专业人教版六年级数学比例教学设计(模板13篇)

格式:DOC 上传日期:2023-11-01 16:26:39
专业人教版六年级数学比例教学设计(模板13篇)
时间:2023-11-01 16:26:39     小编:字海

总结是思考的结果,是对经历和经验的理性反思。总结的核心在于对过去的经历进行梳理和总结。掌握科学学习方法可以提高学习效果和效率。

人教版六年级数学比例教学设计篇一

1、使学生认识正比例关系的意义,理解,掌握成正比例量的'变化规律及其特征,能依据正比例的意义间断两种相关联的量成不成正比例关系。

2、进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联量成不成正比例关系的方法,培养学生判断、推理的能力。

1、说出下列每组数量之间的关系。

(1)速度时间路程。

(2)单价数量总价。

(3)工作效率工作时间工作总量。

2、引入新课。

我们已经学过的一些常见数量关系,每组数量中,数量之间是有联系的,存在着相依关系,这节课开始,我们就来研究和认识这种变化规律。今天,我们先认识正比例关系的意义。

1、教学例1。

出示例1。让学生计算,在课本上填表。

让学生观察表里两种量变化的数据,思考。

(1)表里有哪两种数量,这两种数量是怎样变化的?

(2)路程和时间相对应数值的比的比值各是多少?这两种量变化有什么规律?

引导学生进行讨论。

提问:这里比值50是什么数量?(谁能说出它的数量关系式?)。

想一想,这个式子表示的是什么意思?

2、教学例2。

出示例2和想一想。

要求学生按刚才学习例1的方法学习例2,然后把你学习中的发现综合起来告诉大家。

比值1.6是什么数量,你能用数量关系式表示出来吗?

谁来说说这个式子表示的意思?

3、概括正比例的意义。

像例1、例2里这样的两种相关联的量是怎样的关系呢?请同学样看课本第40页最后一节。

4、具体认识。

(1)提问:例1里有哪两种相关联的量?这两种量成正比例关系吗?为什么?

例2里的两种量是不是成正比例的量?为什么?

(2)做练习八第1题。

5、教学例3。

出示例3,让学生思考/。

提问:怎样判断是不是成正比例?

请同学们看一看例3,书上怎样判断的,我们说得对不对。

强调:关键是列出关系式,看是不是比值一定。

1、做练一练第1题。

指名学生口答,说明理由。

2、做练一练第2题。

指名口答,并要求说明理由。

3、做练习八第2题(小黑板)。

让学生把成正比例关系的先勾出来。

指名口答,选择几题让学生说一说怎样想的?

人教版六年级数学比例教学设计篇二

教学目标:

1、使学生理解什么是相关联的量。

2、掌握正比例的意义及字母表达式。

3、学会判断两个量是否成正比例关系。

教学过程:

一、导入。

师(板书:关联):知道关联是什么意思吗?

生:指事物之间有联系。

生:也可以指事物之间相互影响。

师:对,关联就是指事物之间发生牵连和影响。

师:能举一些生活中相互关联的例子吗?

生:天气热了,我们身上穿的衣服就少一些;天气冷了,穿的衣服就会多一些,气温与我们穿的衣服是相关联的。

生:我的考试分数多了,爸爸妈妈就很高兴;如果少了,他们的脸上就会阴云密布,所以我的考试分数与家长的脸色也是相关联的。(其他学生大笑)。

生:我想姚明打球时,姚明的动作与防守他的对方队员的动作也是相关联的,即姚明怎么动,对方总有一个相应的对策,不可能永远不变。

这时,一名学生干脆带着他的同桌走到讲台上,两个人当着全班学生的面,做起了学生经常玩的推手游戏,即一人推手,另一人立刻向后闪开。然后这位学生说:“我们刚才的动作也是相关联的。”

生:上星期,我们班举行智力竞赛,每个小组每答对一题就得到10分,答对两题得到20分……答对的题目越多,分数也就越高。因此,我认为答对的题目与最后的成绩也是相关联的。

二、新授。

师:好一个答对的题目与最后的成绩相关联!我们把它们的情况列成下面的表格,可以吗?

师:从这个表格中。你还知道什么?

生:答对一题得10分,答对两题得20分,答对三题得30分……。

师:表中有哪两个量?它们的关系怎样?

生:答对的题目与最后的成绩,它们是两个相关联的量。

师:你们能够从中发现什么规律?

生:从左向右看,答对的题目越多,分数就越高;从右向左看,答对的题目越少,成绩就越低。

师:还能发现什么呢?

生:答对的次数扩大多少倍,得分也随着扩大多少倍;反之,答对的次数缩小多少倍,得分也随着缩小多少倍。

师(小结):也就是说,成绩随着答对的次数变化而变化,像这样的两个量也叫做相关联的量。

(随着学生的回答,师板书:10/1=10、20/2=10、30/3=10、40/4=10……)。

师:刚才这位同学在算出比值的时候,你们发现了什么?

生:不管怎样,它们的比值不变。

师:这个比值实际上就是什么呀?(板书:每题的分数)。

师:你能用一个关系式表示吗?

板书关系式:成绩/答对的题目=每题的分数(一定)。

师:我们再来看一道题目。请每个小组的小组长,将桌上信封中的信息单分给每一位同学。同学们可以根据上面的四个问题进行分析,在小组内讨论交流。如果你们遇到了什么问题,可以举手,老师非常乐意帮助你们。(投影出示例1)。

1、表中有()和()两种量。

2、路程是怎样随着时间的变化而变化的?

3、任意写出三个相对应的路程和时间的比,并算出它们的比值。

4、比值实际上表示(),请用式子表示它们的关系。

(学生交流汇报,师板书关系式)。

(结合学生的发言,教师逐一板书,最后由学生通过看书,归纳出正比例的意义,由此完成概念教学)。

人教版六年级数学比例教学设计篇三

教科书第12册第94页“整理与反思”和95—96页的“练习与实践”5—10。

【知识要点】。

1、正比例和反比例的区别与联系:

相同点不同点。

特征关系式。

正比例两种相关联的量两种量中相对应的两个数的比的比值(也就是商)一定=k(一定)。

反比例两种量中相对应的两个数的积一定x×y=k(一定)。

与老教材相比,新教材进一步加强正、反比例的概念教学,突出正比例关系的图像及简单应用,重视正、反比例与现实生活的联系,淡化脱离现实背景判断比例关系,不安排应用正、反比例关系解决实际问题。

2、图上距离和实际距离的比,叫做这幅图的比例尺。

图上距离:实际距离=比例尺或=比例尺。

【教学目标】。

1、使学生进一步认识成正比例和反比例的量,掌握两种量是否成比例、成什么比例的思考方法。

2、使学生通过掌握判断两种相关联的量是否成正比例或反比例的方法,提高分析、判断的能力。

3、使学生进一步体会比和比例知识的应用价值,感受不同领域的数学内容之间的密切联系。认识成正比例和反比例的量,使学生感受正、反比例是描述数量关系及其变化规律的又一种有效的数学模型。

二、教学建议。

复习正比例和反比例,重点是它们的意义。教材让学生回忆判断两种量是否成正比例或反比例的方法,重温正比例关系的特征是两种相关联变量的商保持一定,反比例关系的特征是两种相关联变量的积保持一定。再通过第7、8题的判断,进一步巩固正比例和反比例的概念。第9题复习正比例的图像,其中汽车行驶的路程和耗油量是否成正比例,要利用图像找出几组相对应的数,组成比并求出比值,根据正比例的意义进行判断。

复习比例尺的知识仅编排一道题,利用平面图的比例尺和量出的图上距离,计算相应的实际距离。教学第10题要说说这幅平面图的比例尺和具体含义,从线段比例尺得出数值比例尺,回忆比例尺的意义和算法。要通过解题归纳求实际距离的方法及注意点,还要说说怎样求图上距离。

三、知识链结。

1、正比例和反比例(教科书六下p62例1、例2、p63例3)。

2、比例尺(教科书六下p48例6、p49例7)。

四、教学过程。

(一)正比例和反比例的意义。

1、教师提问:根据正比例和反比例的意义,我们怎样判断两种量是否成正比例或反比例关系?(小组讨论后,交流)。

2、小结:第一,这两种量是不是相互关联?其中一种量是否随着另一种量的变化而变化?第二,这两种量中每一组对应的数的比值(或积)是否一定。

3、举出一些生活中成正比例或反比例量的例子,在小组里交流。

例如:黄瓜的单价一定,数量和总价成正比例。因为,第一,数量和总价这两种量是相互关联的,其中一种量总价随着另一种量数量的变化而变化。第二,这两种量中每一组对应的数的比值都是单价。单价一定,所以这两种量是成正比例的量。

(二)练一练。

1、下表中两种量成比例吗?为什么?

加数122、51424。

加数1827、5166。

总吨数422610024、4。

余下吨数41259923、4。

因数35320。

因数159101、5。

2、完成教科书95页“练习与实践”

第7题:让学生先独立做,再讲评。讲评时注意帮助学生解决困难。

第8题:引导学生列举几组对应的数值再具体分析每组中两个数的关系后再判断。

第9题:其中第1小题让学生根据图中标出的点的位置算出相应的耗油量与行驶路程的比值,再作判断。(行驶75千米的耗油量是6升。)第2小题让学生在教材提供的方格图上描点、连线,再引导学生联系画出的图象判断汽车在市区行驶时,行驶的路程与耗油量成不成正比例。体会数形结合在解决问题方面的价值。

(三)复习比例尺。

1、教师提问:什么叫比例尺?比例尺有几种类型?举例说说它的意思?(重点是线段比例尺)。

2、举例说说怎样求图上距离?怎样求实际距离。

3、完成教科书95页“练习与实践”第10题。

(四)评价小结:

学了本课你对所学知识有什么新认识?还有什么问题?

习题精编。

一、对号入座。

1、在比例尺是1:4000000的地图上,图上距离1厘米表示实际距离千米。也就是图上距离是实际距离的1(),实际距离是图上距离的()倍。

2、一幅图的比例尺是,那么图上的1厘米表示实际距离();实际距离50千米在图上要画()厘米。把这个线段比例尺改写成数值比例尺是()。

3、一种微型零件的长5毫米,画在图纸上长20厘米,这幅图的比例尺是()。

4、判断下列各题中两种量是否成比例?成什么比例?

(1)路程一定,车轮的周长和车轮滚动的圈数。()。

人教版六年级数学比例教学设计篇四

1.使学生通过具体问题情境认识成正比例的量,理解其意义,并能判断两种量是否成正比例关系,能找到生活中成正比例的实例,并进行交流。

2.通过探索正比例意义的教学活动,使学生感受事物中充满着运动、变化的思想,并且特定的事物发展、变化是有规律的。

3.通过观察、交流、归纳、推断等教学活动,感受数学思维过程的合理性,培养学生的观察能力、推理能力、归纳能力和灵活应用知识的能力。

认识成正比例的量,理解其意义,并能判断两种量是否成正比例关系。

理解正比例的意义,感受事物中充满着运动、变化的思想,并且特定的事物发展、变化是有规律的。

教具:小黑板小黑板。

学具:作业本,数学书。

(1)下面是居委会张阿姨负责的小区水费收缴情况,用这个表中的数能写成多少个有意义的比?哪些比能组成比例?把能组成的比例都写出来。

住户张家赵家。

水费(元)1520。

用水量(吨)68。

(2)揭示课题。

教师:这些数量之间藏着不少的知识,今天这节课我们就来研究这些数量间的一些规律和特征。

1.教学例1。

用小黑板在刚才准备题的表格中增加几列数据,变成下表。

住户张家赵家李家周家刘家吴家。

水费(元)1520352517.5。

用水量(吨)6814109。

教师:请同学们观察这张表,先独立思考后再讨论、交流:从这张表中你发现了什么规律?并根据这种规律帮助张阿姨把表格填写完整。

教师根据学生的回答将表格完善,并作必要的板书。

教师:同学们发现表格中的水费随着用水量的增加也在不断增加,像这样水费随着用水量的变化而变化,我们就说水费和用水量是相互关联的。

板书:相关联。

教师:你们还发现哪些规律?

学生在这里主要体会水费除以用水量得到的每吨水单价始终是不变的,教师可根据学生的回答板书出来,便于其他学生观察:

水费用水量=156=208=3514=……=2.5。

教师:水费除以用水量得到的单价相等也可以说是水费与用水量的比值相等,也就是一个固定的数。

板书:水费用水量=每吨水单价(一定)。

2.教学“试一试”

教师:我们再来研究一个问题。

小黑板出示第52页下面的“试一试”。

学生先独立完成。

教师:你能用刚才我们研究例1的方法,自己分析这个表格中的数据吗?

教师根据学生的回答归纳如下:

表中的路程和时间是相关联的量,路程随着时间的变化而变化。

时间扩大若干倍,路程也扩大相同的倍数;时间缩小若干倍,路程缩小相同的倍数。

路程与时间的比值是一定的,速度是每时80m,它们之间的关系可以写成路程时间=速度(一定)。

3.教学“议一议”

教师:我们研究了上面生活中的两个问题,谁能发现它们之间的共同点呢?

引导学生归纳出这两个问题中都有相关联的量,一种量扩大或缩小若干倍,另一种量也随着扩大或缩小相同的倍数,所以它们的比值始终是一定的。

教师:像上面这样的两种量,叫做成正比例的量,它们的关系叫做成正比例关系。

4.教学课堂活动。

教师:请大家说一说生活中还有哪些是成正比例的量。

(1)完成练习十二的第1题。

教师:请同学们用所学知识判断一下,下面表中的两种量成正比例关系吗?为什么?

学生独立思考,先小组内交流再集体交流。

(2)完成练习十二的第2题。

这节课你们学到了哪些知识?用了哪些学习方法?还有哪些不懂的问题?

人教版六年级数学比例教学设计篇五

本节课教学的正比例是数学中比较重要的两个量的关系,它比较抽象、难理解,是今后学习反比例及初中学习函数知识的基础。结合本节课的教学内容及学情实际,本节课在教学设计上主要体现以下几个方面:

1.有效利用教材图表,增强对相关联的量的形象感受。

教学伊始,在复习铺垫的基础上,引导学生仔细观察图表。在观察中,使学生发现正方形的周长和面积随着边长的变化而变化及变化规律,充分体会到什么是相关联的量,为进一步学习正比例知识打下基础。

2.科学调动多种感官,增强对知识形成过程的体验。

在数学教学过程中,教师如果能够有效地调动学生的多种感官参与学习活动,让学生利用更多的大脑通路来处理学习信息,建立起对知识与技能的深刻记忆,成为学习的主人,就能促进学生提高学习效率。本设计努力为学生创设动眼、动手、动脑、动口的机会,使学生在观察、操作、分析、比较、讨论、交流中,不断探究相关联的两个量之间的关系,逐渐发现其中的规律,体会正比例的意义。

3.体会数学与生活的密切联系,关注对正比例意义的理解。

因为正比例表示的是两个相关联的量之间的关系,是学生接下来学习反比例及今后进一步学习函数知识的重要基础。所以,本设计十分重视学生对知识的理解。通过创设具体情境,激发学生的学习兴趣,使学生积极主动地思考并结合熟悉的情境及数量关系理解正比例的意义。

教师准备多媒体课件。

复习导入。

1.引导回顾。

师:什么是相关联的量?请举例说明。

(学生汇报)。

2.导入新课。

师:两个相关联的量之间肯定存在着某种关系,我们今天要学习的正比例就是表示两个相关联的量之间的关系的,这种关系是怎样的呢?让我们一起进入今天的学习。

设计意图:通过回顾旧知,进一步理解相关联的量,为在新情境中探究两个相关联的量之间的变化规律作铺垫。

探究新知。

1.借助图表,进一步感知相关联的量。

面积/cm2。

小组合作探究,交流下面的问题:

(1)上面是正方形周长与边长、面积与边长之间的变化情况,把表格填写完整,并说说你分别发现了什么。

(2)同桌合作填表。

预设。

生1:我从表中发现正方形的边长增加,周长也增加。

生2:我从表中发现正方形的边长扩大到原来的几倍,周长就随着扩大到原来的几倍。

生3:我从表中发现正方形的周长总是边长的4倍。

生4:我从表中发现正方形的边长增加,面积也增加。

……。

预设。

生1:相同点是都随着边长的增加而增加。

生2:不同点是周长随边长变化的规律与面积随边长变化的规律不同。

生3:在变化过程中,正方形的周长与边长的比值一定,都是4。

生4:在变化过程中,正方形的面积与边长的比值是一个不确定的值。

人教版六年级数学比例教学设计篇六

九年义务教育六年制小学数学第十二册p62——63

教学目:

1、使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。

2、使学生在认识成正比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。

3、使学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。

认识正比例的意义

:掌握成正比例量的变化规律及其特征

:课堂教学中从学生的已有的生活经验出发,引导学生观察、分析,从而发现成正比例量的规律,概括成正比例量的特征。课堂教学中给学生提供探究的平台,凡是能让学生自己发现的,就让学生亲自去探究。通过数学活动,让学生把所学的数学知识应用到解决实际问题中去,进一步培养学生的观察能力和发现规律的能力。

1、说出下列每组数量之间的关系。

(1)速度时间路程

(2)单价数量总价

(3)工作效率工作时间工作总量

2、师:这些是我们已经学过的一些常见数量关系,每组数量之间是有联系的,存在着相依关系。当其中一种量变化时,另一种量也随着变化,而且这种变化是有一定的规律的,你想知道其中的奥秘吗?今天,我们就来研究和认识这种变化规律。

学生口答,相互补充

说说表中列出了哪两种量。

(1)引导学生观察表中的数据,说一说这两种量的数值分别是怎样变化的。

初步感知两种量的变化情况,得出:路程和时间是两种相关联的量,时间变化,路程也随着变化。(板书:相关联的量)

(2)引导学生观察表中数据,寻找两种量的变化规律。

根据学生交流的实际情况,及时肯定并确认这一规律,特别是有意识地从后一种角度突出这一规律。

根据发现的规律启发学生思考:这个比值表示什么?上面的规律能否用一个式子表示?

根据学生的回答,板书关系式:路程/时间=速度(一定)

(板书:路程和时间成正比例)

2、教学“试一试”

学生填表后观察表中数据,依次讨论表下的4个问题。

根据学生的讨论发言,作适当的板书

3、抽象表达正比例的意义

根据学生的回答,板书:=k(一定)

揭示板书课题。

先观察思考,再同桌说说

大组讨论、交流

学生可能发现一种量扩大(缩小)到原来的几倍,另一种量也随着扩大(缩小)到原来的几倍。也可能发现两种量中相对应的两个数的比值不变。

学生根据板书完整地说一说表中路程和时间成什么关系

学生独立填表

完整说说铅笔的总价和数量成什么关系

学生概括

1、练一练

生产零件的数量和时间成正比例吗?为什么?

2、练习十三第1题

先算一算、想一想,再组织讨论和交流。

要求学生完整地说出判断的思考过程。

3、练习十三第2题

先独立判断,再有条理地说明判断的理由。

4、练习十三第3题

先说出把已知的正方形按怎样的比放大,放大后正方形的边长各是几厘米,再画一画。

分别求出每个图形的周长和面积,并填写表格。

讨论、明确:只有当两种相关联的量的比值一定时,它们才成正比例。

讨论、交流

独立完成,集体评讲

说明判断的理由

说一说,画一画

填一填,议一议

讨论

这节课你学会了什么?你有哪些收获?还有哪些疑问?

人教版六年级数学比例教学设计篇七

1、让学生在实践活动中体验生活中需要比例尺。

2、通过观察、操作与交流,体会比例尺实际意义,了解比例尺的含义。

3、运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题。

4、学生在自主探索,合作交流中,逐步形成分析问题、解决问题的能力和创新的意识,体验数学与生活的联系,培养学生用数学眼光观察生活的习惯。

正确理解比例尺的含义。

运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题。

多媒体。

师:同学们,老师家的房子要扒了,老师想买个面积大一点的房子,现在老师有两套房子的平面设计图,你能帮老师选择买那套房子吗?看谁能帮老师解决这个难题。(出示投影)。

1、计算。

师:下面就请你们来当一个小小的设计师,课前我们已测量出教室的长是8米,宽是6米,请你们把教室的平面图画在老师发给你的白纸上,并完成表格。

师:在画之前,先看清楚要求。(课件显示):

(1)确定图上的长和宽;

(2)个人独立画出平面图;

(3)在下表中填出图上的长、宽与实际的长、宽的比,并化简。

2、展示交流。

你这样想?怎样画?请告诉大家。(学生展示交流)。

谁有不同的想法、画法?(学生充分交流不同的意见)。

(设计意图:在交流中学生思维互相碰撞,提高认识。另外,有利于教师了解学生的学习基础。)。

3、评析感受感受比例尺的价值。

他们画得像吗?

(指画得像的图片)问:其中的奥秘是什么呢?

请想一想,说一说。明确图上长、宽与实际长、宽的比是一定的,画出的平面图才逼真。

(设计意图:思考图形画得象不象?为什么?产生认知矛盾,引发深层次的思考。)。

4、揭示概念。

象这样,在绘制平面图时,需要确定图上距离和实际距离的比,这个比叫做这副图的比例尺。

投影出示比例尺的概念。

5、总结求比例尺时的注意事项。

(1)求你所画那副图的比例尺。

(2)求老师所买那套房子的实际面积。

本节课你有哪些收获,还有那些不明白的地方?

人教版六年级数学比例教学设计篇八

义务教育课程标准实验教科书数学六年级下册p48“练一练”和练习十一的第1、2题

1、使学生在具体情境中理解比例尺的意义,能看懂线段比例尺,会求一幅图上的比例尺,会把数值比例尺与线段比例尺进行转化。

2、使学生在观察、比较、思考和交流等活动中,培养分析、抽象、概括的能力,进一步体会数学知识之间的联系,感受学习数学的乐趣。

使学生理解比例尺的意义,能看懂线段比例尺,会求一幅图的比例尺。

使学生理解比例尺的意义,会求一幅图的比例尺。

本课设计结合具体的情境,出示不同地图,引发学生思考。再通过比的有关知识介绍比例尺的意义,利用具体生活实例引导学生建构比例尺这一概念,为强化对比例尺的认识,设计中,通过不同形式比例尺的分析比较,以及系列学生自主活动,进一步加深对概念的理解,培养学生分析、概括的能力,进一步体会数学知识之间的联系,感受学习数学的乐趣。

教师活动学生活动

一、设置情境

比较引入演示:出示出示一组大小不同的中国地图。

师:通过观察,你发现了什么?什么变了?什么没变?

师:想知道地图是怎样绘制出来的吗?今天我们就学习这方面的知识。

(板书课题:比例尺)学生观察

学生回答。(可能出现:形状没变、大小变了。)

二、自主探究

认识新知

1、出示例6。

师:题中要我们写几个比?这两个比分别是哪两个数量的比?

什么是图上距离?

什么是实际距离?

2、认识探索写图上距离与实际距离比的方法。

师:图上距离与实际距离的单位不同,怎样写出它们的比?

(学生独立完成后,展示、交流写出的比,强调要把写出的比化简。)

3、比例尺的意义及求比例尺的方法

师:像刚才写出的两个比,都是图上距离和实际距离的比。我们把图书距离和实际距离的比,叫做这幅图的比例尺。

题中草坪平面图的比例尺是多少?

师:怎样求一幅图的比例尺?

根据学生的回答,相机板书:

图上距离:实际距离=比例尺

4、进一步理解比例尺的实际意义。

图上距离/实际距离=比例尺

指出:为了计算简便,通常把比例尺写成前项是1的最简单整数比。像1:1000这样的比例尺,通常叫做数值比例尺。

5、认识线段比例尺

比例尺1:1000还可以用下面这样的形式来表示。

0102030米

师介绍线段比例尺。

问:图上1厘米表示实际多少米?3厘米呢?

指出像这样的比例尺通常叫做线段比例尺。学生读题,理解题意,尝试写出两个数量的比。

三、学生交流,明确方法:

把图上距离与实际距离的单位统一成相同单位,写出比后再化简。

学生总结:图上距离:实际距离=比例尺

学生在小组里说说,再全班交流。

学生交流:1:1000的意思是图上1厘米的线段表示实际距离1000厘米的距离,也表示图上距离是实际距离的1/1000,还表示实际距离是图上距离的1000倍。

学生:图上1厘米的距离表示实际距离10米。

四、独立练习

巩固提高1、做“练一练”第1题。

2、做“练一练”第2题。

独立相互说,指名说。先说说每幅图中比例尺的实际意义。

学生各自测量、计算,再交流思考过程。

五、总结评价

1、你学会了什么?你有哪些收获和体会?

2、在生活中找找,哪些会用到比例尺学生交流

人教版六年级数学比例教学设计篇九

本课是北师大版小学数学第十二册“正比例和反比例”这一单元的内容。它是在学生对比例的意义有了一定的建构基础以及掌握了比例的基本性质这样背景下进行探索学习的。学好这部分内容,使学生进一步巩固比例的意义和基本性质,能更好地理解地图。

教学课题:《反比例》。

教材通过解决实际问题知识引出图上距离和实际距离的比就是比例尺。再通过练习巩固比例尺的相关知识,使学生能根据比例尺求出图上距离和实际距离。这部分内容有较强的实际应用价值,为学生架起一道数学学习和现实生活之间的桥梁,使他们充分感受到数学的现实意义,从而进一步激发学习兴趣,并为后续学习打下良好的基础。

知识与技能:

1、让学生在实践活动中体验生活中需要比例尺。

2、通过观察、操作与交流,体会比例尺实际意义,了解比例尺的含义。过程与方法:

3、运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题。

情感、态度与价值观:

4、学生在自主探索,合作交流中,逐步形成分析问题、解决问题的能力和创新的意识,体验数学与生活的联系,培养学生用数学眼光观察生活的习惯。

教法:情境导入,激发求知欲望。对于意义理解部分主要采用实例讲。

解法。对于运用比例尺进行相关计算时,主要用引导发现、提示理解法。

学法:在老师的引导下,通过动手操作,大胆设想、自主探究的方法。

进行学习,必要时进行合作交流。

一课时。

生思考回答:在地图上。

师:那么大的地方可以用一幅地图来体现出来,这里运用了什么知识?生:图形的放缩。

生:长方形。

师:那我们来估一估它的长和宽吧!

(生:长大约9米,宽大约6米。)。

师:请大家在练习本上画出教室的平面图。(生画师巡视)。

学生动手操作,反馈。

师:同样画的都是我们的教室,却不一样大,大家赞成谁的画法(故意)?为什么?

生:可以利用前面所学的知识——图形的放缩,把教室的长和宽都缩小一定的倍数在纸上表示出来。

师:你的想法很对,跟笑笑同学的想法一样。

师板书学生结果:逐步引出1:100。

1、学生汇报。

2、学生讨论:

学生:图上1厘米长的线段表示实际100厘米。

3、引出课题。

教师:这就是今天要学习的新知识——比例尺(板书课题)。

1、介绍各种比例尺的名称。

师:在地图上这些都叫做比例尺。根据板书教师介绍数字比例尺、文字比例尺、线段比例尺。

2、认识比例尺的意义。

师:比例尺1:500是什么意思?

生1:就是图上1厘米的长度代表现实中的500厘米。

生2:实际距离是图上距离的500倍。

1生3:图上距离是实际距离的。500。

师:比例尺1:2200000是什么意思?

生1:就是地图上1厘米的距离相当于现实中的2200000厘米的距离。

师:同学们讲得都对,那到底什么是比例尺?

学生回答,师评价并规范学生语言:对,比例尺就是图上距离与实际。

距离的比。

小结比例尺的特点及应注意的问题.

学生独立做,集体反馈。

练习2:甲、乙两地相距320千米,画在比例尺是的地图上,应画多少厘米?0204060千米。

练习3、4略。

2、师:刚才我们画的教室平面图,你现在有办法让别人知道我们教室有多大了吗?

指导学生在画的长是9厘米、宽是6厘米的图上加上"比例尺1:100"。在画的长是3厘米、宽是2厘米的图上加上"比例尺1:300"。

3、再次认识比例尺。

3求出这幅图的比例尺。说说与一般的地图上的比例尺有什么不同。

比例尺把实际距离缩小一定的倍数如1:30000000。

把实际距离扩大一定的倍数如200:1。

5引导讨论要将钢笔或杯子的设计图画出来,你选择怎么样的比例尺?

补充板书:

把实际距离按原来的大小画出来,比例尺就是1:1。

通过本节课的学习,你有哪些收获?

请大家把书翻到30页,量一量平面图中笑笑卧室的长是___厘米,宽是___厘米。算一算笑笑卧室实际的长是___米,宽是___米,面积是___平方米。

人教版六年级数学比例教学设计篇十

1、使学生在具体情境中理解比例尺的意义,能看懂线段比例尺,会求一幅图上的比例尺,会把数值比例尺与线段比例尺进行转化。

2、使学生在观察、比较、思考和交流等活动中,培养分析、抽象、概括的能力,进一步体会数学知识之间的联系,感受学习数学的乐趣。

使学生理解比例尺的意义,能看懂线段比例尺,会求一幅图的比例尺。

使学生理解比例尺的意义,会求一幅图的比例尺。

本课设计结合具体的情境,出示不同地图,引发学生思考。再通过比的有关知识介绍比例尺的意义,利用具体生活实例引导学生建构比例尺这一概念,为强化对比例尺的认识,设计中,通过不同形式比例尺的分析比较,以及系列学生自主活动,进一步加深对概念的理解,培养学生分析、概括的能力,进一步体会数学知识之间的联系,感受学习数学的乐趣。

教师活动学生活动。

比较引入演示:出示出示一组大小不同的中国地图。

师:通过观察,你发现了什么?什么变了?什么没变?

师:想知道地图是怎样绘制出来的吗?今天我们就学习这方面的知识。

(板书课题:比例尺)学生观察。

学生回答。(可能出现:形状没变、大小变了。)。

认识新知。

1、出示例6。

师:题中要我们写几个比?这两个比分别是哪两个数量的比?

什么是图上距离?

什么是实际距离?

2、认识探索写图上距离与实际距离比的方法。

师:图上距离与实际距离的单位不同,怎样写出它们的比?

(学生独立完成后,展示、交流写出的比,强调要把写出的比化简。)。

3、比例尺的意义及求比例尺的方法。

师:像刚才写出的两个比,都是图上距离和实际距离的比。我们把图书距离和实际距离的比,叫做这幅图的比例尺。

题中草坪平面图的比例尺是多少?

师:怎样求一幅图的比例尺?

根据学生的回答,相机板书:

图上距离:实际距离=比例尺。

4、进一步理解比例尺的实际意义。

图上距离/实际距离=比例尺。

指出:为了计算简便,通常把比例尺写成前项是1的最简单整数比。像1:1000这样的比例尺,通常叫做数值比例尺。

5、认识线段比例尺。

比例尺1:1000还可以用下面这样的形式来表示。

0102030米。

问:图上1厘米表示实际多少米?3厘米呢?

指出像这样的比例尺通常叫做线段比例尺。学生读题,理解题意,尝试写出两个数量的比。

把图上距离与实际距离的单位统一成相同单位,写出比后再化简。

学生总结:图上距离:实际距离=比例尺。

学生在小组里说说,再全班交流。

学生交流:1:1000的意思是图上1厘米的线段表示实际距离1000厘米的距离,也表示图上距离是实际距离的1/1000,还表示实际距离是图上距离的1000倍。

学生:图上1厘米的距离表示实际距离10米。

巩固提高1、做“练一练”第1题。

2、做“练一练”第2题。

独立相互说,指名说。先说说每幅图中比例尺的实际意义。

学生各自测量、计算,再交流思考过程。

生活延伸1、你学会了什么?你有哪些收获和体会?

2、在生活中找找,哪些会用到比例尺学生交流。

人教版六年级数学比例教学设计篇十一

1、使学生在理解线段比例尺含义的基础上,能按给定的比例尺求相应的实际距离或图上距离。

2、使学生在认识比例、应用比例的过程中,进一步体会比例以及比例尺的应用价值,感知不同领域数学内容的内在联系,增强用数和图形描述现实问题的意识和能力,丰富解决问题的策略,发展对数学的积极情感。

能按给定的比例尺求相应的实际距离或图上距离。

能按给定的比例尺求相应的实际距离或图上距离。

本课时主要是学生在对比例尺含义理解的基础上,进一步体会比例尺的运用,所以在设计着重体现实用性,设计中采用不同的问题情境,才学生身边的事物说起,引导学生解决身边的数学问题,激发学生学习兴趣。再有是进一步学生加强对比例尺含义的理解,设计中,引导学生自主分析,利用知识迁移,自主尝试列式解决,有扶到放,能有效培养学生解决问题的策略水平,主动探索问题的方法,以及不断积累解决问题的经验。

教师活动学生活动。

引入新课。

2、什么叫比例尺?求比例尺时要注意哪些问题?

学生练习,找出图上距离与实际距离,再写出比例尺。

实践运用。

1、出示例7,明确题意。

找出明华小学到少年宫距离的线段,说出题目告诉了什么,要求什么。

2、分析比例尺1:8000所表示的意义。

引导分析:比例尺1:8000,说明实际距离是图上距离的8000倍。也可以理解为比例尺1:8000也就是图上距离1厘米表示实际距离80米。

3、尝试列式。

根据对1:8000的理解你能尝试列出算式吗?

师:交流算法,说说为什么这样算?(引导学生进一步理解不同算法,为什么会这样列式,关键是要让学生根据对比例尺的意义的理解去解决问题,帮助学生掌握不同算法以及之间的联系。)。

4、归纳、选择、

教师允许学生按照自己的思考选择方法进行解答,重点引导学生理解和掌握用列比例式求实际距离的方法。

5、练习。

学生分析题意,明确已知比例尺,已知图上距离,求实际距离。

学生分析1:8000表示的意义。

学生根据自己的思考自己选择合适的方法进行解答后先小组交流算法,再大组交流。

学生可能出现的方法:

1、5×8000=40000……2、5×80=400……。

3、5/x=1/8000……。

图上距离/实际距离=比例尺,可以用解比例的方法求出实际距离。

学生列式5/x=1/8000并计算。

巩固提高。

1、做“试一试”。

先选择自己合适的方法算出学校到医院的图上距离。再引导学生讨论怎样把医院的位置在图上表示出来。

2、做“练一练”先独立解题,在组织交流。

3、做练习十一第4题。

引导学生在地图上测两地之间的距离和在地图上如何找比例尺。

3、做练习十一第5题。

引导学生确定合适的比例尺。在解决问题的过程中,进一步体会比例以及比例尺的应用价值。

学生练习。

在图中表示医院的位置。

学生练习后交流。

1、通过本课的学习,你又掌握了什么新的本领?有哪些收获?

2、你还有什么疑问,或你能给同学提出什么新问题?

激发兴趣p51“你知道吗?”

1、收集地图资料,展示给学生观看。

2、介绍国家基本比例尺地图。

学生观看。

阅读后适当交流。

人教版六年级数学比例教学设计篇十二

1.使学生在具体情景中理解比例的意义,掌握组成比例的关键条件;能应用比例的意义判断两个比能否组成比例。

2.使学生感受数学知识的内容联系,学会综合运用所学知识,增强分析问题和解决问题的能力。

:在具体情境中理解比例的意义。

运用比例的意义判断两个比能否组成比例,并能正确组成比例。

教学课件。

(一)复习旧知识导入新课。

同学们,我们已经学了有关比的知识,请大家回忆一下什么叫比?什么叫比值?比的基本性质是什么?看来,同学们对比的知识掌握的不错。今天我们一起来学习与比有关的知识,比例的意义。

(二)探究新知识

1.初步理解比例的意义。

请同学们看一组图片,依次出现三面国旗课件。让学生分别说出都是什么地方的国旗?

请仔细观察这三面国旗有哪些相同的地方和不同的地方?(这三面国旗形状相同,大小不同。)

师:不同场合的国旗大小是不一样的,但是他们是按一定的比制作的,在制作过程中,每面国旗长与宽存在有趣的比,你想知道吗?那就让我们算一算吧。

请大家根据国旗下面的数据,分别算出每面国旗长与宽的比值。

让一名学生在黑板上计算,其余学生写在练习本上。

提问:通过计算你发现了什么?(每面国旗长与宽的比值相等。)

根据这三个比,从中任意选两个比能不能组成一个等式。

让学生分别说出三个等式:0202

5:10/3=3/25:10/3=2.4:1.6

2.4:1.6=3/2=5:10/3=60:40

60:40=3/22.4:1.6=60:40

提问:这些等式有什么相同点?(都有两个比,并且两个比的比值相等。)

像这样的等式,叫做比例?

谁能用自己的话说一说什么叫比例?学生

引导学生看课本40页教材上是怎样定义的?学生齐读。

教师板书:表示两个比相等的式子叫做比例。

在这句话中有哪些字或词最关键:两个比相等。

师:根据比例的意义让学生举一些比例的例子。

生:a:b=c:d或a/b=c/d

2.深化了解比例的意义

刚才我们通过计算发现,国旗长与宽的比值相等。

所以每两面国旗的长与宽可以组成比例。

除此之外,还有哪些比可以组成比例?分别写出来,根据国旗下面长与宽的数据小组合作交流:

师:根据学生汇报,将组成的比例板书。

宽:长=宽:长长:长=宽:宽

10/3:5=40:605:2.4=10/3:1.6

10/3:5=1.6:2.45:60=10/3:40

1.6:2.4=40:602.4:60=1.6:40

老师这里有两个比它们是否相等?强调:只有对应的量之间的比比值才相等。才可以组成比例。板书:第一面的长:第一面的宽和第二面的宽:第二面的长。学生发现不相等,师:为什么不相等。师结合板书归纳(出示课件)师根据学生们找的结果,我们看到这三面国旗的长与宽的比值都相等,所以每面国旗的长与宽的比都可以组成比例。同样,宽与长的比值也都相等,所以每两面国旗宽与长的比可以组成比例。

每两面国旗长与长的比可以和宽与宽的比组成比例。

(三)练习巩固

做一做。

(1)6:10和9:15

(2)20:5和1:4

(3)0.6:0.2和3/4:1/4

(4)4:3和2:1.5

两名同学板书,其他同学写在练习卡上,让学生讲解并纠错。

(四)请同学们看一看比例,比和比例有什么联系和区别?根据学生回答教师课件出示表格。

意义:两个数相除叫做两个数的比。表示两个比相等的式子。

项数:两项四项

联系:比例是由两个比组成的。

(五)当堂训练:

(六)课堂总结:

今天我们学习了比例的意义,你有什么收获?

人教版六年级数学比例教学设计篇十三

教学目标:

1、使学生理解按比例分配实际问题的意义。

2、使学生通过运用比的意义和基本性质解答有关按比例分配的实际问题。

教学重点、难点:

理解按比例分配实际问题的意义,掌握解题的关键。

对策:

引导学生分析明晰题意。

教学预案:

一、基本训练:

1、根据信息你想到了什么?

六2班男生与女生的比是4:5

(1)男生是4份,女生是5份,一共是9份;

(2)男生相当于女生的4/5,女生相当于男生的5/4

(3)男生占全班人数的4/9,女生占全班人数的5/9

2、根据已知条件回答问题:(第76页上第6题)

二、自主探究:

1、出示例题5题目和方格图,让学生独立完成,先算一算,再涂一涂。

2、组织交流:你是怎样解决这个问题的?你是怎样想的?

生1:根据红色与黄色方格数的比是3:2,可以想到:把30个方格平均分成5份,3份涂红色,黄色涂2份。

列成算式是:

30(3+2)=305=6(格)每一份有几格

因为红色有这样的3份,所以红色:63=18(格)

因为黄色用这样的2份,所以黄色:62=12(格)

教师追问:怎样验证这个答案是正确的?

列成算式:

红色:303/(3+2)=303/5=18(格)

黄色:302/(3+2)=302/5=12(格)

3、你是用哪种方法解决的?这两种方法你都理解吗?和你的同桌再说说解题思路。

三、理解体会:

1、出示第75页上的试一试:

(1)齐读要求,提问:现在将这些方格按怎样的比来分配?说说1:2:3是什么意思?

(2)独立完成,组织交流。

2、你觉得今天的问题已知什么?(已知总数和分配的比,将总数按一定比分割成几部分)要求的是什么?(将求按这样分配后的各部分的结果分别是多少?)

像这样,将总数按一定的比进行分割成几部分,我们称之为按比例分配问题。(出示课题:按比例分配问题。)

3、在解决时我们关键要理解是按怎样的比来分配。解答时可以怎样想?(转化成整数问题,先求出一份是多少?再求出这样的几份是多少?)还可以怎样想?(先转化成要求的量分别是总数的几比几,再按分数乘法问题进行计算)

四、巩固提高

1、练一练第1题:学生独立完成,指名板演,组织交流。

2、练一练第2题:提问:在这里将180块巧克力怎么分配?你从那句话中看出来的?帮助学生理解把180按35:31:24进行分配。

3、练习十四第2题:读题理解要求,引导学生看图估计出已用去的时间与剩余时间的比,并说出是怎样想的。(把图中的白色部分平均分成两份,可以看出已用去的时间与剩下时间的比大约是1:2)那么这题实质是求什么?(将90分钟时间按1:2进行分配,求比赛剩下的时间是多少分?)

4、练习十四第4题:

5、补充:

出示一条线段,要求按1:5将线段分成两部分。

学生独立操作完成,组织交流。

五、全课总结:

通过今天的学习,你有什么收获?

转化解答按比例分配问题的策略。

按比例分配是把一个数量按照一定的比进行分配。解决一些常见的、较简单的按比例分配问题,能在实际应用中加强比的概念。

按比例分配问题可以采用不同的思路和方法来解答。例5的编排在建立比的概念之后,适宜用比的知识解答。兔子卡通把比看作份数,小鸟卡通把比看作分数,都是从3∶2的具体含义出发,经过推理形成解题思路的。也可以先在教材的方格图上,通过涂色得到启发。如果每次涂5个方格,其中3个红色方格、2个黄色方格,那么要6次(305=6)刚好涂完。所以红色方格一共有3053=18(格),黄色方格一共有3052=12(格)。如果把方格图里的3行(列)涂红色、2行(列)涂黄色,那么就能直观看到红色方格是30格的3/5,黄色方格是30格的2/5,所以两种颜色的格数分别用303/5和302/5计算。

教学例题时要沟通两种解法的联系,要提倡小鸟卡通的方法,突出按比例分配问题转化成求一个数的几分之几是多少的问题,引导学生用分数乘法来解决问题。

试一试里出现了1∶2∶3,对连比的概念不需要作过多解释。学生会从两个数的比来体会这个连比的含义,只要能够说出红色方格占1份、黄色方格占2份、绿色方格占3份,就能应用解答例5的经验完成这道题。

练一练第2题给出了幼儿园大班、中班、小班各有的人数,把180块巧克力按班级人数的比分配。这道题变式呈现按比例分配的问题,没有直接给出班级人数比,要求学生根据人数先想出比,然后按比例分配。教师要重点帮助学生理解把180块巧克力按班级人数的比分给三个班就是把180按35:31:24进行分配。这道题还是解答练习十四第2、8题的平台。

【本文地址:http://www.xuefen.com.cn/zuowen/6319917.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档