学科,理论性强,体系性强,对于基础知识薄弱、学习兴趣差的高职生来说感觉难学、枯燥,这是因为高职数学教育没有教会学生如何在专业学习中和以后的工作中如何去用学到的数学知识,学生感觉知识无用自然也就不会主动去学,之所以引入数学建模的思想就是为了让学生利用学到的数学知识去解决实际问题,让学生认识到数学不只是纸面上的写写算算,数学可以把实际问题抽象化,变成数学问题,利用数学的研究方法给实际问题进行科学的指导,这样高职数学教育就不再是课堂上的照本宣科,课下的演算作业,将基础数学教育和学生的专业教育相结合,带来学生用数学解决专业问题是大幅度提高学生专业能力的有效途径。

2结合学生能力,因材施教、因地制宜

高职学校的生源不如普通高校,一般学习基础较差,对于专业实训课并不明显,但是在基础学科教学过程特别突出,很多基础知识掌握不牢,甚至一点印象都没有,教师在上课时要充分考虑到这种情况,在课堂授课时给予实时的补充,以助于知识的过渡。因材施教是我国传统的教育思想,在掌握学生知识水平的基础上,教师要根据不同学习层次学生的具体情况,安排教学内容和设置教学目标,对于基础知识水平不高、学习兴趣较差、学习能力较弱的学生要进行课外辅导。高职基础课教育是专业课学习的基础,授课教师要根据学生的专业学习情况和专业特点,把迁移知识运用能力在课堂上结合学生的专业背景进行辅导,高职数学教育不仅仅是为了学习数学,更多的是发挥数学知识在其专业能力培养中的作用。

3培养学生学习兴趣,促进整体教学质量提高

高职学校的学生学习兴趣普遍不高,尤其是对于学了十几年都感觉头痛的数学,要想提高数学的教学质量,首先必须要培养学生的学习兴趣,长期以来学生在数学学习上已经有了根深蒂固的认识,培养数学学习兴趣很难,但是如果学生没有学习兴趣,教师授课内容、授课方式改革都起不了太大的作用,学生对于数学学习兴趣低由于低年级学习时受到的挫败感,因此要让学生建立学习数学的自信心,让他们体验学会数学的成就感,这样才能逐步培养他们的学习兴趣。教师可以采取以点带面的方式,先选择有一定基础的学生,再从全部课程学习中发现表现优秀的个体,组织参加建模竞赛,进行单独赛前加强指导,用这些榜样的力量提高全体同学的学习积极性。数学建模作为提高高职数学教育教学水平的“点”,能够以其趣味性强,带动学生的学习兴趣,促进高职数学教育教学水平的全面提高。

4改革教学及评价方式,建立面向应用的数学教育体系

由于基于数学建模思想的高职数学教学改革打破了以往的课堂教学方式和考核方式,学生面对的不再是期末的一张试卷,而是一个个数学建模案例,需要学生运用本学期学到的数学知识解决实际问题,教师根据学生对案例的理解程度,数学模型运用能力,实际过程分析和解题技巧等多方面给出评价,同时积极评价、鼓励学生的创新思维,并将其纳入到考核体系当中。通过以上各个方面评价的加权作为最后的评价指标。这种以数学知识应用为基础,直接面向应用的高职数学教育模式能极大的激发学生的学习积极性和知识应用能力,符合高职应用型人才培养理念,对提高高职学生的专业能力也打下了坚实的基础。基于数学建模理念的高职数学教学改革是推动高职应用型人才培养体系建设的新举措,也是推动高职基础课教学水平的重要内容,能有效解决学生学习兴趣低,基础知识掌握不牢,数学知识应用能力低等问题,通过“案例驱动法+讨论法”,引导学生再次对课本知识进行思考和应用,有利于培养学生的创新思维和应用能力。引入数学建模理念教学,把课堂学习的主动权交回给学生,既保证了高等数学原有的知识体系的完整,也可以提高教学效率。通过教学方式和评价方式改革,学生的学习主动性增强,也改变了以往对于数学学习的学习态度。高等数学作为高职教育学生必修的基础课,在培养学生基本数学素养上具有重要作用,是理工类专业课程体系的重要组成部分,基于数学建模理念的高职数学教学改革也为同类基础理论课改革提供了新思路和范例。

[1]孙丽.在高职数学教学改革中应注重数学建模思想的渗透[j].科技资讯,20xx(22):188.

数学建模论文感悟篇十六

1培养创造性思维学生在学习数学知识的过程中,虽然其接受的知识和经验是前人研究和发现的成果,但对于学生来说,其处于知识再发现的地位。教师向学生教授数学发现的思维和方法,换言之就是重点引导学生重温数学经验和知识的研究道路,进而保证学生的再发现能够顺利实现。这也是培养学生创新思维和能力的一个重要途径。利用数学建模能够有效地弥补数学教学过程中存在的缺陷,使学生充分体会到数学发现过程中的乐趣,进而激发学生学习数学的热情和积极性,培养其创造性思维。

2选择经典案例开展数学建模讨论、分析教师在实际的数学课堂教学中,可选择一些社会实际案例为讲授分析的主要对象,如实际生活和高科技的热点话题。教师可对此类实例进行必要的分析与讲解,在此过程中,积极引导学生独立钻研和研究问题,并培养学生主动查阅相关资料、自主讨论的能力。与此同时,教师还要及时与学生进行交流,答疑释难,并要求学生在自己实际能力的基础上构建恰当的模型,由易到难,循序渐进。除此之外,还要使学生充分发挥其主观能动性,培养学生发现问题,思考问题以及处理问题的能力。以微积分方程为例,教师在课堂教学中,可以“经济增长”作为主要案例,向学生系统地阐述微积分方程的实际应用过程,进一步加深学生对知识的理解、掌握和应用。

3同时开设数学建模与高等数学课程在职业院校数学教学过程中,同时开设数学建模与高等数学课程,能够有效提高学生对基础知识的理解能力和掌握程度,促进学生实践动手能力的培养。在数学建模课程的开设中,应该在教师的指导下,充分利用教学软件,引导学生动手实验和计算,加深学生对知识的掌握。在此过程中,使学生充分了解到运用数学理论和方法去分析和解决实际问题的全过程,进一步提高学生的积极性和思维意识能力,使他们意识到数学在实际生活应用中的关键作用。同时,促使学生将计算机技术融入数学学习中去,以现代化的高新科技为媒介,着手实际社会问题的解决。

4创新教学模式根据职业院校学生学习的特点和知识水平,重点提高学生运用数学的技能和思维方式来处理实际生活和专业问题的能力。要想从根本上培养学生的创新能力,一定要改变原来单一固定的教学模式,尝试和探索基于学生实际情况的教学措施和方式。经过长期的实践经验研究,讨论式教学和双向教学方式对培养学生的能力非常有效。这两种教学模式能够加深学生参与课堂教学的程度,激发学生学习数学的'主动性,最终达到提高教学效率的目的。所以,数学建模可以以具体问题为媒介,采用小组集体讨论解决问题的方法,培养学生的创新能力和意识,进一步加快职业技术院校数学教学模式的创新。

5组建数学建模团队在实际的数学教学中,教师可引导学生构建数学建模团队。在教师对数学建模的深入分析为基础,充分调动学生参与问题解决的主动性,师生积极互动,最终完成数学建模。如此一来,不仅能够有效培养学生积极进取的良好学习态度,而且还能够促进学生数学逻辑思维能力的提高。

6搭建校内数学建模网络平台在职业技术院校中构建校内数学建模网络平台,积极宣传与数学建模有关的知识经验,为学生主动获取数学建模信息提供各种数据资料。数学建模网络平台的搭建,能够有效促进教师和学生,学生与学生之间的交流与沟通,大大缩短学生和数学建模之间的距离,进而促进学生自主学习能力的提高和培养。

总而言之,数学建模思想是学生将基础理论知识与实际解决问题的方法相结合的最佳途径。将数学建模融入职业院校数学中,全面培养学生的创新意识和数学应用能力,进一步使数学为达成学院的教学和培养计划奠定基础,为培养更多更优秀的现代化社会人才服务。

数学建模论文感悟篇十七

随着社会的不断发展和科学技术的进步,数学在现实生活中的应用越来越广泛,尤其是计算机技术的发展及广泛应用,使数学建模思想在解决社会各个领域中的实际问题的应用越来越深入。本文笔者简要谈谈数学建模思想融入大学数学类课程的意义和方法。

所谓数学建模就是指构造数学模型的过程,也就是说用公式、符号和图表等数学语言来刻画和描述一个实际问题,再经过计算、迭代等数学处理得到定量的结果,从而供人们分析、预报、决策与控制。那么数学模型就是利用数学术语对一部分现实世界的描述。数学建模思想是指理论联系实际,将实际的事物抽象成数学模型,然后利用所学的理论来解决问题的一种思想。

在新形势下,传统的数学教学方法已经无法适应现在大学数学教育改革的需求,数学建模思想与大学数学类课程教育融合成为目前高等院校数学教学改革的突破口。

(1)数学知识在各个领域的应用越来越广泛。如今数学知识在各个领域的应用越来越广泛,尤其是在经济学中的应用最为显著。自从1969年创设诺贝尔经济学奖以来,就有不少理论成果来自利用数学工具分析经济问题。事实上,从1969年到20xx年这35年中,一共产生了53位获奖者,其中拥有数学学位的共有19人,所占比例为35.8%;其中拥有理工学位的有9人,所占比例为17%;二者共计占52.8%;其中共有29位诺贝尔经济学奖的获得者是以数学方法为主要的研究方法,约占总人数的63.1%。然而几乎所有的诺贝尔经济学奖获得者都运用了数学方法来研究经济学理论。除了在经济领域,数学建模思想也广泛应用于生物医学,包括超声波、电磁诊断等方面。同时数学建模还将数学与生物学融合进了基因科学,例如基因表达的定型、基因组测序、基因分类等等,在生物学领域需要建立大规模的模拟以及复杂的数学模型。可见数学建模思想的应用是非常广泛的,并对其他领域的发展起着重要的推动作用。

(2)有利于激发学生的学习热情,丰富大学数学课程。一般的数学课,通常只是重视理论知识的讲解和传授,对知识点的推理和思想方法的分析较少。而且多数学生为了应付考试,也只是以“类型题”的方式去复习知识点。这样的方式虽然能够让学生掌握一部分数学知识,可是却不能提高学生的数学素质,不能提高学生对大学数学的学习兴趣。而数学建模思想运用数学知识来解决生活中的实际问题,这样就使数学活了起来,而不是死的理论知识。运用数学建模思想能够让学生在数学中感悟生活,在生活中体会数学的价值,更容易吸引学生的学习兴趣。而兴趣是学习最有效的动力,让学生主动参与学习而非被动学习,取得的教学效果会更好。

(3)是加强数学教学改革,适应时代发展的需要。在大学数学教学活动中,许多学生常常陷入这样的困惑之中:花费了大量的精力,做了很多习题,但是却感受不到数学的作用和价值。而教师在教学中也总是告诉学生数学是一门很有用的课程,但是却举不出现实的例子。并且传统的教学方式也只是教会学生掌握简单的理论知识,并不能提高学生的数学素养和数学意识。而将数学建模思想融入到大学的数学类课程之中就能很好地解决这些问题。因为将数学建模思想运用到数学类课程中,就能够让学生在独立思考和探索中感受到数学在现实生活中的实用价值,提高学生运用数学的眼光去观察、分析以及表示各种事物的空间关系、数量关系和数学信息的能力,提高学生的创造能力和创新意识。

(1)教师在教学过程中较少渗入数学建模思想。目前在高校数学教学中数学建模的思想应用得仍然较少,重视程度不够。不少高校的教师在开展大学数学类课程时,仍然只是停留在数学知识的教学方面,并没有对学生进行研究性学习探索。据调查,大多数高校教师对日常的教学工作能够认真完成规定的教学任务,但能够真正创造性地把数学建模思想融入到数学教学任务中的教师较少。大多数高校数学老师都意识到探索式的数学建模教学很重要,但真正将数学建模思想与数学教学融合的尝试和探索却很少。可见多数高校教师虽然明白数学建模思想的重要性,但是由于缺乏足够的数学建模教学的相关知识及经验,在实际教学中数学建模思想仍未得到充分的运用。

(2)开设的有关数学建模的课程和活动较少。虽然数学建模思想得到了越来越广泛的应用,但是在高校中实际开设的有关数学建模的课程并不多,尤其是应用数学、数学实验以及计算机应用等一些需要渗入数学建模思想的课程在实际的教学过程中并没有创造性地运用数学建模思想。另一方面,校内自主开展的有关数学建模竞赛和活动并不多,宣传力度也不够,无法让更多的学生了解数学建模的意义和价值,更无法参与到数学建模活动中去。

(3)学生对数学的态度和观念还未改变,对数学建模缺乏深入的了解。大学数学是一门较为抽象的学科,其概念、定理和性质都不容易掌握,由于其具有一定的难度,所以不少学生对大学数学类课程以及数学建模没有兴趣。并且这些学生在初中和高中阶段也学习数学,但是不少学生是为了应付考试,并没有见识到数学的应用性,觉得数学是一门纯理论的课程,没有实用价值。同时很多学生对数学建模思想的运用并不够了解,不知道如何将数学知识和数学方法应用到实际的生活中去,觉得数学没有用,也没有深入学习的意义。

(1)提高课堂教学质量,创造性地运用数学建模思想。大学的数学类课程主要有“线性代数”、“高等数学”、“运筹学”、“数学建模”、“概率论与数理统计”等,这些课程的核心部分都跟高等数学有关,所以要注重提高数学类课程的教学质量关键就在于高等数学,而要提高高等数学的教学质量就必须在教学过程中创造性地应用数学建模思想。对于主修数学的学生,要加强对计算机软件和语言的学习,系统性地对数学原理进行剖解和分析,合理运用数学知识和数学方法解决社会实际问题。在教学中多引导、启发学生利用对生活问题和科学问题的深入研究,主动结合自己的课程理论知识和数学建模,使数学建模思想融入到学生的整个学习过程中去。对于非数学领域的问题,要启发学生运用计算机软件建模,从而解决不同领域中的数学建模问题。

(2)多开设跟数学建模有关的数学类课程。例如除了开设跟数学建模有关的必修课,还可以开设一些跟数学建模有关的选修课,为其他专业的学生提供接触和了解数学建模思想的机会,为学生拓展知识领域,为其解决该领域的问题提供有效的方法。例如,经济学有关专业的学生就可以通过选修跟数学建模有关的课程,解决其在经济学中遇到的问题,因为很多跟经济学有关的问题仅仅靠经济学的知识是无法解决的,像贷款计算这样的问题就要将数学与经济学联系起来才能解决实际问题。

(3)广泛宣传,让学生了解数学建模的意义和价值。学生是教学过程中的主体,目前,大学数学建模课程开设效果不佳,学生参与度低的主要原因就是学生缺乏对数学建模的深入了解。那么,要提高学生的参与性,促进数学建模思想与大学数学类课程的融合就必须加强宣传,让学生深入了解什么是数学建模。同时,在课堂上就是也要转变传统枯燥的教学方式,多使用启发式教学和探索式教学,吸引学生的学习兴趣,让他们发现数学对社会实际生活的重要作用,转变他们对数学的态度,并引导学生对数学建模和数学课程感兴趣。

(4)转变数学教育理念及教育方式。要转变传统的教育方式,将教学的重点放在数学知识在生活中的应用问题上,而不是将知识与实际生活割裂开来。同时在教学中要注重证明和推理,加强学生对数学方法的掌握注重培养学生对实际问题的逻辑分析、简化、抽象并运用数学语言表达的能力。也就是说教学的重点在于提高学生的数学学习能力和加强数学意识和数学方法的应用,这样才能够培养出具有创新能力和创新意识的人才。

(5)多开展数学建模活动和竞赛,提高学生参与性。在高校内部要多开展跟数学有关的活动和竞赛以及专家讲座等,一方面加强学生对数学建模的认识,另一方面也提高了学生的参与性。通过专家讲座,不仅可以让学生更深入地了解数学建模的价值,也加强了学术交流,提高学生的数学建模应用能力。通过数学建模竞赛,为学生提供展示自己智慧、充分发挥其能力的平台。同时,竞赛也可以让学生在竞赛中发现自己的不足,在交流中不断完善自己的缺陷,拓展学生的思维。而且,在数学建模比赛中,通过让学生探究跟生活实际有关的例子,提高学生对数学建模的兴趣,加强学生对模型应用的直观性认识,促进学校应用型人才的培养。

总之,数学建模思想和高校数学类课程的融合,对于高等数学教学改革具有非常重要的意义。把数学建模思想融入到高等数学教学中,可以更好地提高学生的数学学习能力,提高他们运用数学思想和数学方法分析问题、解决问题和抽象思维的能力。高校教师要加强数学建模思想的应用,让学生初步掌握从实际问题中总结数学内涵的方法,提高学生的数学学习兴趣,为高校学生专业课的学习奠定坚实的数学基础。

数学建模论文感悟篇十八

:本文从“如何培养学生实践应用能力提高就业素质”出发,通过对大专院校进行广泛的调研,分析了目前高职院校开展数学建模的现状,并总结了黑龙江交通职业技术院校开展数学建模教学与竞赛活动的经验和做法,对指导高职院校的数学建模实践教学工作具有重要意义。

:数学建模竞赛;教学改革;实践教学

中国大学生数学建模竞赛是目前全国高校中规模最大、影响最广的大学生课外科技活动,它在培养大学生知识的应用能力、创新能力以及团队的合作精神、顽强的意志品质等方面都显示了独特的作用和优势。然而,大学生数学建模竞赛在高职学院的开展却起步迟缓且步履维艰,如何改变现状,促进大学生数学建模竞赛在高职学院持续健康发展,已经成为教育工作者研究的重要课题。

总体来说起步较缓慢,以黑龙江赛区为例,参加全国大学生数学建模竞赛的院校和参赛队虽然逐年增加,20xx年达到了34所参赛院校共444支参赛队,但是高职学院参赛的少,仅占全省高职学院的1/3,有的高职学院长期徘徊在竞赛之外,有的断断续续,今年参赛明年休息。分析其原因主要有两个:一是部分高职学院对大学生数学建模竞赛十分陌生,对竞赛的意义缺乏认识,没有配套的实施办法和有效的激励机制;二是竞赛的指导教师匮乏,能力有限,目前高职数学教师队伍严重萎缩,有的学院数学教研室只剩一两个人。

参加数学建模竞赛需要扎实的数学功底和良好的应用意识。而高职的课程体系突出专业技能的培养,通常只在一年级开设一个学期的“高等数学”课程,总学时一般仅有30学时,有的甚至不开数学课。教学内容以一元微积分的基本概念和简单算法为主。大多数参赛的高职院校,仅仅是为竞赛而竞赛,极少关注数学建模思想和方法在深化数学教学改革、促进课程建设等方面的作用。

高职学生总体水平较差,但对从未接触过的数学建模充满好奇。然而数学建模竞赛对学生的知识和能力要求都比较高,同时因高职学生二年级末就要面临顶岗实习和就业问题,参赛学生通常只能在一年级中选拔,他们的基础和能力显然都没有本科生扎实,因此赛前培训的工作量非常大。

通过数学建模竞赛可以提高学生的综合素质,是培养学生综合能力的有效途径。数学建模竞赛可以培养团队精神与合理表达自己思想和综合运用知识的能力等,所有这些对提高学生的素质都是很有帮助的,且非常符合当今提倡素质教育精神。

数学建模竞赛不同于其它各种具有单个学科如:数学竞赛,物理竞赛,计算机程序设计竞赛等的竞赛,因为这些竞赛只涉及到一门学科,甚至一门课程的知识,而数学建模竞赛涉及到数学学科,计算机学科等其他许多学科的知识,仅数学学科就涉及到高等数学,线性代数,概率统计,计算方法,运筹学,图论,数学软件等方面的知识。学生要想在数学建模竞赛中取得好成绩,除了具有以上数学知识外,还要有较好的计算机编程能力,网上查阅资料的能力及论文写作能力等,此外,他们还应有接触各种新知识的环境和喜好。因为数学建模的竞赛题远非只是一个数学题目,而更多是一个初看起来与数学没有联系的实际问题,它涉及到很多知识,有些还是当前尚未解决的问题,如:飞行管理问题,dna排序问题等就是较有代表性的数学建模考试题目。通常数学建模题目只给出问题的描述和要达到的目的,参赛学生要做的事情是将问题用数学语言转化成数学问题,然后在数学的背景下使用计算机或数学软件来求解,最后再根据所得的解来解释和检验所给的实际问题。与数学竞赛不同的是,数学建模赛题没有标准的正确答案,试卷的评分标准是看学生解决问题和创新的能力.因此要做好一个数学建模问题并不是一件容易的事情,需要学生很多的知识以及对所学各种知识的综合运用,对学生是一个挑战。

数学建模竞赛的题目由工程技术、经济管理、社会生活等领域中的实际问题简化加工而成,没有事先设定的标准答案,但留有充分余地供参赛者发挥其聪明才智和创造精神。竞赛以通讯形式进行,三名大学生组成一队,在三天时间内可以自由地收集资料、调查研究,使用计算机、软件和互联网,但不得与队外任何人(包括指导教师在内)以任何方式讨论赛题。竞赛要求每个队完成一篇用数学建模方法解决实际问题的科技论文。竞赛评奖以假设的合理性、建模的创造性、结果的正确性以及文字表述的清晰程度为主要标准。可以看出,这项竞赛从内容到形式与传统的数学竞赛不同,是大学阶段除毕业设计外难得的一次“真刀真枪”的训练,相当程度上模拟了学生毕业后工作时的情况,既丰富、活跃了广大同学的课外生活,也为优秀学生脱颖而出创造了条件。

竞赛让学生面对一个从未接触过的实际问题,运用数学方法和计算机技术加以分析、解决,他们必须开动脑筋、拓宽思路,充分发挥创造力和想象力,从而培养了学生的创新意识及主动学习、独立研究的能力。

通过数学建模竞赛可以推动高校的教育教学改革。十几年来在竞赛的推动下许多高校相继开设了数学建模课程以及与此密切相关的数学实验课程,出版了两百多本相关的教材,一些教师正在进行将数学建模的思想和方法融入数学主干课程的研究和试验。

数学教育本质上是一种素质教育,要体现素质教育的要求,数学的教学不能完全和外部世界隔离开来,关起门来在数学的概念、方法和理论中打圈子,处于自我封闭状态,以致学生在学了许多据说是非常重要、十分有用的数学知识以后,却不怎么会应用或无法应用。开设数学建模和数学实验课程,举办数学建模竞赛,为数学与外部世界的联系打开了一个通道,提高了学生学习数学的积极性和主动性,是对数学教学体系和内容改革的一个成功的尝试。

数学建模教学和竞赛活动中经常用到计算机和数学软件,普遍采取案例教学和课堂讨论,丰富了数学教学的形式和方法。经过几年来参加数学建模竞赛和教学方法和手段的改革,一方面教师的'知识面拓宽了,知识结构改善了,利用数学工具和计算机找出解决实际问题的意识和能力提高了,另一方面,由于理论与实际的结合多,学生的动手能力增强了,学习的主动性和积极性有了很大的提高,同时也培养了学生的创新意识和解决实际问题的能力。

近年来,我校一直有序地组织学生参加数学建模竞赛,学校领导和教务处等有关部门非常重视和支持学生参加数学建模竞赛,逐步探索完善了一套合理的激励机制,激发指导教师的工作积极性和学生的参赛荣誉感及学习积极性。

我校开展的数学建模竞赛活动是采用第二课堂课余活动的形式进行的。由数学教研室负责每学期对学生进行集体强化培训,以提高建模水平,培养学生之间的团队协作精神。通常我们在每年四月份组织校级竞赛,然后评选出五个代表队的优秀论文参加东三省数学建模联赛的评奖。通过校级的比赛在全校范围内选拔出队员,再进行深入的培训,最后参加全国比赛。

我校历年来在大学生数学建模竞赛活动中保持优秀成绩,涌现了一批优秀的指导教师和学生。20xx年黑龙江交通职业职业技术学院第一次组队参加东北三省大学生数学建模竞赛,由于领导重视,工作扎实,平时训练重过程、重细节,竞赛中队员们表现出了良好的意志品质和团队精神,最终取得了不俗的成绩:5个参赛队中,1个队荣获省一等奖,另有1个队获省二等奖。20xx年参加东北三省数学建模联赛,四个队获得二等奖;20xx年参加全国大学生数学建模竞赛,一个队获得省级二等奖,一个队获得省级三等奖;20xx年参加东北三省数学建模联赛,一个队获得一等奖,三个队获得二等奖。事实证明:通过自身的努力,高职学院可以在全国大学生数学建模竞赛中取得较好成绩,而高职学生也必定会在艰苦的培训和竞赛过程中得到锻炼和提高。

尽管目前高职学院开展大学生数学建模竞赛活动仍有不少困难,但是我们有理由相信,在社会各界的关心和支持下,这一项能使高职学生、教师和学院全面受益的竞赛不仅值得我们为之努力,而且一定能越办越好。

数学建模论文感悟篇十九

运筹学与数学建模2门课程联系密切,在运筹学教学中,适当融入数学建模思想,能大幅度提高学生应用数学解决实际问题的能力.从运筹学教学中教学大纲的改革、教学环节的设计等方面进行了探索与实践.教学实践表明,将数学建模思想融入到运筹学教学中能提高课堂教学的效果,锻炼学生的动手实践能力.

数学建模;运筹学;教学实践

数学建模论文感悟篇二十

众所周知,高等数学是所有自然学科的基础,一个大学生要想在以后的工作、学习中大展宏图,那么就一定少不了坚实的高等数学基础。如何解决大学生在学习高等数学时碰到的问题?如何调动大学生学习高等数学的积极性?让学生们了解高等数学的用途,真正愿意静下心来好好学习高等数学,努力为以后的发展打好数学基础。一直以来,各所高校的教师们都在努力的想办法、找对策,一些实用有效的方法已经提出并且在逐步推广,比如,问题驱动式的教学方法和基于pbl的教学方法等。笔者从所在学校的学生实际学习情况出发,根据几年来的教学心得和积累,打算提出一种较为实用的教学方法——利用数学建模的思想调动大学生学习高等数学的积极性。该方法在笔者所教授的班级中已经实际应用过几届,学生普遍反映效果较好,任课老师也认为该方法确实能极大地调动学生的学习积极性。

提到高等数学,学生们的第一反应往往是:各种公式塞满黑板,各种运算充斥脑海;定义、定理、推论一个连着一个;极限、连续、可导可积一个涵盖另一个[1]。和高中数学相比,记忆的负担轻了(实际上是知识点太多,记不住了),而对思维的要求却提高了。对大学生来说,每一次的高数课,都是一次大脑的思维训练,时刻要求精神高度集中,一定要紧跟老师的步划,一旦走神,后面的内容就不知所云了。这样的要求短时间可以达到,长久下去学生们会觉得很辛苦,很有压力,会出现抱怨。笔者碰到过这样的学生,刚开始时,兴致勃勃,雄心万丈,可到后来兴趣索然,马虎应对。怪学生吗?诚然学生有责任,但任课老师也该负很大的责任。作为高等数学的老师我们经常要面对学生提的这些问题:(1)我学的专业和高等数学相差甚远,有可能这一辈子都不会用到高等数学的知识,那我学高等数学的目的何在?(2)老师您天天鼓吹高等数学的强大功能和广泛用途,但是通过一学期的学习,我发现除了对付考试有用,真不知高等数学可以用在何处?这些问题不及时解决,时间长了一定会影响到大学生对高等数学的学习积极性,甚至有可能会产生厌学的情绪和氛围。有些极端的学生,期末考试之后,一听到自己高等数学考过了,立马将高等数学的课本给撕了,可想而知高等数学对其造成的压力有多大[2]。如何解决大学生在学习高等数学时碰到的问题?如何调动大学生学习高等数学的积极性?让学生们了解高等数学的用途,真正愿意静下心来好好学习高等数学,努力地为以后的发展打好数学基础。笔者从所在学校的学生实际学习情况出发,根据几年来的教学心得和积累,打算提出一种较为实用的教学方法——利用数学建模的思想调动大学生学习高等数学的积极性。

一、以实际问题反推解决问题时我们需要的高等数学知识

有这样一个实际问题:报童每天清晨从报社购进报纸零售,晚上将没卖掉的报纸退回给报社。假设报纸每份的购进价为b元,零售价为a元,退回价为c元,自然地有abc。这就是说,报童每售出一份报纸赚a-b元,每退回一份报纸赔b-c元,报童每天如果购进的报纸太少,那么会不够卖,就会少赚钱;如果每天购进的报纸太多,那么会卖不完,将要赔钱。请为报童规划一下,他该如何确定每天购进的报纸份数,以获得最大的收入[3]。

现在我们来反推该问题涉及到的高等数学的知识:首先,通过分析题目可知,问题解决的关键在于——如何确定每天的报纸需求量,注意每天的报纸需求量是随机变化的?解决这个关键问题的知识我们早就掌握了,分别是数理统计中的频率连续化、概率论中的概率密度与期望和高等数学中的定积分[4]。

二、利用高等数学的解决实际问题

f(r)[4]。如果求出了f(r),那么

g(n)=[(a-b)r+(b-c)(n-r)]f(r)+(a-b)nf(r).(1)

现在我们来求f(r),假定报童已经通过自己的经验和其他渠道掌握了一年(365天)中每天报纸的售出份数,那么在他的销售范围内,每天报纸日需求量r的概率f(r)为:

f(r)=,r=(0,1,2,3,…)

其中k表示为卖出r份的天数。

g(n)=[(a-b)r+(b-c)(n-r)]p(r)dr+(a-b)np(r)dr.(2)

通过上面的分析,可知实际问题归结为,在p(r)和a,b,c已知时,求n使得g(n)最大。

=-(b-c)p(r)dr+(a-b)p(r)dr.(3)

令=0,得到=,又因为p(r)dr+p(r)dr=1,所以p(r)dr=.(4)

在等式(4)中,p(r)和a,b,c均为已知,所以利用定积分的知识一定可以求出n。也即可以确定每天购进的报纸份数,使报童每天获得最大的收入。

三、利用现实问题,让学生学会思考,给他们提供创造成就感的机会

通过上面碰到的实际问题,可以很容易地说服同学们静下心来好好学习高等数学。因为通过实际问题的求解,学生们了解到了,要想解决一个实际问题(哪怕是很小的问题),也需要大量的高等数学知识的储备;学生们也大概领略到了高等数学的用途与功能。这样的教学方法简单、直接,胜过老师课堂上反复的唠叨与强调。有了这样的一些实际问题,老师们就可以大胆地将数学建模思想引入高等数学的教学当中,让学生们在解决实际问题中学会思考,掌握知识,提高能力。

通过训练后,碰到实际问题,同学们会自然的想到我们的教学方法:(1)这些实际问题涉及到的高等数学知识?那些自己掌握了,那些还没有弄明白,学要加强学习。(2)知识点找到后,如何建立起数学与实际问题求解之间的关系?也即如何建立数学模型。(3)除了老师给的题目,自己本专业中的实际问题,能否用高等数学的知识去解决?通过思考、分析、解决这些问题,学生们会有一种创造创新的成就感,会愿意自主学习,自然而然其学习高等数学的积极性也会大大提高了。

【本文地址:http://www.xuefen.com.cn/zuowen/6575964.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档