总结能够帮助我们发现自己的不足之处,并为自身的成长提供改进的方向。想要写出一篇较为完美的总结,首先要明确总结的目标和对象。这些范文从结构、观点、语言等方面都有一定的亮点,值得我们学习和借鉴。
人工智能的应用论文篇一
摘要:人工智能属于一门综合性的边缘学科。诞生时间为20世纪50年代左右,大概历经了四个时代,第一个时代为神经网络时代,第二个时代为弱方法时代,第三个时代为知识工程时代第四个时代为知识工业时代。它在发展过程中包含的基础有计算机科学,信息论,神经心理学,哲学,统计学等多种学科。至今为止,人工神经网络技术和遗传算法都已经应用于工业,军事等领域。
1.1人工智能简述
人工智能[1](artificialintelligence,简称ai)是计算机学科的一个分支,属于为世界三大尖端技术空间技术、能源技术、人工智能其中之一,最近几十年来,人工智能的发展非常的迅速,在很多的地方都得到了应用,尤其是在科学领域。
人工智能源自于对人的模仿,其最终目的是服务于人类,但是,就像世界上没有相同的两片叶子,也没有完全相同的两个人,也就像没有一家服务企业可以满足一个国家人的所有要求一样,人工智能产业中也会涌现许多实力强大的企业,一些企业也会在某个领域内形成自己的竞争优势,甚至会出现垄断型企业。人工智能产业在国内外都还是处于刚刚发展阶段,人工智能产业的竞争也会伴随不断增长变化的需求而演化,企业也会为了满足并提升社会大众越来的生活品质而不断进步,不断完善自身。
1.2人工智能研究的发展概况
近年来,人脸识别技术得益于机器学习与大数据,又有了非常令人欣喜的进步,拥有足够的多的人力模型数据,计算机对具体提供的数量足够多的人脸模型数据进行针对性训练,就可以达到一个极高的识别正确率。但是对一个具体的个例可以做到百分百识别,并不能就此完全肯定对人群大众使用就都能达到同样级别的水平,对于大量的人脸数据依然需要不断地整理系统的统计,所以,距离完美的识别率人类还有很长的路要走。不仅是人脸识别,ocr、语音识别、机器翻译等人工智能技术在现实的应用中都会面临准确率的标准。也希望无论是企业还是社会群体大众,用一份积极包容的心态,为人工智能产业的发展营造一个优良的可持续发展环境。
人工智能应用研究有许许多多的可行性。专家系统内部含有大量的某个领域的专家水平的知识与经验,经过运用人类的知识和解决问题的途径进行推理、汇总、判断、解决,来处理某个领域的疑难棘手问题。人工智能系统在很多领域的应用也都在促进着人工智能的理论和技术的不断发展。专家系统也是人工智能应用研究最活跃和最广泛的应用领域之一,涉及社会各个方面,各种专家系统已遍布各个专业领域,取得很大的成功。人工智能在计算机领域内,得到了原来越多的重视。并在机器人等中得到了很多的实际应用。
人工智能是研究人类智能活动的可循规律,创建具有一定人类智能的电子系统,它主要是通过让计算机去完成原本是需要人类智慧才能去解决的问题,换而言之,就是研究如何应用计算机的软硬件来模拟人类智慧行为的基本理论、方法和技术。例如:繁重的科学工程和数学计算本来是要人脑来承担的,但是,现今,计算机不但能高效准确的完成这种计算,而且还能够比人脑做得更加的完美,因此,当今社会也不再把这种程度的计算看成是“需要人类智慧高强度才能完成的复杂任务”,由此可见,高强度复杂工作的定义随着人类社会时代的发展和科学技术的不断进步而不断变化,人工智能这门科学的具体目标也自然随着社会科学的变化而发展。它一方面不断地通过科学技术获得新的进展,另一方面又勇敢的转向更有意义、更加困难的目标。
2.1智能信息检索技术
现今社会,智能信息检索技术的发展日新月异。而人工智能在信息检索技术中的应用,主要集中表现在网络信息的检索。网络信息检索,也即网络信息搜索,是指互联网用户在网络终端,通过特定的网络搜索工具或是通过浏览的方式,查找并获取信息的行为。运用人工智能技术,可以快速准确的在大数据的基础之上获得所需信息。
2.2遗传算法
遗传算法(geneticalgorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程进行搜索找出最优解的方法。遗传算法是通过一类问题可能潜在的解集的其中一个集群开始的,而一个集群群则由经过基因编码的一定数目的个体组成。每个个体实际上是染色体带有本身特征的实体。比如,它决定了个体所要表现出的外部形状,如单眼皮,双眼皮的特征是由染色体中控制这一特征的某种基因组合决定的。由此可见,从一开始通过表象得到实际的基因的编码程序为一种算法。我们通常将基因的编码工作简单化,如二进制编码,在第一代种群产生之后,遵循适者生存,按照自然法则优胜劣汰,选择最优的结果,并借助交叉和变异,得到一种新的集合。这种办法会得到一种比以前更加优秀,更加适者生存的种群。
人工智能对人类科学来说是一门极富挑战性的科研究,想要从事这项研究工作必须懂得计算机知识,心理学、统计学、哲学等等。人工智能是一种涵盖了非常广泛的知识的科学,它包含了很多不同的领域,如机器学习,计算机视觉、软件工程、操作系统等等,总而言之,人类科学对人工智能研究的一个主要目的是使机器通过一系列的操作能够胜任一些通常需要人类智能才能完成的复杂工作。在不同的时代、不同的社会环境、不同的人对这种“复杂”程度的理解是不一样的,每个时代的科学发展也是不同的,希望在科学不断发展的今天,人工智能的发展也会带来许许多多的惊喜。
[1]元慧。议当代人工智能的应用领域和发展状况[j]。福建电脑,2008(9)。
[2]刘玉然。谈谈人工智能在企业管理中的应用[j]。价值工程,2013(9)。
[3]焦加麟,徐良贤,戴克昌。人工智能在智能教学系统中的应用[j]。计算机仿真,2013(7)。
[4]周明正。人工智能在医学专家系统中的应用[j]。科技信息,2014(7)。
[5]张海燕,刘镇清。人工智能及其在超声无损检测中的应用[j]。无损检测,2011(5)。
[6]马秀荣,王化宇。简述人工智能技术在网络安全管理中的应用[j]。呼伦贝尔学院学报,2015(7)。
[7]曾雪峰。论人工智能的研究与发展[j]。现代商贸工业,2009(8)。
人工智能的应用论文篇二
摘要:人工智能自提出到兴盛,短短半个世纪以来,一直都处于科技研究的前沿和创新热点。人工智能已经逐渐从科学家们的想象逐步走入了人们的工作生活当中,人工智能相关的语音识别、图像处理、自然语言处理、数据挖掘等领域也得到了蓬勃的发展。该文从人工智能的基本概念出发,探索及了解了人工智能领域的相关研究方向和应用领域,解读了人工智能发展历程中的大事件和大人物,立足于现状,对于未来可能的发展方向和技术瓶颈进行了预测和总结。
人工智能是当今科技发展中最具潜力的热点问题之一,2016年初轰动世界的谷歌alphago打败围棋世界冠军李世石的经典案例更是引起了全世界广泛的关注和热议。“人工智能”这个概念再次被推到了风口浪尖。那么,究竟什么是人工智能呢?它会对我们的生活有什么影响?在这个背景下,我们深入探究人工智能及其相关的技术领域,对于人工智能的普及和发展有着重要意义,也希望能给予人工智能相关领域的科学研究者们提供一些参考和方向。
人工智能(artificialintelligence,ai)是一门全新的信息技术科学,是计算机科学技术的一个重要分支,是指对于模拟、拓展和延伸人类的智能的应用系统及相关的理论和技术方法的开发研究。主要通过研究及了解人类智能的本质从而开发出能给出类似人类智能反馈的智能机器,计算机系统在理解目标方向之后所取得的最大化成果是计算机实现的最大智慧。人工智能不单单是一个特定的技术,它所研究的往往是能创造智能意识的高科技机器,包括了算法和其他应用程序,处理的任务也远远超出了简单计算,从学习感知规划到推理识别控制等等。人工智能的研究方向包含语言及图像识别技术、机器人设计、自然语言处理等,日益成熟的理论方法和技术实践也使得应用领域范围大规模扩张,人工智能是人类智慧的结晶,未来也可能展现出超过人类的智能。
人工智能的科学研究通常涉及到数学、逻辑学、认知科学、以及最重要的计算机科学等多学科领域,延伸出了以下几个主要的研究方向:
2.1逻辑推理与证明
早期的人工智能更多的解决了大量数学问题,逻辑推理是基础也是研究时间最长最重点的领域之一。通过找到可靠的证明或者反证方法实现潜在的定理证明,根据数据库的实例进行推导并及时更新证明结论,演绎和直觉相结合,在推理和证明中实现部分智能。
2.2问题求解
问题求解领域的一大重要应用则是下棋程序的功能实现,化繁为简、将困难的问题点拆分成为独立的子问题进行求解;而另一个实例则是数学方程的求解实现,分析各种公式符号的组合意义从而为科学研究者提供强有力的基础保障。问题求解中所运用的搜索和规约也是人工智能领域中的两大基本技术。
2.3自然语言处理
自然语言处理也叫自然语言理解(naturallanguageprocessing,nlp),是指借助计算机来处理使用人类语言作为计算对象的算法程序,并研究相关的理论方法和技术。nlp是人工智能领域的主要研究方向之一,也是发展时间较长的研究方向之一。语音识别、搜索引擎、机器翻译等等都是nlp的重要研究内容,目前也都在人工智能领域获得了突出的应用成果。
2.4专家系统
专家系统是指具有大量模拟人类相关领域专家知识和经验的智能计算机程序系统,依托于人工智能相关技术,根据专家系统所提供的数据方法进行判断推理进一步决策,从而代替人类专家解决一部分该领域的特定问题。从知识表示技术的角度上看,专家系统可分为基于网络语义、基于规则、基于逻辑、基于框架等几种类别;而从任务类型及专家系统主要解决的问题类型的角度来看,专家系统也可分成解释型(分析和阐述符号数据的意义)、调试型(根据故障制定排除方案)、预测型(根据现状预测指定对象未来可能的结果)、维修型(针对特定故障制定并实施规划方案)、设计型(按指定需求制作图样和方案)、规划型(根据指定目标制定行动方案)等。
专家系统的建立包含以下几个步骤:(1)初始专家知识库的设计:包括问题、知识、概念、形式、规则等多个概念的筹建;(2)开发和试验系y原型机;(3)改进与归纳专家知识库等。
专家系统的实现通常建立在大量的数据统计与人类专家提供的问题解决实例上,没有精确或统一的求解算法,因此也会造成一些局限性。在人工智能与计算机科学快速发展的今天,专家系统也逐渐更重视理论和基础研究,除了基于经验的理论,基于规则和模型的方法也将投入到实际运用中,未来的专家系统将更偏向协同式和分布式方向发展。
2.5机器学习
机器学习是指计算机自动获取新的推理算法和新的科学事实的过程,是计算机具有智能的基础。计算机的学习能力是人工智能研究史上的突出成就与重要进展,也是人工智能初步实现的重要标志。机器学习除了在人工智能领域有着重要应用,对于探索人类智慧的奥秘以及学习方法和机理都有着重要意义,机器学习的时代才刚刚开始,各种理论方法也正在逐步完善中,未来精彩可期。
人工智能的首次提出至今已有60年的历史,在这个循序渐进的过程中,无论是功能场景还是机器模式,都逐渐从单一到通用、从简单到复杂,表达方法也更多种多样。目前主要通过赋予机器产品一定的人类智能从而有效地提升机器工作效率及能力,未来的人工智能将更多的模拟人类生活环境及思维方式来设计出真正具有人类智能的高效人机系统。
3.1人工智能在各个行业的应用
作为辅助人类生产生活的重要工具,日趋成熟的智能机器人已经快速走进了人们的日常生活中,下面我们介绍几种常见的使用场景:(1)智能房屋和家居生活的构建:目前的智能停留在自动控制i域,通过用户指令来便捷的操控比如电视、窗帘、灯具、空调等等;而未来,人工智能的发展将根据你的日常行为了解你的习惯喜好,利用传感器和自动装置搜集用户的行为数据,通过机器学习和深度学习算法改造你所居住的环境。最终实现真正意义上的智能家居生活。(2)无人驾驶的智能汽车:主要通过导航和定位实现规定路线的行驶、通过激光测距、雷达感应和照相等技术,配合复杂的计算公式从而辨别和避让各种障碍,最终脱离人类操控的环境下自动完成发动、驾驶、刹车等动作。行驶的安全性和准确性在智能机器的帮助下其实更可靠,我们完全有理由相信未来自动驾驶将成为人们出行的新方式。(3)基于神经网络的新型翻译方式:在线翻译相信大多数人都不陌生,使用范围广普及率极高,但其准确性一直都是人们关注的焦点之一。谷歌翻译负责人表示将在部分功能上尝试使用深度学习技术,如果能顺利实施必将使得翻译准确性的研究取得实质性突破,而基于神经网络的翻译方式则将帮助计算机更好地模拟和理解人类思维,使得翻译结果更流畅合乎规范,也方便人们更好地理解。
人工智能的发展历程不算很长,但发展速度却特别迅猛。跟所有新兴的前沿学科一样,人工智能的发展中也经历了高潮和低谷时期。根据不同时期代表性人物和事件的发生,我们大致可以将整个过程分为以下几个阶段:
(1)1950年,举世闻名的“图灵测试”(图灵,英国数学家,1912―1954)首次发表于《计算机与智能》一文,即通过房间外的人和两个房间内的人和机器分别对话中,是否能区分人和机器从而判断出机器是否具有了人的智能。这是人类对于人工智能最初的概念。
(2)1956年,由香农、麦卡锡、朗彻斯特和明斯基共同发起的dartmouth学会于达特茅斯大学召开,会上首次提出“人工智能”一词,这是历史上第一次关于人工智能领域的研讨会,见证了人工智能学科研究的开端。
(3)1960年以来,生物进化领域逐渐建立起了遗传、策略和规划等算法。1992年计算智能由bezdek提出,计算智能对于生物进化学的探究有着重大意义,涵盖了模式识别、人工生命、神经网络、进化计算等多学科集合与交叉。
(4)上世纪90年代开始,专家系统逐渐兴起,对于专家知识库的不断改进以及基于规则和模型的协同式分布式专家系统将是未来使用的主要趋势。
(5)从1960年神经网络首次应用于自动控制的实施,到1965年人工智能启发式推理规则的方法引入,再到1977年运筹学理论中概念智能控制模式的成功借鉴,人工智能的发展也顺利引导了自动控制模式逐渐切换到了智能控制模式。
(6)从1956年ai概念的正式提出以来,人工智能领域已经取得了众多突破性的成就和进展,很多天马行空的想象也随着科技的进步在一代代科学工作者的不断努力下逐渐设计落实,人工智能已经从科学研究逐渐走向了人们的日常生活中,成为了当下最具潜力的多学科交叉的前沿科学。
从人工智能的提出到逐渐走入人们生活,人工智能的概念一经问世则得到了人们的普遍关注,甚至带动了语音识别、自然处理处理、机器学习、数据挖掘等一系列相关学科的发展和兴盛。人工智能领域中的创新和蓬勃发展是趋势也是必然,通过了解人工智能学科的发展历程及应用领域,我们大致可以推测出关于未来人工智能的一些方向:(1)机器学习和深度学习算法指导下更聪明更多样性更具智能的机器系统。(2)自然语言处理应用中更自然的人机互动交流。(3)机器学习时代更快速的数据处理分析策略。(4)各研发企业和机构对于人工智能先进技术更激烈的竞争和角逐。(5)超人工智能(artificialsuperintelligence,简称asi)时代下ai是否会走向失控给人们带来的微恐惧。
在短短60年的时间内,人工智能的快速发展已经从很大程度上改善和刷新了人们的生活方式。人工智能的深入研究和实现正在不断帮助我们探索这个世界、帮助我们搜寻信息应对各种各样的挑战。人工智能在逐渐强大的同时,有机遇也存在着巨大的挑战和技术瓶颈,距离人工智能时代的真正实现还有很长的路要走。而人工智能的不断更迭完善,是否能取得超越人类智力和认知的智能、是否会出现违背人类价值观的危险行为将是未来很长一段时间内需要研究的重要课题。
[2]张妮,徐文尚,王文文。人工智能技术发展及应用研究综述[j]。煤矿机械,2009,30(2):4-7.
[3]turingam.computingmachineryandintelligence[j]。mind,1950,59(236):433-460.
人工智能的应用论文篇三
在大多数数学科中存在着几个不同的研究领域,每个领域都有着特有的感兴趣的研究课题、研究技术和术语。在人工智能中,这样的领域包括自然语言处理、自动定理证明、自动程序设计、智能检索、智能调度、机器学习、专家系统、机器人学、智能控制、模式识别、视觉系统、神经网络、agent、计算智能、问题求解、人工生命、人工智能方法、程序设计语言等。
在过去50多年里,已经建立了一些具有人工智能的计算机系统;例如,能够求解微分方程的,下棋的,设计分析集成电路的,合成人类自然语言的,检索情报的,诊断疾病以及控制控制太空飞行器、地面移动机器人和水下机器人的具有不同程度人工智能的计算机系统。人工智能是一种外向型的学科,它不但要求研究它的人懂得人工智能的知识,而且要求有比较扎实的数学基础,哲学和生物学基础,只有这样才可能让一台什么也不知道的机器模拟人的思维。因为人工智能的研究领域十分广阔,它总的来说是面向应用的,也就说什么地方有人在工作,它就可以用在什么地方,因为人工智能的最根本目的还是要模拟人类的思维。参照人在各种活动中的功能,我们可以得到人工智能的领域也不过就是代替人的活动而已。哪个领域有人进行的智力活动,哪个领域就是人工智能研究的领域。人工智能就是为了应用机器的长处来帮助人类进行智力活动。人工智能研究的目的就是要模拟人类神经系统的功能。
近年来,人工智能的研究和应用出现了许多新的领域,它们是传统人工智能的延伸和扩展。在新世纪开始的时候,这些新研究已引起人们的更密切关注。这些新领域有分布式人工智能与艾真体(agent)、计算智能与进化计算、数据挖掘与知识发现,以及人工生命等。下面逐一加以概略介绍。
1、分布式人工智能与艾真体
分布式人工智能(distributedai,dai)是分布式计算与人工智能结合的结果。dai系统以鲁棒性作为控制系统质量的标准,并具有互操作性,即不同的异构系统在快速变化的环境中具有交换信息和协同工作的能力。
分布式人工智能的研究目标是要创建一种能够描述自然系统和社会系统的精确概念模型。dai中的智能并非独立存在的概念,只能在团体协作中实现,因而其主要研究问题是各艾真体间的合作与对话,包括分布式问题求解和多艾真体系统(multiagentsystem,mas)两领域。其中,分布式问题求解把一个具体的求解问题划分为多个相互合作和知识共享的模块或结点。多艾真体系统则研究各艾真体间智能行为的协调,包括规划、知识、技术和动作的协调。这两个研究领域都要研究知识、资源和控制的划分问题,但分布式问题求解往往含有一个全局的概念模型、问题和成功标准,而mas则含有多个局部的概念模型、问题和成功标准。
mas更能体现人类的社会智能,具有更大的灵活性和适应性,更适合开放和动
态的世界环境,因而倍受重视,已成为人工智能以至计算机科学和控制科学与工程的研究热点。当前,艾真体和mas的研究包括理论、体系结构、语言、合作与协调、通讯和交互技术、mas学习和应用等。mas已在自动驾驶、机器人导航、机场管理、电力管理和信息检索等方面获得应用。
2、计算智能与进化计算
计算智能(computingintelligence)涉及神经计算、模糊计算、进化计算等研究领域。其中,神经计算和模糊计算已有较长的研究历史,而进化计算则是较新的研究领域。在此仅对进化计算加以说明。
进化计算(evolutionarycomputation)是指一类以达尔文进化论为依据来设计、控制和优化人工系统的技术和方法的总称,它包括遗传算法(geneticalgorithms)、进化策略(evolutionarystrategies)和进化规划(evolutionaryprogramming)。它们遵循相同的指导思想,但彼此存在一定差别。同时,进化计算的研究关注学科的交叉和广泛的应用背景,因而引入了许多新的方法和特征,彼此间难于分类,这些都统称为进化计算方法。目前,进化计算被广泛运用于许多复杂系统的自适应控制和复杂优化问题等研究领域,如并行计算、机器学习、电路设计、神经网络、基于艾真体的仿真、元胞自动机等。
达尔文进化论是一种鲁棒的搜索和优化机制,对计算机科学,特别是对人工智能的发展产生了很大的影响。大多数生物体通过自然选择和有性生殖进行进化。自然选择决定了群体中哪些个体能够生存和繁殖,有性生殖保证了后代基因中的混合和重组。自然选择的原则是适者生存,即物竞天择,优胜劣汰。
直到几年前,遗传算法、进化规划、进化策略三个领域的研究才开始交流,并发现它们的共同理论基础是生物进化论。因此,把这三种方法统称为进化计算,而把相应的算法称为进化算法。
3、数据挖掘与知识发现
知识获取是知识信息处理的关键问题之一。20世纪80年代人们在知识发现方面取得了一定的进展。利用样本,通过归纳学习,或者与神经计算结合起来进行知识获取已有一些试验系统。数据挖掘和知识发现是90年代初期新崛起的一个活跃的研究领域。在数据库基础上实现的知识发现系统,通过综合运用统计学、粗糙集、模糊数学、机器学习和专家系统等多种学习手段和方法,从大量的数据中提炼出抽象的知识,从而揭示出蕴涵在这些数据背后的客观世界的内在联系和本质规律,实现知识的自动获取。这是一个富有挑战性、并具有广阔应用前景的研究课题。
从数据库获取知识,即从数据中挖掘并发现知识,首先要解决被发现知识的表达问题。最好的表达方式是自然语言,因为它是人类的思维和交流语言。知识表示的最根本问题就是如何形成用自然语言表达的概念。
机器知识发现始于1974年,并在此后十年中获得一些进展。这些进展往往与专家系统的知识获取研究有关。到20世纪80年代末,数据挖掘取得突破。越来越多的研究者加入到知识发现和数据挖掘的研究行列。现在,知识发现和数据挖掘已成为人工智能研究的又一热点。
比较成功的知识发现系统有用于超级市场商品数据分析、解释和报告的
coverstory系统,用于概念性数据分析和查寻感兴趣关系的集成化系统explora,交互式大型数据库分析工具kdw,用于自动分析大规模天空观测数据的skicat系统,以及通用的数据库知识发现系统kdd等。
4、人工生命
人工生命(artificiallife,alife)的概念是由美国圣菲研究所非线性研究组的兰顿(langton)于1987年提出的,旨在用计算机和精密机械等人工媒介生成或构造出能够表现自然生命系统行为特征的仿真系统或模型系统。自然生命系统行为具有自组织、自复制、自修复等特征以及形成这些特征的混沌动力学、进化和环境适应。
人工生命所研究的人造系统能够演示具有自然生命系统特征的行为,在“生命之所能”(lifeasitcouldbe)的广阔范围内深入研究“生命之所知”(lifeasweknowit)的实质。只有从“生命之所能”的广泛内容来考察生命,才能真正理解生物的本质。人工生命与生命的形式化基础有关。生物学从问题的顶层开始,把器官、组织、细胞、细胞膜,直到分子,以探索生命的奥秘和机理。人工生命则从问题的底层开始,把器官作为简单机构的宏观群体来考察,自底向上进行综合,把简单的由规则支配的对象构成更大的集合,并在交互作用中研究非线性系统的类似生命的全局动力学特性。
人工生命的理论和方法有别于传统人工智能和神经网络的理论和方法。人工生命把生命现象所体现的自适应机理通过计算机进行仿真,对相关非线性对象进行更真实的动态描述和动态特征研究。
人工生命学科的研究内容包括生命现象的仿生系统、人工建模与仿真、进化动力学、人工生命的计算理论、进化与学习综合系统以及人工生命的应用等。比较典型的人工生命研究有计算机病毒、计算机进程、进化机器人、自催化网络、细胞自动机、人工核苷酸和人工脑等。
(1)了解人工智能的概念和人工智能的发展,了解国际人工智能的主要流派和路线,了解国内人工智能研究的基本情况,熟悉人工智能的研究领域。
(2)较详细地论述知识表示的各种主要方法。重点掌握了状态空间法、问题归约法和谓词逻辑法,熟悉语义网络法,了解知识表示的其他方法,如框架法、剧本法、过程法等。
(3)掌握了盲目搜索和启发式搜索的基本原理和算法,特别是宽度优先搜索、深度优先搜索、等代价搜索、启发式搜索、有序搜索、a*算法等。了解博弈树搜索、遗传算法和模拟退火算法的基本方法。
(4)掌握了消解原理、规则演绎系统和产生式系统的技术、了解不确定性推理、非单调推理的概念。
(5)概括性地了解了人工智能的主要应用领域,如专家系统、机器学习、规划系统、自然语言理解和智能控制等。
(6)基本了解人工智能程序设计的语言和工具。
对现代社会的影响有多大?工业领域,尤其是制造业,已成功地使用了人工智能技术,包括智能设计、虚拟制造、在线分析、智能调度、仿真和规划等。金融业,股票商利用智能系统辅助其分析,判断和决策;应用卡欺诈检测系统业已得到普遍应用。人工智能还渗透到人们的日常生活,cad,cam,cai,cap,cims等一系列智能产品给大家带来了极大的方便,它还改变了传统的通信方式,语音拨号,手写短信的智能手机越来越人性化。
人工智能还影响了你们的文化和娱乐生活,引发人们更深层次的精神和哲学层面的思考,从施瓦辛格主演的《终结者》系列,到基努。里维斯主演的《黑客帝国》系列以及斯皮尔伯格导演的《人工智能》,都有意无意的提出了同样的问题:我们应该如何看待人工智能?如何看待具有智能的机器?会不会有一天机器的智能将超过人的智能?问题的答案也许千差万别,我个人认为上述担心不太可能成为现实,因为我们理解人工智能并不是让它取代人类智能,而是让它模拟人类智能,从而更好地为人类服务。
当前人工智能技术发展迅速,新思想,新理论,新技术不断涌现,如模糊技术,模糊--神经网络,遗传算法,进化程序设计,混沌理论,人工生命,计算智能等。以agent概念为基础的分布式人工智能正在异军突起,特别是对于软件的开发,“面向agent技术”将是继“面向对象技术”后的又一突破。从万维网到人工智能的研究正在如火如荼的开展。
(1)能够结合现在最新研究成果着重讲解重点知识,以及讲述在一些研究成果中人工智能那些知识被应用。
(2)多推荐一些过于人工智能方面的电影,如:《终结者》系列、《黑客帝国》系列、《人工智能》等,从而增加同学对这门课程学习的兴趣。
(3)条件允许的话,可以安排一些实验课程,让同学们自己制作一些简单的作品,增强同学对人工智能的兴趣,加强同学之间的学习。
(4)课堂上多讲解一些人工智能在各个领域方面的应用,以及着重阐述一些新的和正在研究的人工智能方法与技术,让同学们可以了解近期发展起来的方法和技术,在讲解时最好多举例,再结合原理进行讲解,更助于同学们对人工智能的理解。
熟读唐诗三百首,不会做诗也会吟。为大家整理的3篇人工智能在生活中应用的论文人工智能及其应用论文到这里就结束了,希望可以帮助您更好的写作人工智能的应用。
人工智能的应用论文篇四
人工智能(artificial intelligence),英文缩写为ai,也称机器智能。“人工智能”一词最初是在1956年的dartmouth学会上提出的。它是计算机科学、控制论、信息论、神经生理学、心理学、语言学等多种学科互相渗透而发展起来的一门综合性学科。从计算机应用系统的角度出发,人工智能是研究如何制造智能机器或智能系统来模拟人类智能活动的能力,以延伸人们智能的科学。
人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能与人类智能相似的方式做出反应的智能机器。人工智能的发展史是和计算机科学与技术的发展史联系在一起的,目前能够用来研究人工智能的主要物质手段以及能够实现人工智能技术的机器就是计算机,人工智能在21世纪必将为发展国民经济和改善人类生活做出更大的贡献。
事物的发展都是曲折的,人工智能的发展也是如此。人工智能的发展历程大致可以划分为以下五个阶段:
第一阶段:20世纪50年代,人工智能的兴起和冷落。人工智能概念在1956年首次提出后,相继出现了一批显著的成果,如机器定理证明、跳棋程序、通用问题s求解程序、lisp表处理语言等。但是由于消解法推理能力有限以及机器翻译等的失败,使人工智能走入了低谷。这一阶段的特点是重视问题求解的方法,而忽视了知识的重要性。
第二阶段:60年代末到70年代,专家系统出现,使人工智能研究出现新高潮。dendral化学质谱分析系统、mycin疾病诊断和治疗系统、prospectior探矿系统、hearsay—ii语音理解系统等专家系统的研究和开发,将人工智能引向了实用化。并且,1969年成立了国际人工智能联合会议(international joint conferences onartificial intelligence 即ijcai)。
第三阶段:80年代,随着第五代计算机的研制,人工智能得到了飞速的发展。日本在1982年开始了“第五代计算机研制计划”,即“知识信息处理计算机系统kips”,其目的是使逻辑推理达到数值运算那么快。虽然此计划最终失败,但它的开展形成了一股研究人工智能的热潮。
第四阶段:80年代末,神经网络飞速发展,。1987年,美国召开第一次神经网络国际会议,宣告了这一新学科的诞生。此后,各国在神经网络方面的投资逐渐增加,神经网络迅速发展起来。
第五阶段:90年代,人工智能出现新的研究高潮。由于网络技术特别是国际互连网技术的发展,人工智能开始由单个智能主体研究转向基于网络环境下的分布式人工智能研究。不仅研究基于同一目标的分布式问题求解,而且研究多个智能主体的多目标问题求解,将人工智能更面向实用。另外,由于hopfield多层神经网络模型的提出,使人工神经网络研究与应用出现了欣欣向荣的景象。
1、人工智能在管理系统中的应用
人工智能应用于企业管理的意义主要不在于提高效率,而是用计算机实现人们非常需要做,但工业工程信息技术是靠人工却做不了或是很难做到的事情。把人工智能应用于企业管理中,以数据管理和处理为中心,围绕企业的核心业务和主导流程建立若干个主题数据库,而所有的应用系统应该围绕主题数据库来建立和运行。也就是说,将企业各部门的数据进行统一集成管理,搭建人工智能的应用平台,使之成为企业管理与决策中的关键因子,这些正体现了人工智能在企业管理中的巨大价值。
2、人工智能在工程领域中的应用
人工智能在地质勘探、石油化工等工程领域也发挥着非常重要的作用。早在1978年,美国斯坦福国际研究所就研发制成矿藏勘探和评价专家系统“prospector”,该系统用于勘探评价、区域资源估值和钻井井位选择等,是工程领域的首个人工智能专家系统,其发现了一个钼矿沉积,价值超过1亿美元。
3、人工智能在技术研究中的应用
人工智能在电子技术领域的应用可谓由来已久。随着网络的迅速发展,网络技术的安全已经成了人们关心的重点,因此必须在传统技术的基础上进行网络安全技术的改进和变更,大力发展数据挖掘技术、人工免疫技术等高效的ai技术,开发更高级的ai通用与专用语言和应用环境以及开发专用机器,而人工智能技术则为其提供了一定的可能。
人工智能的近期研究目标在于建造智能计算机,用以代替人类去从事各种复杂的脑力劳动。正是根据这一近期研究目标,人们才把人工智能理解为计算机科学的一个分支。当然,人工智能还有它的远期研究目标,即探究人类智能和机器智能的基本原理,研究用自动机(automata)模拟人类的思维过程和智能行为。这个长期目标远远超出计算机科学的范畴,几乎涉及自然科学和社会科学的所有学科。如今,人工智能已经进入了21世纪,其必将为发展国民经济和改善人类生活做出更大的贡献。但是,从人工智能目前的发展现状来看,其研究也存在一定的问题,这些主要表现在以下三个方面:
1、宏观与微观隔离
一方面是 哲学、认知科学、思维科学和 心理学等学科所研究的智能层次太高、太抽象;另一方面是人工智能逻辑符号、神经 网络和行为主义所研究的智能层次太低。这两方面之间相距太远,中间还有许多层次尚待研究,目前还无法把宏观与微观有机地结合起来和相互渗透。
2、全局与局部割裂
人工智能是脑系统的整体效应,有着丰富的层次和多个侧面。但是,符号主义只抓住人脑的抽象思维特性;连接主义只模仿人的形象思维特性;行为主义则着眼于人类智能行为特性及其进化过程。这就导致了三者之间存在着明显的局限性。因此,必须从多层次、多因素、多维和全局观点来研究人工智能,才能克服上述局限。
3、理论与实际脱节
大脑的实际 工作,在宏观上已知道不少;但是智能的千姿百态,变幻莫测,复杂的难以理出头绪。在微观上,我们对大脑的工作机制知之甚少,似是而非,这也使我们难以找出规律。在这种背景下提出的各种人工智能理论,只 是部分人的主观猜想,能在某些方面表现出“智能”就已经算是相当的成功。
人工智能一直处于 计算机技术的前沿,其研究的理论和发现在很大程度上将决定计算机技术的 发展方向。人工智能研究与 应用虽取得了不少成果,但离全面推广应用还有很大的距离,还有许多问题有待解决,且需要多学科的研究专家共同合作。因此,要想从根本上了解人脑的结构和功能,完成人工智能的研究任务,就必须去寻找和建立更新的人工智能框架和理论体系,进而为人工智能的进一步发展奠定坚实的理论基础。我们坚信在不久的将来,人工智能技术的应用与发展必将会给人们的生活、工作和 教育等带来更大的。影响。
人工智能的应用论文篇五
目前,思政课的数字化程度远不能满足学生需要,高校亟须通过革新教学手段、创新教学形式,加强思政课建设、强化主流意识形态教育、占领话语主动权。为探索新时代信息技术与大学生思想政治教育深度融合的有效途径和方法,有效提升思政课程教学质量和教学效果,由上海工程技术大学马克思主义学院主办的“融合人工智能技术的高校思政课教学方法创新与实践研究”专题研讨会日前在线召开。
新技术对人文社会科学的改革提出新要求,以技术迭代推进教学形式迭代也成为新时代思政教学创新与发展的必然趋势。数字化赋能思政教育,不仅是技术与教学叠加,更是教育理念革新。上海工程技术大学马克思主义学院院长刘志欣表示,我们应当针对学生学习能力差异与多元需求,分层分类、精准施策,提升学生自主学习能力。同时,应当构建分段分层分类的内容生产模式,实现大中小幼等不同学段,知识层、实施层、分析层、评价层等不同序列层级,课堂、实践、网络等不同类型教学场域的内容生产有效衔接,实现思政教育教学分众式、全场域覆盖。
另外,还要加快数字化手段创新,实现在海量数据中快速提取有效思政信息,让受教育者感受到良好数字化体验,要有的放矢、精准定位,建立数字化应用长效机制,切实落实思政教育立德树人根本任务。应当在新型信息技术融入教学实践的过程中,彰显思政课内蕴的时代精神气质。西南大学马克思主义学院院长白显良认为,人工智能赋能高校思政课教学绝非“技术”与“思政课程”的简单相加,绝非简单的人机对话模式,而是依托技术撬动高校思政课改革,在技术赋能的过程中兼顾思政教育的“温度”。要在智能化、技术化过程中对传统教学模式进行有温度的“扬弃”,最终做到将教师从烦冗的日常工作中解放出来、将学生的内生动力激发出来、将学校的教学管理水平提升上来。
思政教育的核心目标在于实现价值引领、能力提升、知识传授,未来要在研判高校具体情况的基础上,形成思政课与新技术相融合的局面。上海工程技术大学党委书记李江认为,信息技术与思政教育的深度融合,将让上述三个核心目标实现指标具体化,从而推进对个体学生的差异化教学。另外,在深度融合的过程中,也要不断总结经验、完善经验,发现新的问题、解决新的问题。思政课与新技术的融合不仅有益于思政课教学改革,而且也有益于教师队伍的管理和建设。
浙江大学信息与电子工程学系教授虞露表示,新技术背景下的高校思政课教学改革要更加关注实时性和交互性,结合人工智能的思政课教学模式助力教学质量和水平实现整体提升。放眼未来,要从创新性、时代性和发展性角度,思考思政课教学与人工智能技术的融合问题。上海市中共党史学会会长忻平提出,科学技术与教育发展的趋势是交叉性和融合性。全球发生的大变革对全体思政教师提出了新要求。我们要增强理论自觉,坚守思政课的教学主阵地,在教学实践中实现遵循课堂规律、思政课教学规律和学生认知规律的三者统一。我们要从党和国家事业发展全局和战略高度出发,通过人工智能赋能思政课教学,培养担当民族复兴大任的时代新人。
人工智能的应用论文篇六
随着科学技术近年来突飞猛进的发展,计算机及相关智能化应用在各个领域中占据了越来越重要的地位。无论是日常生活、工业领域还是军事领域,使用计算机的场合越来越多,而且不仅仅局限于最初的科学计算。在这种前提下,人工智能的概念应运而生。人工智能是20世纪中叶科学技术所取得的重大成果之一。它的诞生与发展对人类文明产生了巨大的影响和效益,同时,人类是否最终成为机器人的奴隶,人类社会会被计算机取代等等问题也被人提出并广泛讨论,这也就引起了哲学意识与人工智能的理论探讨。
人工智能是20世纪中叶科学技术所取得的重大成果之一。人工智能是相对于人类智能而言的。它是指用机械和电子装置来模拟和代替人类的某些智能。人工智能也称“机器智能”或“智能模拟”。当今人工智能主要是利用电子技术成果和仿生学方法,从大脑的结构方面模拟人脑的活动,即结构模拟。
人脑是智能活动的物质基础,是由上百亿个神经元组成的复杂系统。结构模拟是从单个神经元入手的,先用电子元件制成神经元模型,然后把神经元模型连接成神经网络(脑模型),以完成某种功能,模拟人的某些智能。如1957年美国康乃尔大学罗森布莱特等人设计的“感知机”,1975年日本的福岛设计的“认知机”(自组织多层神经网络)等。
电子计算机是智能模拟的物质技术工具。它是一种自动、高速处理信息的电子机器。它采用五个与大脑功能相似的部件组成了电脑,来模拟人脑的相应功能。这五个部件是:(1)输入设备,模拟人的感受器(眼、耳、鼻等),用以接受外来的信息。人通过输入设备将需要计算机完成的任务、课题、运算步骤和原始数据采用机器所能接受的形式告诉计算机,并经输入设备把这些存放到存贮器中。(2)存贮器,模拟人脑的记忆功能,将输入的信息存储起来,供随时提取使用,是电子计算机的记忆装置。(3)运算器,模拟人脑的计算、判断和选择功能,能进行加减乘除等算术运算和逻辑运算。(4)控制器,人脑的分析综合活动以及通过思维活动对各个协调工作的控制功能,根据存贮器内的程序,控制计算机的各个部分协调工作。它是电脑的神经中枢。(5)输出设备,模拟人脑的思维结果和对外界刺激的反映,把计算的结果报告给操作人员或与外部设备联系,指挥别的机器动作。
以上五部分组成的电脑是电子模拟计算机的基本部分,称为硬件。只有硬件还不能有效地模拟和代替人脑的某些功能,还必须有相应的软件或软设备。所谓软件就是一套又一套事先编好的程序系统。
人工智能的产生是人类科学技术进步的结果,是机器进化的结果。人类的发展史是人们利用各种生产工具有目的地改造第一自然(自然造成的环境,如江河湖海、山脉森林等),创造第二自然(即人化自然,如人造房屋、车辆机器等)的历史。人类为了解决生理机能与劳动对象之间的矛盾,生产更多的财富,就要使其生产工具不断向前发展。人工智能,是随着科学技术的发展,在人们创造了各种复杂的机器设备,大大延伸了自己的手脚功能之后,为了解决迫切要延伸思维器官和放大智力功能的要求而产生和发展起来的。
从哲学上看,物质世界不仅在本原上是统一的,而且在规律上也是相通的。不论是机器、动物和人,都存在着共同的信息与控制规律,都是信息转换系统,其活动都表现为一定信息输入与信息输出。人们认识世界与在实践中获取和处理信息的过程相联系,改造世界与依据已有的信息对外界对象进行控制的过程相联系。总之,一切系统都能通过信息交换与反馈进行自己调节,以抵抗干扰和保持自身的稳定。因此,可以由电子计算机运用信息与控制原理来模拟人的某些智能活动。
从其它科学上来说,控制论与信息论就是运用系统方法,从功能上揭示了机器、动物、人等不同系统所具有的共同规律。以此把实际的描述形式化,即为现象和行为建立一个数学模型;把求解问题的方式机械化,即根据数学模型,制定某种算法和规则,以便机械地执行;把解决问题的过程自动化,即用符号语言把算法和规则编成程序,交给知识智能机器执行某种任务,使电子计算机模拟人的某些思维活动。所以,控制论、信息论是“智能模拟”的科学依据,“智能模拟”是控制论、信息论在实践中的最重要的实践结果。
人工智能是人类智能的必要补充,但是人工智能与人类智能仍存在着本质的区别:
爱好等 心理活动所构成的主观世界。而人类智能则是在人脑生理活动基础上产生的心理活动,使人形成一个主观世界。因此,电脑与人脑虽然在信息的输入和输出的行为和功能上有共同之处,但在这方面两者的差别是十分明显的。从信息的输入看,同一件事,对于两个智能机具有相同的信息量,而对于两个不同的人从中获取的信息量却大不相同。“行家看门道,外行看热闹”就是这个道理。从信息的输出方面看,两台机器输出的同一信息,其信息量相等。而同一句话,对于饱经风霜的老人和天真幼稚的儿童,所说的意义却大不相同。
(2)人工智能在解决问题时,不会意识到这是什么问题,它有什么意义,会带来什么后果。电脑没有自觉性,是靠人的操作完成其 机械的运行机能;而人脑智能,人的意识都有目的性,可控性,人脑的思维活动是自觉的,能动的。
(3)电脑必须接受人脑的指令,按预定的程序进行 工作。它不能输出未经输入的任何东西。所谓结论,只不过是输入程序和输入数据的逻辑结果。它不能自主地提出问题,创造性地解决问题,在遇到没有列入程序的“意外”情况时,就束手无策或中断工作。人工智能没有创造性。而人脑功能则能在反映规律的基础上,提出新概念,做出新判断,创造新表象,具有丰富的想象力和创造性。
(4)人工机器没有 社会性。作为社会存在物的人,其脑功能是适应社会生活的需要而产生和 发展的。人们的社会需要远远超出了直接生理需要的有限目的,是由社会的物质文明与精神文明的发展程序所决定的。因此,作为人脑功能的思维能力,是通过社会的 教育和训练,通过对历史上积累下来的 文化的吸收逐渐形成的。人的内心世界之所以丰富多彩,是由于人的社会 联系是丰富的和多方面的,人类智能具有社会性。所以要把人脑功能全面模拟下来,就需要再现人的思想发展的整个历史逻辑。这是无论多 么“聪明”的电脑都做不到的。随着科学技术的发展,思维模拟范围的不断扩大,电脑在功能上会不断向人脑接近。但从本质上看,它们之间只能是一条渐近线,它们之间的界限是不会清除的。模拟是近似而不能是等同。
从以上分析不难看出,人工智能与人脑在功能上是局部超过,而整体上不及。由于人工智能是由人造机器而产生的,因此,人工智能永远也不会赶上和超过人类智能。所谓“机器人将超过人奴役人”、“人将成为 计算机思想家的玩物或害虫,……保存在将来的动物园”的“预言”是不能成立的。因为,它抹煞了人与机器的本质差别与根本界限。然而,在现代科学认识活动中,没有人工智能,就不会有人类认识能力的突破性发展和认识范围的不断扩大。不仅电脑依赖于人,人也依赖于电脑。这就使得对人工智能的探讨以及对人机互补的关系的探讨成为一个新的课题。
人工智能的应用论文篇七
本文概要地阐述了人工智能的概念、发展历史、当前研究热点和实际应用及未来的发展趋势。
人工智能(artificialintelligence,简称ai),也称机器智能,它是计算机科学、控制论、信息论、神经生理学、心理学、语言学等多种学科互相渗透而发展起来的一门综合性学科。从计算机应用系统角度来看,人工智能是研究如何制造出智能机器或智能系统,实现模拟人类智能活动的能力,以延伸人们智能的科学。人工智能是一门交叉学科,是一门涉及心理学、认知科学、思维科学、信息科学、系统科学和生物科学等多学科的综合性技术学科,目前已在知识处理、模式识别、自然语言处理、博弈、自动定理证明、自动程序设计、专家系统、知识库、智能机器人等多个领域取得举世瞩目的成果,并形成了多元化的发展方向。
人工智能经历了三次飞跃阶段:第一次是实现问题求解,代替人完成部分逻辑推理工作,如机器定理证明和专家系统;第二次是智能系统能够和环境交互,从运行的环境中获取信息,代替人完成包括不确定性在内的部分思维工作,通过自身的动作,对环境施加影响,并适应环境的变化,如智能机器人;第三次是智能系统,具有类人的认知和思维能力,能够发现新的知识,去完成面临的任务,如基于数据挖掘的系统。
ai研究出现了新的高潮,这一方面是因为在人工智能理论方面有了新的进展,另一方面是因为计算机硬件突飞猛进地发展。随着计算机速度的不断提高、存储容量的不断扩大、价格的不断降低,以及网络技术的不断发展,许多原来无法完成的工作现在已经能够实现。目前人工智能研究的三个热点是:智能接口、数据挖掘、主体及多主体系统。
1。智能接口技术是研究如何使人们能够方便自然地与计算机交流。为了实现这一目标,要求计算机能够看懂文字、听懂语言、说话表达,甚至能够进行不同语言之间的翻译,而这些功能的实现又依赖于知识表示方法的研究。因此,智能接口技术的研究既有巨大的应用价值,又有基础的理论意义。目前,智能接口技术已经取得了显著成果,文字识别、语音识别、语音合成、图像识别、机器翻译及自然语言理解等技术已经开始实用化。
2。数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中提取隐含在其中的、人们事先不知道的、但是又潜在有用的信息和知识的过程。数据挖掘和知识发现的研究目前已经形成了三根强大的技术支柱:数据库、人工智能和数理统计。主要研究内容包括基础理论、发现算法、数据仓库、可视化技术、定性定量互换模型、知识表示方法、发现知识的维护和再利用、半结构化和非结构化数据中的知识发现及网上数据挖掘等。
3。主体系统是具有信念、愿望、意图、能力、选择、承诺等心智状态的实体,比对象的粒度更大,智能性更高,而且具有一定的自主性。主体试图自治、独立地完成任务,而且可以和环境交互,与其他主体通信,通过规划达到目标。多主体系统主要研究在逻辑上或物理上分离的多个主体之间进行协调智能行为,最终实现问题求解。多主体系统试图用主体来模拟人的理性行为,主要应用在对现实世界和社会的模拟、机器人及智能机械等领域。目前对主体和多主体系统的研究主要集中在主体和多主体理论、主体的体系结构和组织、主体语言、主体之间的协作和协调、通信和交互技术、多主体学习及多主体系统应用等方面。
1。专家系统
专家系统是一个具有大量专门知识与经验的程序系统,专家系统存储着某个专门领域中经过事先总结、分析并按某种模式表示的专家知识,以及拥有类似于领域专家解决实际问题的推理机制。专家系统的开发和研究是人工智能中最活跃的一个应用研究领域,涉及社会各个方面。
2。知识库系统
知识库系统也叫数据库系统,是储存某学科大量事实的计算机软件系统,它可以回答用户提出的有关该学科的各种问题。知识库系统的设计是计算机科学的一个活跃的分支。为了有效地表示、储存和检索大量事实,已经发展出了许多技术。但是在设计智能信息检索系统时还是遇到很多问题,包括对自然语言的理解,根据储存的事实演绎答案的问题、理解询问和演绎答案所需要的知识都可能超出该学科领域数据库所表示的知识。
3。物景分析
计算机视觉已从模式识别的一个研究领域发展为一门独立的学科。视觉是感知问题之一。整个感知问题的要点是形成一个精练的表示,以表示难以处理的、极其庞大的未经加工的输入数据。最终表示的性质和质量取决于感知系统的目标。机器视觉的前沿研究领域包括实时并行处理、主动式定性视觉、动态和时变视觉、三维景物的建模与识别、实时图像压缩传送和复原、多光谱和彩色图像的处理与解释等。机器视觉已在机器人装配、卫星图像处理、工业过程监控、飞行器跟踪和制导及电视实况转播等领域获得极为广泛的应用。
4。模式识别
模式识别就是识别出给定物体所模仿的标本或标识。计算机模式识别系统能够弥补计算机对外部世界感知能力低下的缺陷,使计算机能够通过感官接受外界信息,识别和理解周围环境。模式识别在二维的文字、图形和图像的识别方面已取得许多成果,在三维景物、活动目标的识别和分析方面是目前研究的热点,同时它还是智能计算机和智能机器人研究的十分重要的基础。此外,人工智能还在机器视觉、组合调度问题、自然语言理解、机器学习、博弈、定理证明等研究应用领域发挥着重要作用。可以说人工智能已深入各行各业,对人类社会作出了巨大的贡献。
5。机器人
机器人学所研究的问题,从机器人手臂的最佳移动到实现机器人目标的动作序列的规划方法,无所不包。尽管已经建立了一些比较复杂的机器人系统,但是现在工业上运行的机器人都是一些按预先编好的`程序执行某些重复作业的简单装置,大多数工业机器人是“盲人”。机器人和机器人学的研究促进了许多人工智能思想的发展。智能机器人的研究和应用体现出广泛的学科交叉,涉及众多课题。机器人已在工业、农业、商业、旅游业、空中和海洋及国防等多个领域获得越来越普遍的应用。
目前绝大多数人工智能系统都是建立在物理符号系统假设之上的。在尚未出现能与物理符号系统假设相抗衡的新的人工智能理论之前,无论从设计原理还是从已取得的实验结果来看,soar在探讨智能行为的一般特征和人类认知的具体特征的艰难征途上都取得了有特色的进展或成就,处在人工智能研究的前沿。上世纪80年代,以newella为代表的研究学者总结了专家系统的成功经验,吸收了认知科学研究的最新成果,提出了作为通用智能基础的体系结构soar。目前的soar已经显示出强大的问题求解能力。在soar中已实现了30多种搜索方法,实现了若干知识密集型任务(专家系统),如ri等。对于人工智能未来的发展方向,专家们通过一些前瞻性研究可以看出未来人工智能可能会向以下几个方面发展:模糊处理、并行化、神经网络及其情感。
目前,人工智能的推理功能已获突破,学习及联想功能正在研究之中,下一步就是模仿人类右脑的模糊处理功能和整个大脑的并行化处理功能。人工神经网络是未来人工智能应用的新领域。未来智能计算机的构成,可能就是作为主机的冯诺依曼型机与作为智能外围的人工神经网络的结合。研究表明:情感是智能的一部分,而不是与智能相分离的,因此人工智能领域的下一个突破可能在于赋予计算机情感能力。情感能力对于计算机与人的自然交往至关重要。
根据这些前瞻性研究我们也可以通过想象模拟勾画出人工智能未来发展的三个阶段。
1。融合时期(2010―2020年)
(1)用语言操纵和控制的智能化设备十分普及,像远程医疗这样的服务也更为完善。
(2)以计算机和互联网为基础的远程教育十分普及,在家就可以上大学。
(3)在身体里植入许多不同功能的芯片已不新奇。
(4)量子计算机和dna计算机会有更大发展,新材料不断问世。
(5)抗病毒程序可以防止各种非自然因素引发灾难。
2。自信时期(2020―2030年)
(1)智能化计算机和互联网既能自我修复,也能自行进行研究、生产产品。
(2)一些新型材料的出现,促使智能化向更高层次发展。
(3)有了高水准智能化技术的协助,人们“定居火星梦”可能性大增。
3。非神秘时期(2030―2040年)
(1)新的全息模式世界将取代原有几何模式的世界。
(2)人们对一些目前无法解释的自然现象会有更完善的解释。
(3)人工智能可以模仿人类的智能,因此会出现有关法律来规范这些行为。
人工智能一直处于计算机技术的前沿,在各个领域的应用都相当广泛,而且人工智能研究的理论和发现在很大程度上将决定计算机技术的发展方向。现在,已经有很多人工智能研究的成果进入到人们的日常生活之中,考虑到人工智能良好的发展和应用前景,我们应当加大力度对人工智能理论进行研究,让其更好地为人类服务。相信在不久的将来,人工智能理论将会有更大的突破,人工智能技术的发展会给人们的生活、工作和教育等带来更大的影响。
人工智能的应用论文篇八
随着数字智能技术的不断进步,人工智能技术在电气自动化控制系统中的应用也日益广泛。因此,在电气自动化控制系统中,为提高生产力水平、方便人们日常生活,需要加大对人工智能技术的应用研究,实现自动化体系的升级和发展需要。本文主要以人工智能技术的应用理论和现状入手,具体介绍了电气自动化控制中人工智能技术的应用对策,最终提高经济效益和社会效益。
电气自动化是一门实践性较强的应用性科学,主要研究电气系统的运行控制和研发。人类社会文明发展至今在科学技术方面的最大进步,主要是实现了系统中机械设备运行和控制的自动化和智能化。研究人工智能技术在电气自动化控制中的应用,有助于推动电气系统自动化的进一步发展,实现系统运行的智能化,使得其更加安全稳定,最终提高企业的生产效率,提高市场竞争力。
人工智能是一门新型的计算机科学,介于自然科学和社会科学边缘之间,研究对象主要是智能搜索、逻辑程序设计、自然语言问题和感知问题等。人工智能技术的本质就是模拟人类思维进行信息编码的过程,主要是结构模仿和功能模拟两种思维模拟方式。前者模拟形式主要是对人类大脑机制进行模拟,制造出类似人脑的机器设备;后者模拟主要是从人脑的功能角度出发,对人类大脑思维功能进行模拟。较为成功的典型事件就是现代的电子信息计算机,顺利地模拟人类大脑思维进行信息编码。
人工智能不是人的智能,更不是对人的智力功能的超越,其不同于人类大脑运行的显著特征主要有四个方面:是机械的无意识的物理过程;无社会性;不具备人类意识的创造力;功能是在人类大脑思维之后产生的。应用人工智能技术在电气自动化控制系统中,可以极大地节省人力资源,降低成本。同时,不控制目标模型就可以提高操作的准确度,降低误差。此外,这样还能保证产品的规范,提高性能。
近年来,人工智能技术得到了公众的高度重视,大多数的专业性高校和科研单位都对其在电气自动化系统中的应用开展了众多工作,现下的人工智能技术主要应用在电气设备的设计、事故及故障诊断和电气控制过程中的监控预警等工作。首先,在电气自动化系统中电气设备的设计方面,设备的结构设计较为繁琐复杂,涉及面较广,要求操作设计人员具备较多的实践经验。其次,在事故及故障诊断方面,人工智能技术可以利用模糊逻辑和神经网络等发挥优势,做好预警监控工作。最后,在电气控制过程中应用人工智能技术,主要依靠神经网络、模糊控制和专家系统三种方式,其中模糊控制应用较为普遍,以ai控制为主。
根据上部分分析的人工智能技术在电气自动化控制系统的应用现状,可知为实现电气自动化控制系统运行的高效性、提高人工智能技术的应用性,对策主要有以下三个方面:应用于电气设备设计、应用于事故及故障诊断和应用于电气控制过程。
3.1 应用于电气设备设计
根据诸多电气工程的实践证明,只有具备各相关专业的学科知识和技艺才能真正实现电气自动化控制系统的高效性,使其稳定运行。在电气设备的设计中应用人工智能技术,可以简化工作,降低人力成本。因此,企业拥有一批素质高的设计团队,这是电气自动化控制系统实现高效性的关键之一。此外,企业需要采取先进的人工智能技术进行电气设备的设计工作,尤其是结构设计工作。具体来说,人工智能技术在进行电气设备设计时主要是采用遗传算法升级计算机系统,全面提高产品的研发、设计和生产,优化设计产品。
3.2 应用于事故及故障诊断
电气故障诊断,指的是对电气自动化控制系统中机械设备的先关信息进行确定,判断技术和运行状况是否正常,如果出现异常,可以及时确定故障的具体内容和性质部位,找出故障原因并提出解决对策。而在电气设备运行时,不确定因素较多,使得系统容易出现各种类型的故障和事故,如果无法及时确定故障的性质和部位,将会给员工的人身安全带来威胁,企业也会承受较大的经济损失。因此,及时判断分析事故并做好故障诊断工作,是一项至关重要的工作。可以在传统的电气控制系统中,采取一些新型的.人工智能技术进行诊断。比如说,在诊断变压器的故障中,我们可以引入人工智能技术进行诊断,在节省人力物力的同时保证诊断的精确性,也可以在对发动机和发电机等电气机械设备进行事故诊断时引入人工智能技术,提高精确度,以达到良好的工作效果,实现企业的经济效益。
3.3 应用于电气控制过程
人工智能技术在电气自动化控制系统中起着关键性作用,是电气行业中的重要部分。实现电气自动化控制的人工智能化,有助于降低工作成本,提高工作效率,实现资源优化和最佳配置。在传统的电气自动化控制过程中,由于过程的繁琐复杂操作人员容易出现错误,而采取人工智能化技术则可以避免这些人为错误。人工智能技术主要采取神经系统的控制、专家系统的高效控制和模糊控制。现在最常用的技术方式是模糊控制,通过模糊控制借助直流电和交流电的传动最终实现电气自动化控制系统的智能化控制。模糊控制可以具体分为surgeno和mamdan两种表现形式,前者是后者的特殊情况,两者均用来调速控制。
在电气领域里,人工智能技术可以运用到日常操作中。我们可以利用家庭电脑实现对电气自动化控制系统的远程操作控制。具体来说,是通过采用人工智能技术预先设计好的既定程序控制操作过程,实现设备智能化,及时掌控全局。
综上所述,电气自动化控制中的人工智能技术的应用研究,既能实现工作效率的提高,还能降低运行成本,更好地实现电气系统的自动化智能化控制。此外,随着科学技术的飞速发展,人工智能技术在电气自动化控制中的应用面临着巨大的机遇和挑战,需要学者们不断研究和完善,使其得到更好的应用。
人工智能的应用论文篇九
图像识别技术是信息时代的一门重要的技术,其产生目的是为了让计算机代替人类去处理大量的物理信息。随着计算机技术的发展,人类对图像识别技术的认识越来越深刻。图像识别技术的过程分为信息的获取、预处理、特征抽取和选择、分类器设计和分类决策。文章简单分析了图像识别技术的引入、其技术原理以及模式识别等,之后介绍了神经网络的图像识别技术和非线性降维的图像识别技术及图像识别技术的应用。从中可以总结出图像处理技术的应用广泛,人类的生活将无法离开图像识别技术,研究图像识别技术具有重大意义。
1图像识别技术的引入
图像识别是人工智能科技的一个重要领域。图像识别的发展经历了三个阶段:文字识别、数字图像处理与识别、物体识别。图像识别,顾名思义,就是对图像做出各种处理、分析,最终识别我们所要研究的目标。今天所指的图像识别并不仅仅是用人类的肉眼,而是借助计算机技术进行识别。虽然人类的识别能力很强大,但是对于高速发展的社会,人类自身识别能力已经满足不了我们的需求,于是就产生了基于计算机的图像识别技术。这就像人类研究生物细胞,完全靠肉眼观察细胞是不现实的,这样自然就产生了显微镜等用于精确观测的仪器。通常一个领域有固有技术无法解决的需求时,就会产生相应的新技术。图像识别技术也是如此,此技术的产生就是为了让计算机代替人类去处理大量的物理信息,解决人类无法识别或者识别率特别低的信息。
1.1图像识别技术原理
其实,图像识别技术背后的原理并不是很难,只是其要处理的信息比较繁琐。计算机的任何处理技术都不是凭空产生的,它都是学者们从生活实践中得到启发而利用程序将其模拟实现的。计算机的图像识别技术和人类的图像识别在原理上并没有本质的区别,只是机器缺少人类在感觉与视觉差上的影响罢了。人类的图像识别也不单单是凭借整个图像存储在脑海中的记忆来识别的,我们识别图像都是依靠图像所具有的本身特征而先将这些图像分了类,然后通过各个类别所具有的特征将图像识别出来的,只是很多时候我们没有意识到这一点。当看到一张图片时,我们的大脑会迅速感应到是否见过此图片或与其相似的图片。其实在“看到”与“感应到”的中间经历了一个迅速识别过程,这个识别的过程和搜索有些类似。在这个过程中,我们的大脑会根据存储记忆中已经分好的类别进行识别,查看是否有与该图像具有相同或类似特征的存储记忆,从而识别出是否见过该图像。机器的图像识别技术也是如此,通过分类并提取重要特征而排除多余的信息来识别图像。机器所提取出的这些特征有时会非常明显,有时又是很普通,这在很大的程度上影响了机器识别的速率。总之,在计算机的视觉识别中,图像的内容通常是用图像特征进行描述。
1.2模式识别
模式识别是人工智能和信息科学的重要组成部分。模式识别是指对表示事物或现象的不同形式的信息做分析和处理从而得到一个对事物或现象做出描述、辨认和分类等的过程。
计算机的图像识别技术就是模拟人类的图像识别过程。在图像识别的过程中进行模式识别是必不可少的。模式识别原本是人类的一项基本智能。但随着计算机的发展和人工智能的兴起,人类本身的模式识别已经满足不了生活的需要,于是人类就希望用计算机来代替或扩展人类的部分脑力劳动。这样计算机的模式识别就产生了。简单地说,模式识别就是对数据进行分类,它是一门与数学紧密结合的科学,其中所用的思想大部分是概率与统计。模式识别主要分为三种:统计模式识别、句法模式识别、模糊模式识别。
2图像识别技术的过程
既然计算机的图像识别技术与人类的图像识别原理相同,那它们的过程也是大同小异的。图像识别技术的过程分以下几步:信息的获取、预处理、特征抽取和选择、分类器设计和分类决策。
信息的获取是指通过传感器,将光或声音等信息转化为电信息。也就是获取研究对象的基本信息并通过某种方法将其转变为机器能够认识的信息。
预处理主要是指图像处理中的去噪、平滑、变换等的操作,从而加强图像的重要特征。
特征抽取和选择是指在模式识别中,需要进行特征的抽取和选择。简单的理解就是我们所研究的图像是各式各样的,如果要利用某种方法将它们区分开,就要通过这些图像所具有的本身特征来识别,而获取这些特征的过程就是特征抽取。在特征抽取中所得到的特征也许对此次识别并不都是有用的,这个时候就要提取有用的特征,这就是特征的选择。特征抽取和选择在图像识别过程中是非常关键的技术之一,所以对这一步的理解是图像识别的重点。
分类器设计是指通过训练而得到一种识别规则,通过此识别规则可以得到一种特征分类,使图像识别技术能够得到高识别率。分类决策是指在特征空间中对被识别对象进行分类,从而更好地识别所研究的对象具体属于哪一类。
3图像识别技术的分析
随着计算机技术的迅速发展和科技的不断进步,图像识别技术已经在众多领域中得到了应用。20xx年2月15日新浪科技发布一条新闻:“微软最近公布了一篇关于图像识别的研究论文,在一项图像识别的基准测试中,电脑系统识别能力已经超越了人类。人类在归类数据库imagenet中的图像识别错误率为5.1%,而微软研究小组的这个深度学习系统可以达到4.94%的错误率。”从这则新闻中我们可以看出图像识别技术在图像识别方面已经有要超越人类的图像识别能力的趋势。这也说明未来图像识别技术有更大的研究意义与潜力。而且,计算机在很多方面确实具有人类所无法超越的优势,也正是因为这样,图像识别技术才能为人类社会带来更多的应用。
3.1神经网络的图像识别技术
神经网络图像识别技术是一种比较新型的图像识别技术,是在传统的图像识别方法和基础上融合神经网络算法的一种图像识别方法。这里的神经网络是指人工神经网络,也就是说这种神经网络并不是动物本身所具有的真正的神经网络,而是人类模仿动物神经网络后人工生成的。在神经网络图像识别技术中,遗传算法与bp网络相融合的神经网络图像识别模型是非常经典的,在很多领域都有它的应用。在图像识别系统中利用神经网络系统,一般会先提取图像的特征,再利用图像所具有的特征映射到神经网络进行图像识别分类。以汽车拍照自动识别技术为例,当汽车通过的时候,汽车自身具有的检测设备会有所感应。此时检测设备就会启用图像采集装置来获取汽车正反面的图像。获取了图像后必须将图像上传到计算机进行保存以便识别。最后车牌定位模块就会提取车牌信息,对车牌上的字符进行识别并显示最终的结果。在对车牌上的字符进行识别的过程中就用到了基于模板匹配算法和基于人工神经网络算法。
3.2非线性降维的图像识别技术
计算机的图像识别技术是一个异常高维的识别技术。不管图像本身的分辨率如何,其产生的数据经常是多维性的,这给计算机的识别带来了非常大的困难。想让计算机具有高效地识别能力,最直接有效的方法就是降维。降维分为线性降维和非线性降维。例如主成分分析(pca)和线性奇异分析(lda)等就是常见的线性降维方法,它们的特点是简单、易于理解。但是通过线性降维处理的是整体的数据集合,所求的是整个数据集合的最优低维投影。经过验证,这种线性的降维策略计算复杂度高而且占用相对较多的时间和空间,因此就产生了基于非线性降维的图像识别技术,它是一种极其有效的非线性特征提取方法。此技术可以发现图像的非线性结构而且可以在不破坏其本征结构的基础上对其进行降维,使计算机的图像识别在尽量低的维度上进行,这样就提高了识别速率。例如人脸图像识别系统所需的维数通常很高,其复杂度之高对计算机来说无疑是巨大的“灾难”。由于在高维度空间中人脸图像的不均匀分布,使得人类可以通过非线性降维技术来得到分布紧凑的人脸图像,从而提高人脸识别技术的高效性。
3.3图像识别技术的应用及前景
计算机的图像识别技术在公共安全、生物、工业、农业、交通、医疗等很多领域都有应用。例如交通方面的车牌识别系统;公共安全方面的人脸识别技术、指纹识别技术;农业方面的种子识别技术、食品品质检测技术;医学方面的心电图识别技术等。随着计算机技术的不断发展,图像识别技术也在不断地优化,其算法也在不断地改进。图像是人类获取和交换信息的主要来源,因此与图像相关的图像识别技术必定也是未来的研究重点。以后计算机的图像识别技术很有可能在更多的领域崭露头角,它的应用前景也是不可限量的,人类的生活也将更加离不开图像识别技术。
4总结
图像识别技术虽然是刚兴起的技术,但其应用已是相当广泛。并且,图像识别技术也在不断地成长,随着科技的不断进步,人类对图像识别技术的认识也会更加深刻。未来图像识别技术将会更加强大,更加智能地出现在我们的生活中,为人类社会的更多领域带来重大的应用。在21世纪这个信息化的时代,我们无法想象离开了图像识别技术以后我们的生活会变成什么样。图像识别技术是人类现在以及未来生活必不可少的一项技术。
人工智能的应用论文篇十
摘要:随着工业领域的迅猛发展,自动化、智能化被当做是电气控制领域的重点发展趋势。为了让电气自动化控制中人工智能技术发挥更大的作用,本文概括了人工智能技术,阐述了人工智能技术在电气自动化领域的使用实例,以此期望对有关工作人员能有帮助。
关键词:电气控制;自动化控制;人工智能
近年来随着国内外人工智能研究的兴起与发展,越来越多的传统领域开始思考能否在自己的产品生产线上使用人工智能技术,所以它的实际使用领域广泛。现代社会的发展离不开人工智能技术的使用,特别是在现代工业的领域,在方法上需要依靠最新的人工智能技术为支持,但要做到让人工智能技术在电气自动化控制中更好的发挥作用,我们先要知道人工智能技术到底是什么样的技术[1]。
1人工智能技术的概述
国内的创新热潮近几年正在蓬勃的发展,各种新技术竞相展现,人工智能技术也逐渐成熟了,而且它在当今社会中的使用也更加宽泛。人工智能技术的建立,不仅要有计算机技术知识进行有效支持,还与其他学科知识息息相关,人工智能技术通俗上讲就是生产出可以替代人类来工作的智能化机器人,将来许多岗位都可以由机器来替代人类工作[2]。随着科技的日新月异,科学家们已经成功地生产出了类似于人脑一样思考的人工大脑芯片,并将这种新技术命名为人工智能技术。在人们平常的生产活动中,已有非常多的范围都使用了人工智能技术,而且它们的现实使用效率非常高。
2人工智能技术在电气自动化中的应用广阔前景
电气自动化中应用人工智能技术,不仅在极大程度上让工人更好的操控电气自动化设备,还极大地减少了电气自动化的使用成本,这说明发展人工智能技术的前景是非常有利的。
2.1电气自动化控制中加入人工智能技术的重要性
人工智能技术同人类的工作方式相比有许多人类不能替代的优势,例如人工智能对于数字和程式非常敏感,可以长时间的集中于处理同一个问题,这些优势可以帮助人类解决一些繁复的工作,所以电气自动化控制中应用人工智能技术后,它一定可以为人类创造更大的价值[3]。
2.2人工智能技术在电气自动化控制中的应用优势
因为电气设备的复杂性和连贯性的要求,所以对电气设备的设计人员就提出了非常高的专业要求,除了具备非常扎实的专业知识以外,还要求他们的设计最好可以结合最新的科学技术。在电气自动化控制中使用人工智能技术之后,会带来很多便利性,具体表现为下面这4点:(1)数据的收集与运算都能利用人工智能技术来实现,因为拥有了这一作用,以此一来就能对电气设备的每样数值开展收集,还可立即对数据进行运算,因此能让电气自动化的现实管控效果得以大范围提高。(2)人工智能技术可实现连续的监管并实现必要的报警。人工智能技术能同步监控电气系统中主要设备的模拟数据值。(3)人工智能管控的操纵监控系统较高效。能够通过鼠标、键盘来对电气设备实行自动化管控,因为使用管控流程就能够实现同步并网带负荷操纵,以此以来不仅能够大范围减少工作人员的劳动时间,还能让控制效率得以提升,这同目前工业发展的`现实需要非常符合[4]。(4)差错记载功能也是人工智能技术拥有的独特特点,人类可以更好的运用这个技术来监测每一个运行环节中出现的点滴差池,以此来调试设备使其达到最佳的状态,这从根本上提高了电气设备的运行效率和使用安全度,使其更好的为人类服务。
3人工智能技术在电气自动化中的应用分析
因为目前从根本上升级了人工智能技术,加上它技术的逐渐完备,越来越多的电气设备开始同人工智能技术挂钩,为了更加直观的介绍人工智能设备的特点与技术属性,笔者主要对电气自动化设备中人工智能技术的使用和电气管控流程中人工智能技术的使用开展了辨析。
3.1人工智能技术在电气自动化设备中的应用
电气自动化系统有极大的繁杂性,它主要牵扯到许多范围与科目,这就对操控电气自动化设备的员工提出了很高的要求,他们应该拥有很高的职业素养,而且还要有充足的知识储备。因为电气自动化体系相当繁杂,所以在现实操控中的效率性要加强,这样才能极大程度地降低因为不合理使用,导致出现非常规错误,有时更可能导致安全事故等。这些问题的解决都可凭借人工智能技术来达成,就人工智能技术自身来看,其系统中心主要是计算机系统,经由编辑每种操控系统,能够使计算机控制中的智能管控得以更好的施行[5]。
3.2人工智能技术在电气控制过程中的应用
就电气自动化的管控流程来看,人工智能可以帮助人类更好的控制电气设备。在电气设备的控制系统中,引入人工智能的现金技术后,能让实际工作操作效果在很大范围上得以提升,还能使得整个操作过程实现无人化监管,这样一来达到了企业节约成本的目的,尤其是不用再去花费大笔的人工费用。除此之外就从整个控制过程来看,人工智能技术可以实现同多台设备的同时控制,专家体系、模拟操控和神经网络操控是其首要应用的人工智能系统[6]。
4总结
科技的发展让人类的生活更加便利与美好,人工智能技术的发挥在那越来越推进了现代工业的更好发展。因为人工智能技术具备相当多的优点,它是这些年来发展起来的一门新兴高科技技术,它在实际应用中有巨大的使用效率,不仅在电气自动化控制中,加入人工智能技术后,极大程度上提高了电气设备的控制度,让它能更好的的服务人类生产活动;同时电气设备上结合了人工智能技术,让电气自动化设备的操控系统变得更加简洁,提高了员工操控效率;降低了企业的人力物力成本,使得生产流程更加科学、连贯,所以大力发展人工智能技术与电气自动化的结合是非常有必要的研究。
参考文献:
[5]黄开平.高级项目中自动化系统的应用[j].电气时代,20xx(02).
人工智能的应用论文篇十一
摘要:在航空业的发展中,人工智能技术起着积极的促进作用。本文介绍了空中交通管理中的人工智能理论及方法运用,为优化空中交通流量管理系统提供理论依据,更好地服务于空管系统。
关键词:人工智能;空中交通;管理
人工智能,即artificialintelligence,是计算机科学的一个分支,研究对人的意识及思维的信息过程的模拟并对其进行延伸和扩展,通过了解人类智能,研究出类似的反应的智能机器。随着计算机技术的发展,人工智能越来越多的运用于民航的各个方面,如飞行间隔的控制,空中流量的预测,飞行冲突的调配。但随着民航业的飞速发展,飞行流量日益增大,需要将人工智能技术有效运用于空中交通流量管理中,建立人工智能辅助系统,扩大空域容量,优化空中交通流量,提升空管秩序。
1空中交通流量管理探讨
在空中交通流量管理(airtrafficflowcontrolmanagement)中,空中交通流量是指单位时间和空间通过的航空器数量。通过优化空中交通流量,将空中交通管制服务与机场、航路有效结合,减少延误,提高机场和空域的利用率。从时间角度上,空中交通流量管理可以分为航路流量管理和机场终端区流量管理两部分,从时间上又可划分为战略流量管理,预战术流量管理和战术流量管理。当航空器数量饱和时就要对航空器进行流量控制,目前的常用的控制措施如下:1)地面等待,最主要的空中交通流量管理措施,本着地面让空中的原则,对地面航空器的起飞时间进行限制;2)空中等待,航空器在航路上或终端区规定的等待点或没有冲突的临时等待点进行盘旋等待;3)更改航路等待,当航路航线的容量饱和时,航空器可以通过选择其他航路航线;4)控制航路间隔,通过对航空器进入空域的间隔进行限制,来达到流量管理的目的,吸收部分拥挤的流量。
2人工智能的应用研究探讨
agent在人工智能的研究中,指能自主活动的软件或者硬件实体,目前国内普遍翻译为智能体。在人工智能中,设计关键智能体,对于研究人工智能的应用是非常重要的。在空中交通流量管理中,设计如下关键智能体:航班智能体、航路智能体和机场终端区智能体。航班智能体的属性有高度、速度、上升/下降率、起飞机场、目的地等。航班智能体可以与区域内或终端区的其他航班智能体建立通信,通过获取航班信息和逻辑判断,结合周围环境与自身状况,指导控制自身行为。如果航班智能体需要做出相应的调整如改变高度航向等,需要给上级的航路智能体或机场终端区智能体发出申请,上级智能体批准后,航班智能体才能采取相应的调整,作出相应的控制行为,才能通过交互环境反馈相应结果。在实际工作中,这个过程是通过空中交通管制员指挥航空器实现的。空中交通管制员在实际指挥工作中,需要结合当时的空中交通状况和自身的经验知识。航路智能体的主要属性有航路的`高度、宽度、容量等。航路智能体需要对航班智能体进行指挥,管理航路上的智能体,同时与其他航路智能体和机场终端区智能体进行通信,对航班智能体进入和离开航路的时机进行协调,记录流量信息并报告给上级流量管理部门,接收上级智能体的指令。在航班智能体进入航路之前首先要进行容量评估。通过评估后的航班智能体回收到航路智能体发出的放行许可才能进入航路。如果没有通过容量评估,则要向上级智能体发送将流量限制的申请,发布流量限制后航路就不能批准航班智能体的进入,通过减少航班智能体的数量,控制航路交通流量。机场终端区智能体:在实际工作中,机场终端区的航班管理包括管制指挥、流量控制、地面场面监视、进离场等,难度较大。终端区智能体(通常运行中为塔台管制)首先要处理所收到的信息,如天气雷达信息、地面运行信息和情报信息等等,结合已有知识开展机场的容量评估。如遇到低云低能见度、雷雨等天气时可以调低终端区/机场容量,对进入离开的航空器进行限制。通过容量评估,塔台会给航班智能体一个slottime,航班智能体按照塔台的slottime起飞或降落,从而达到流量控制。如果没有通过容量评估,则需要通过上级的智能体批准,发布流量控制,限制终端区的流量,通过控制进入或离开的航空器数量达到流量限制的目的。机场终端区智能体(塔台)对终端区的航空器进行管理,还需要与航路智能体和平级的终端去智能体进行通信,对航班进出的slottime进行协调,并将流量管理信息报告给上级流量管理部门,接收上级智能体的命令。如果出现拥堵机场终端区智能体需要通过一些措施来管理流量,如分配slottime、指挥航空器地面或空中盘旋等待。
3结论
综上所述,以往在模拟空中交通流量进行研究的时候,首先制定流量控制信息,再在系统模拟航班飞行计划。这样的模拟过程不能解决容量告警问题。如果流量控制不合理,只能重新设定流控信息,再次进行模拟,因而加大模拟过程的工作量。而通过智能体的运用,可以在模拟中不断调整智能体来模拟空中流量,增加了模拟流量过程中的灵活性,将人工智能运用于模拟中,借助智能体来模拟空中流量,可以更好的分析空中交通流量问题。
参考文献
[2]甘鑫鑫基于多agent的空中交通协同流量管理研究[j].科学与财富,20xx(30):278.
[5]陈言俊,刘甜甜.人工智能与机器人.[6]黄昱斌.基于multi-agent的空中交通流量的探究[j].科技创新与应用,20xx(14):57-57.
人工智能的应用论文篇十二
人工智能是一门交叉性的前沿学科,也是一门极富挑战性的科学。人工智能技术和理论在一定程度上代表了信息技术的发展方向,所以对其人才的培养也是重中之重。
人工智能;信息技术;智能教育
人工智能是多种学科相互渗透而发展起来的交叉性学科,其涉及计算机科学、信息论、数学、哲学和认知科学、心理学、控制论、不定性论、神经生理学、语言学等多种学科。随着科技的飞速发展和人工智能技术应用的不断扩延,其涉及的学科领域将愈来愈多,它已和人们的学习、生活息息相关,时代和社会需要此方面的大量人才。在高中信息技术课中开设人工智能初步模块是十分必要的,本文拟从其发展现状、存在问题等几个方面对我国高中信息课程中人工智能教育做一下探讨。
(1)人工智能定义
人工智能(ai,artificial intelligence)是计算机科学的一个分支,己成为一门具有广泛应用的交叉学科和前沿学科。它研究如何用计算机模拟人脑所从事的推理、证明、识别、理解、设计、学习、规划以及问题求解等思维活动,来解决人类专家才能解决的复杂问题,例如咨询、探测、诊断、策划等。
(2)开设人工智能课程的意义
现实世界的问题可以按照结构化程度划分成三个层次:结构化问题,是能用形式化(或称公式化)方法描述和求解的一类问题;非结构化问题难以用确定的形式来描述,主要根据经验来求解;半结构化问题则介于上述两者之间。
将人工智能课程引入到我国现行的教育中,可以让学生在了解人工智能基本语言特征、理解智能化问题求解的基本策略过程中,体验、认识人工智能技术的同时获得对非结构化、半结构化问题解决过程的了解,从而使学生了解计算机解决问题方法的多样性,培养学生的多种思维方式,更好的解决现实问题。
目前,该学科的教育正处于摸索阶段,由于中学信息技术师资水平、学校硬软件设备等条件的制约,我国尚未在中学专门开设独立的人工智能类课程,internet上与人工智能教育相关的中文信息资源也十分贫乏,在教学环境上大致存在以下问题:
(一)教学条件参差不齐
开设好人工智能课程,就要求安排更多的实践课程和活动来增强课程的趣味性,让广大师生切实体会到人工智能对我们生活的影响。这些活动大部分要求上机操作或利用网络资源来学习交流,这就对教学条件提出了较高的要求,尤其是一些偏远农村、条件相对落后的中学在开设人工智能课程上存在很大困难。
(1)对硬件性能的要求
人工智能课程中有较多的实践课程需要老师和学生利用网络资源,使用计算机进行操作。这就需要学校配备计算机网络教学机房,若其性能较差,会延长学生在线进行人机对话的时间,一旦遇到网络堵塞,可能连网页都打不开,这不仅浪费了仅有的'上课时间,而且大大降低了学生的学习兴趣。
(2)对软件性能的要求
为了降低成本,学校可以利用互联网上提供的免费下载软件和免费在线教学网站等进行实践教学,可大大减少自研开发软件和软件维护的费用。但一旦遇到网络不通、网络拥挤或在线网站停止服务等情况,将无法使用网络资源进行教学,可见,软件的依赖性较强也存在很大的问题。
(二)对人工智能科学的认识不足
(1)学生的认识误区
提及人工智能,给大多数学生的感觉是一门神秘、遥不可及的科学。很多学生认为人工智能技术是很高深的科学,离我们现实生活有一定距离,研究和接触这门科学是少数科学家的事情,从而对该科学的关注程度不高。其实,人工智能学科是一门渐渐成长的科学,它将应用在我们生活的方方面面。我们应在教学中让学生多去体验人工智能的魅力所在,吸引更多对该学科感兴趣的人去研究和使用它。
(2)教师对人工智能学科开设存在偏见
一些从事该学科教学的教师没有接触过人工智能方面的知识,在接触过后被其中深奥难理解的知识所吓倒,认为即使开设了这门课程也不易被同学们所接受;而一些在大学接触过人工智能课程的教师则认为,其理论枯燥乏味,知识内容艰深,不适合放在高中开设。
(三)一线教师经验不足
在我国大学教育中,开展人工智能专业课程的大学为数不多,师范类院校更是少之又少。从事人工智能领域的专业人才输出少,所以,缺乏具备一定知识结构、有专业素养的教师来担任高中信息技术课中人工智能课程的教育工作。绝大多数的一线教师并没有接受过人工智能课程的专业培训,在授课内容上的着重点掌握不好,教学目标不够明确;在授课形式上也没有前人的经验可寻,这就给一线教师带来了极大的挑战。
(一)加强软、硬件建设
在学校条件允许的条件下,应加大硬件设施的投入,改善网络传递信息的效率,同时加强软件资源建设。鼓励师生上网搜索更多适合ai教学的网站,教师应整理出和ai相关的趣味小故事、电影、光盘等和教材相关的素材,以便更好的配合硬件教学。
(二)端正认识,增强支持
作为教师要树立对高中人工智能选修课程的正确认识。通过对课标中规定的相关内容的深入了解和学习,克服对人工智能的神秘感或恐惧感,理性而客观的看待人工智能技术及其应用,明确在高中开设该课程的目的。同时,教师也不能因为该课程的“选修”性质,从而轻视该课程的作用。
作为学生不应该仅仅看见这门课程的娱乐趣味性,应把一些重要的技术理论知识重视起来,不能过分的放松自己而偏离了我们的教学目标。家长也应该支持和赞同学生选择该课程,不能应认识不到这门课程的作用、怕耽误学生主干课的学习而反对学生积极参与。
校方领导也不应条件限制就轻易放弃这门课程的开设,应给予积极的配合。社会各界也应加强舆论与正确引导,让更多的人们认识人工智能并予以肯定。
总之,人工智能是一门逐渐成长的科学,开设好该课程需要广大教育工作者和校方领导不断努力,互相交流,共同克服困难。
参考文献:
[1]张剑平.人工智能技术与“问题解决”[j].中小学信息技术教育,2003(10).
[2]段东辉.浅谈信息技术课程中人工智能教育[j].新乡教育学院学报,第19卷第二期2006,6.
[3]教育部.普通高中技术课程标准(实验稿).人民教育出版社,2003年4月.
[4]张家华,张剑平.开展高中人工智能教学存在的问题及对策[j].
人工智能的应用论文篇十三
摘要:社会在发展、时代在进步,信息技术水平也在不断的提高,在此时代背景下,越来越多的技术手段开始在各个领域渗透和融入,而科技的进步,使得各类的先进技术衍生出来,其中的人工智能技术可谓是典型代表,许多的技术人员意识到人工智能技在计算机中的发展和应用,所以对人工智能技术在计算机中的应用和发展这一课题进行分析具有一定的必然性,以下内容是个人的见解。
关键词:人工智能技术;计算机;发展;应用;
受科学技术手段的推动性影响,人类文明的发展步伐日渐加快,现阶段,已经基本步入到了信息化的时代背景下,计算机在当下已经是各行各业中常见的辅助工具,甚至许多行业的发展已经视计算机技术为基本的动力支撑,同时增加了技术应用的要求,在此社会不断发展的趋势下,只有使得计算机技术逐步朝向着个性化以及智能化的方向发展,方可体现人工智能技术手段的作用,并为计算机技术手段的长远化发展提供相应的保障。
一、人工智能技术的发展
人工智能一般指的是借助计算机技术手段,将其作为有效的基础,对人类的行为以及思想进行模拟的综合学科,它所涉及的行业较多,比如,心理学以及哲学等等均为典型,而后实现对人体触觉或是感知方面的模拟,通常会将其安装到机械设备之上,并使得机器更具智能化特色,借助智能化处理方式或是智能化编程等方法,逐步实现自动化操作、智能化运行,对人类难以完成的、高难度的、威胁较大的工作进行有效处理,极大的提高工作效率,进而保证人们的人身财产安全。
现阶段,人工智能技术已经初步取得了一定的成就,相关的专家学者在研究和探讨以后,也发现了人工神经网络体系构建的发展方向,希望借此完成工程项目设计工作,实现软件系统和智能化模块的有机结合,对软件的性能进行改良,进而符合用户的实际需求,在基本达到了人工智能的目标以后,还需要对用户界面进行优化和改良,最终为人工智能技术的发展和更新提供更多的保障。
二、人工智能技术手段在计算机中的应用
(一)网络安全方面的应用
最近几年来,人工智能技术的运用已经成为未来几年来许多领域的发展趋向,它的利用将计算机网络的优势全方位的体现,值得一提的是,它在计算机网络安全方面所占据的地位在日渐提高,同时其应用价值也不断凸显。
而后,入侵检测也是计算网络安全工作落实的主要工作,这一过程中,防火墙可发挥自身的作用,这一过程中它的运行效果,将会给整体的系统运作安全性带来极大的影响,可通过数据整合、搜集的方式,将有价值的参数呈现给用户,通过邮件的形式发送给用户,随着时间的推移,邮件数量也会不断的增加。经过笔者的分析和探讨,建议将智能型垃圾邮件系统安装到用户的系统之中,而后再实施风险检测,及时告知用户相关的风险信息,并给予一定的提示,引导用户妥善处理垃圾信息。
(二)企业管理方面的应用
现阶段,人工智能技术手段已经被越来越多的企业管理者所认知,比如,自动报警系统和监控系统的应用就为典型代表,它们的运用,利于企业实现智能化的管理目标,为企业的内部运作营造安全的氛围和环境,此外,还可以一定程度的减少企业的运作成本,逐步达到资源配置和优化的效果,将企业的运营和发展目标落实到实处,体现出企业管理的智能化和现代化特色。
(三)教学领域的应用
随着新课程改革的推进,使得标准化教学体制也在日趋深化,逐步实现了计算机技术和教学工作的有机融合,人工智能计算机辅助教学系统的运用体现了极大的应用优势,为传统教学模式的优化和改革注入了新的活力,可借此方法,完成教学方法和教学内容的表达,进而相应的的提高教学效率,确保教学质量。
此外,引入人工智能技术的过程中,也需要重视知识库的运用,将其作为教学中有效的辅助工具,而后把教学中的要点以及相关定义等融入到知识库职之中,教师的在落实教学工作之时,可对知识库之内的理论知识加进行准确推理,为学生呈现更加直观的推理过程和运算过程,得出推理后的结果。从教学领域日后的发展角度来讲,人工智能技术理念的引入,可谓是以此教学模式的革新,也是突破传统教学模式桎梏的有效途径。
(四)家居行业的应用
当前,人们的生活质量和生活水平日渐提高,从而自然而然的增加了对于住房家居的应用需要,在此社会发展形势之下,可将人工智能技术手段应用到家居生活中,尽可能满人们的日常生活需要,比如,运用人工智能技术,对门窗的闭合进行有效控制,或是对家居环境进行调整,营造良好的生活氛围。
三、结语
综上所述,在此信息技术发展如此迅猛的时代背景下,人工智能技术手段的运用被许多行业所认识和关注,此项技术是一项典型的新型技术手段,它的应用体现了极大的优势,与域外发达国家相比较,我国的人工智能技术水平仍旧不足,但是,其发展速度却相对较快,在我国的诸多行业中得到了广泛运用,它的未来发展前景相对较佳,值得大力推广。
参考文献
[2]黄鑫。分析计算机人工智能识别技术的应用瓶颈[j].数字技术与应用,20xx,26(7):244.
人工智能的应用论文篇十四
随着新型科技的持续更新,工程中逐渐应用新科技,这也是科技朝着应用式与开放式方向发展的开始。电子工程在传统工程基础上的革新,随着人工智能化发展,逐渐转换为信息化产业链接。这一智能化技术机械生产明显减少,经济效益与产量提升,我国逐渐进入到智能化阶段。
(一)发展历程
在机械电子工程发展初期,主要体现为手工制作,生产力水平较低,资源技术等对其发展产生制约。为了提升生产效率,逐渐朝着机械工业方向发展。
在生产线阶段,机械工程已逐渐发展到流水线生产,实现标准化大批量生产,这一生产模式使劳动力得到解放,生产力水平大大提升,同时生产效率也得到提高。但是仍然存在一些不足,比如,部分生产仍就以进口为主,生产成本较大,在市场方面缺少适应力;灵活性较差,难以满足不断变化的市场需求。
在机械电子产业发展阶段中,产品生产能够适应市场的需求,对于不断变化的产品需求产业化发展能够满足。
(二)机械电子工程主要特征
机械电子工程是复杂综合性学科,同各类学科之间都有着密切的联系。机械电子工程发展要以计算机、电子以及机械为基础,结合其他学科做出合理、科学的设计。在设计的过程中,要求每一个模块都能够实现有机结合,进而使得各个模块都能将其最大优势发挥出来。机械电子产品内部结构简单明了,并不复杂,无需复杂原件的投入,这样能在一定程度上使产品性能得到提升,进而扩大消费市场。
人工智能是一门复杂,并且综合性较强的学科,所涉及到的学科比较多。也可以说,21世纪人工智能是最伟大学科之一。人工智能实现了对人的智能模拟,并且能通过计算机使认得智能化得到进一步的延伸,人工智能这门学科有着较好的发展潜力。人工智能在发展的过程中主要经历下列几个阶段。
初步阶段。人工智能在17世纪开始发生萌芽,法国在这一阶段成功诞生世界上的第一部计算机,这一计算器只是单纯的能进行加法简单运算,但是仍就轰动世界,进而在世界范围内,对这项技术开始进一步研宄。在最初阶段,人工智能并没有明显的进展,主要是在实践的过程中积累与总结知识,这为今后人工智能发展奠定坚实的基础。
发展初始阶段。美国人在二十世纪首次提出人工智能专业用语。在这个发展阶段,人工智能主要以证明与阐释为主要体现,在这一时期对于人工智能的研宄就是首要任务。
发展起伏阶段。随着人们对于人工智能的不断深入研宄,人工智能也处于持续的发展阶段,但是在实践过程中发现,要想使人工智能模仿和人类思维同步是非常困难的。大部分对于人工智能的科学研宄仅仅是停留于简单映射层面,对于逻辑思维的研宄仍就没有突破性进展。不论怎么说,在发展的起伏阶段,人功能智能也在发展中得到了技术创新,特别是在系统方面、计算机机器人以及语言掌握方面取得了较大的成就。
起伏阶段发展以后。在这一阶段,人工智能的相关研究得到了发展,尤其是第五届国际人工智能联合会议的召开,人工智能逐渐朝着知识层面的方向发展,大部分的人工智能研都会结合相应的知识工程,在这个阶段中,人工智能发展的高度是前所未有的,在一定程度上促进了人工智能应用于实际工程中。
稳步发展阶段。随着互联网技术的快速发展,对于人工智能研宄方向发生重大转变,由原本的单一主体朝着集中统一主体的方向发展。关于人工智能在实际中的运用以及研究,受到了互联网技术的影响。网络的普及与快速发展,在一定程度上促进了信息化的发展,信息在传送方面发生率重大性变革。在人们逐渐进入信息化社会后,在信息有效处理方面人工智能的发展到了重要的作用,在模拟设计方面,机械电子工程的发展需要人工智能的大力支持。
随着我国社会经济的持续发展,社会不断的进步,对于信息人们越来越重视。在21世纪,互联网技术得到快速发展,同时信息的传递也逐渐注入新鲜血液。互联网应用的普及说明人们正朝着信息时代的方向迈进,在社会逐步信息化以后,更加需要有人工智能这一技术的支持,特别是机械电子工程发展中有着重要作用,机械电子系统本身缺少一定的稳定性,这样在机械电子工程设计方面就有着较大阻碍存在。在现代社会中,信息的处理量持续增大,并且较为复杂,有些时候需要同时对不同类型的信息进行处理,所以需要采取人工智能的.支持才能完成信息处理。人工智能主要包含模糊推理系统、神经网络系统这种两种方法。神经网络系统倾向于对人脑结构的综合分析,模糊推理系统更加重视对于语言信号的分析与理解。随着现代社会的发展,仅仅采取单一的人工智能方法,明显已经无法适应目前社会中不断变化的市场需求,所以,对于人工智能相关问题的研宂正逐渐朝着多方位、全面的人工智能方向转变。多方位全面人工智能系统通过模糊推理系统和神经网络系统相互统一的方式,扬长补短,将二者有效的结合起来,使得二者的优势得到最大程度的发挥。
智能同机械电子工程之间在相互影响的过程中,逐渐产生崭新的行业。首先通过现代科技逐渐,将人工智能融入到机械电子工程中,使机械工业发展潜力得到充分挖掘。其次随着机械电子工程发展难度的加大,对于人工智能也就提出来新的要求,这从某种程度上来推动了人工智能发展。在将机械电子工程与人工智能有效结合的基础上,促进社会生产力发展,同时也能促进有关经济产业的快速发展,这种效应将会对整个社会产生一定影响,使我国经济得到全面发展。
人工智能的应用论文篇十五
摘要:电气工程及其自动化的实现,从根本上促进我国电气产业迅速发展,满足人们的日常生活需求。但在实际的自动化发展过程中,还存在一些不足之处影响电气工程的生产效率,难以满足当前时代的需求,基于此,作者结合自身经验,对电气工程及其自动化发展的现状,及其中存在的问题及解决措施进行有效的分析,以供相关人员参考,为其提供借鉴。
关键词:电气工程;自动化;问题
引言
随着时代不断发展,信息技术、电气工程自动化技术逐渐被广泛应用。受生产力水平提升的影响,人们对于电气工程及其自动化的要求也不断提升,以满足时代发展,但实际上,现阶段电气工程及其自动化中存在诸多问题,其技术水平与社会生产力发展需求未能有效的相适应,难以满足当前社会的需求。
1我国电气工程及其自动化现状分析
电气工程及其自动化属于新型的技术,具有较强的综合性,直接影响我国工业的生产水平,并与人们的日常生活息息相关。现阶段,我国电气工程技术不断创新发展,从根本上带动电气工程及其自动化领域发展,并促使其逐渐向高新技术转化,扩大技术的应用范围,从整体上促进国民经济提升。实际上,电气工程及其自动化属于现代电气信息领域,其涵盖内容非常广泛,包括与电气工程相关的所有工程,并在多个领域中进行应用,例如,工业领域、军事领域、农业领域等,对我国的工业与社会发展起到积极的促进作用,同时,电气工程及其自动化技术的创新与发展对于人们的日常生活方式与生产方式也产生影响,以推动国民经济稳定发展[1]。
2我国电气工程及其自动化中存在的问题
2.1电气工程能源损耗问题
在电气工程及其自动化的实际应用过程中,受自身的工作性质与设备影响,存在能源损耗问题,直接造成能源浪费,加剧现阶段我国能源紧缺的压力,与当前的节能减排理念相悖,不符合可持续发展战略的实施,同时提升了工业生产的成本支出,降低了经济效益。
2.2电气系统的集成化不高
现阶段,受时代发展与实际需求的影响,促使电气工程自动化系统逐渐向集成化方向发展,以满足当前时代的要求,但由于我国电气集成化起步较晚,当前的集成化水平较低,处于独立自动化阶段,影响信息与资源的共享。
2.3电气工程自动化系统难以统一
为了满足当前的发展需求,电气工程要利用先进的技术,构建完善合理的自动化系统,以此提升工作效率,但受多种因素影响,系统难以进行合理的统一,缺乏兼容性,降低了系统的工作效率。
2.4电气工程质量达不到要求
电气工程的质量直接影响其使用寿命,但受实际的工程质量管理工作影响,以及工作人员自身的管理水平偏低、管理意识落后等因素的影响,导致电气工程质量经常达不到实际的要求,质量管理效率不高。
3现阶段我国电气工程及其自动化中存在问题的解决措施
3.1合理对电气工程进行节能设计
在当前的时代背景下,工作人员应重视电气工程的能源损耗问题,利用先进的技术手段,降低能源消耗,以满足当前可持续发展战略,缓解我国能源与资源紧缺问题。例如,利用合理的技术手段,优化电气工程的节能设计,从根本上降低能源的不必要浪费,降低成本的支出。在实际的节能设计优化过程中,工作人员应结合实际情况,以工作最基本要求为基础,对非重点环节进行有效的改良,如,对现阶段的变压器进行改良,选择绕组阻值较小的供电系统变压器,以此来降低变压器的能源损耗,从而减少不必要的损失浪费,达到节能的目的,促使我国电气工程实现可持续发展。
3.2从整体上提升电气工程自动化系统的集成化水平
提升工作人员自身的专业水平与能力,利用工作人员的专业技术,建立完善的系统平台,并充分发挥其创新意识与主观意识,从根本上满足实际的集成化需求,具体来说,主要从以下两方面入手:一方面,完善电气工程系统的兼容性,保证系统软硬件在交换过程中具有统一的接口,从而实现信息数据的共享;另一方面,提升各功能与系统之间的链接效率,从整体上降低电气工程自动化系统的运行成本,从而促使减少设计成本的支出,以满足当前时代的需求。
3.3构建科学合理、统一的电气自动化系统
构建科学合理、统一的电气自动化系统是电气工程未来发展的主要方向与趋势,以此来提升电气工程的整体质量。具体来说,主要包含以下几方面:首先,积极引进先进的技术,以先进的电气自动化技术为基础,构建完善的系统,从而提升整体的管理水平;其次,引进先进的设计理念,完善现阶段电气自动化系统,改善其中的不合理之处,并针对现阶段的企业不同需求进行个性化开发;最后,实现信息资源的有效共享,促进我国电气工程领域稳定发展,跟上时代发展的步伐[2]。
3.4重视对电气工程的质量管理
重视对电气工程的质量管理,可以从根本上提升电气工程质量与使用寿命,并保证工程使用安全。具体来说,可以从以下几方面入手:首先,加强工作管理人员对电气工程质量管理的重视力度,认识到管理的重要性,以此来保证工程质量;其次,加强现阶段工作人员自身的专业水平与能力,通过定期的培训,强化工作人员的专业水平与技术理念,利用其良好的综合素养,提升质量管理效率;然后,加强对电气工程施工材料的管理,保证材料的质量,从而提升电气工程的质量;最后,重视对各个施工环节的质量管理,通过合理的监督与管理,保证施工的规范性,并以其整体质量为基础,适当对施工进度进行合理的调整,以此来保证施工的整体进度。
4结论
综上所述,电气工程及其自动化中存在的问题,直接影响电气工程的整体质量与效率,因此,工作人员应积极引进先进的技术与设备,通过不断的革新与发展,合理的进行资源节约,降低成本的支出,以此来获取可观的经济效益。同时,加强对电气工程的研究力度,不断提升其技术水平,从而推动我国电气工程及其自动化领域稳定发展。
参考文献:
[1]宋海南.电气工程及其自动化中存在的问题及解决措施[j].南方农机,20xx,47(11):134+148.
[2]闫海东,程世伟.浅析电气工程及其自动化中存在的问题及解决措施[j].科技创新与应用,20xx(06):69.
人工智能的应用论文篇十六
:随着社会信息技术和计算机网络技术的发展,人们对网络应用的需求也原来越多,这就需要不断研究计算机网络技术,由于人工智能在一定程度上成为科学技术前言领域,所以世界上各个国家对人工智能的发展越来越重视。本文首先分析其所具有的重要意义,然后研究其在应用过程中的作用,提出以下内容。
计算机;人工智能;应用;分析
目前由于人工智能的不断成熟,人们在生活方面以及工作的过程中,智能化产品随处可见。这不仅对人们在工作中的效率进行提高,同时还对其生活质量进行加强。所以人工智能的发展在一定程度上离不开计算机网络技术,只有对计算机网络技术进行相应的依靠,才能够让人工智能研究出更多的成果。
由于计算机技术的快速发展,网络信息安全问题在一定程度上是人们目前比较关注的一个重要问题。在网络管理系统应用中,其网络监控以及网络控制是其比较重要的功能,信息能够及时有效的获取以及正确的处理对其起着决定性作用。所以,对计算机技术智能化进行实现是比较必要的。由于计算机得到了不断的深入以及管广泛的运用,在一定程度上导致用户对网络安全在管理方面的需求比较高,对自身的信息安全进行有效的保证。目前网络犯罪现象比较多,计算机只有在具备较快的反应力和灵敏观察力的状况下,才能够对用户信息进行侵犯的违法活动进行及时遏制。充分的利用人工智能技术,建立起相对较系统化的管理,让其不仅对信息进行自动的收集,同时还能够对网络出现的故障进行及时诊断,对网络故障及时遏制,运用有效的措施对计算机网络系统进行及时的恢复,保证用户信息的安全。计算机技术在发展的过程中对人工智能应用起着决定性作用,人工智能技术也在一定程度上对计算机技术的发展起着促进作用。不断的跟踪动态化信息,为用户提供准确的信息资源。总的来说,计算机网络在管理的过程中有效的运用人工智能,对网络管理水平进行不断的提高。
2.1安全管理应用
网络安全所具有的漏洞相对比较多,用户在网络中自身的资料信息安全是现阶段人们比较关注以及重视的主要问题。在对网络安全进行管理时,可以对人工智能技术进行充分的运用,在一定程度上能够对用户自身的隐身进行有效的保护。主要表现为:一是,智能防火墙的应用;二是,智能反应垃圾邮件方面;三是,入侵检测方面等。智能防护墙主要应用的就是智能化识别技术,通过概率以及统计方式、决策方法和计算等对信息数据不仅进行有效的识别,同时还能对其相应的处理,对匹配检查过程中需要的计算进行消除,充分认识网络行为特征值,访问可以直接进行控制,把存在的网络及时发现,拦截以及阻止有害信息的弹出。智能防火墙能够在一定程度上避免网络站点受到黑客的攻击,遏制病毒传播,对相关局域网进行相应的管理和控制,反之就会导致病毒以及木马的传播。在智能防火墙中,比较重要的就是入侵检测,它属于防护墙后的.第二安全闸门,在对网络安全保证方面起着重要的作用。针对入侵检测技术而言,主要能够在一定程度上对网络中的数据进行有效的分析,并且对其进行及时的处理,把部分数据过滤出去,数据检测后的报告分析报告给用户。入侵检测在对网络性能不产生影响的前提下监测网络,为操作上的失误以及内外部攻击提供一定的保护。针对智能型反垃圾而言,其自身的邮件系统能够对用户邮箱进行有效的监测,对邮箱进行相应识别,把邮箱中存在的垃圾充分的筛选出来。如果邮件进入邮箱后,就会进行扫描邮箱,在一定程度上把垃圾邮箱的分类信息发给用户,提醒用户要对其进行及时的处理,避免给邮箱安全带来影响。
2.2人工智能agent技术应用分析
针对人工智能agent技术而言,它属于人工智能代理的一种技术,属于不同部分所组成的软件实体,包括:一是,知识域库;二是数据库;三是解释推理器;四是各个agent之间的通讯部分等。人工智能agent技术通过任何一个agent域库对新数据的相关信息进行处理,并且沟通以至完成任务。人工智能agent技术能够在一定程度上通过用户自定义对信息获得自动搜索,然后将其发送到指定位置。人们通过agent技术得到人性化服务。例如:用户在用电脑查相关信息时,该技术不仅能对信息进行处理,同时还能够进行有效的分析,最后把有用的信息出题给用户,充分节省用户的时间。agent技术为用户在日常生活中提供相应的服务,例如:在网上进行购物以及会议等方面的安排。它不仅自主性以及学习性,让计算机对用户所分配的任务自动完成,进一步推动机计算机网络技术的发展。
2.3在网络系统管理以及评价过程中的应用分析
针对网络管理系统来说,其智能化在一定程度上需要人工技能的不断发展。在对网络综合管理系统进行建立的过程中,不仅可以对人工智能中的专家知识库进行充分的利用,同时还能够对存在的技术问题进行有效的解决和处理。网络存在着动态以及变化性,所以,网络在管理的过程中会面临着困难,这就需要对网络管理技术人工智能化进行实现。在人工智能技术中,其专家知识库主要指的就是把各个相关领域专家的知识以及经验进行相应的结语出来,录入系统中,只有这样才能形成比较完善的知识库系统,促进智能计算机程序的发展和提高。如果遇到某个领域问题的过程中,要充分利用专家经验程序对其进行及时的处理。专家知识经验系统促进计算机网络管理得到顺利开展的同时,对系统评价相关进行工作不断的提高和加强。
科学技术在发展的同时,也促进人工智能技术的提高,计算机在网络技术中得到了比较多的需求,在一定程度上提高其应用范围和领域,因此可以看出,人工智能其应用发展前景是比较广泛的,人类对人工智能技术的进一步研究,会在未来开创出更多的应用领域。
人工智能的应用论文篇十七
(一)人工智能的发展
1950年,艾伦,麦席森,图灵发表了一篇划时代之作《制作机器会思考吗?》里面提出了测试机器是否具有智能的方法,并因此摘得“人工智能之父”的桂冠。约翰,麦卡锡在1956年的达特茅斯学术会议上,第一次提出人工智能(artificialintelligence,ai)。1997年,ibm公司“深蓝”电脑击败了人类的世界国际象棋冠军更是人工智能技术的一个完美表现。2017年7月,国务院印发了《新一代人工智能发展规划》,这是我国首个面向2030年的人工智能技术的战略发展蓝图,也表现出我国对发展人工智能技术的重视与支持,同时,人工智能人选“2017年度中国媒体十大流行语”。
人工智能是计算机科学的一个分支,可以对人的意识、思维的信息过程的模拟,人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,未来人工智能带来的科技产品,将会是人类智慧的“容器”。
(二)人工智能的意义
人工智能在会计、审计、税务等行业的广泛运用,使得传统、简单、重复性的基础会计工作岗位将面临被智能化取代,人工智能已成为促进会计行业转型发展的重要推手。近三年来,德勤、普华永道、安永、毕马威4大国际会计师事务所通过利用财务机器人进行会计、审计等工作,使得数据的准确性、工作效率、管理决策水平等明显提升,由此可见,人工智能早已潜移默化的影响到了会计工作的方方面面。
(一)会计工作效率提高了。人工智能技术与财务管理系统的对接,实现了系统自动识别票据、生成会计记账凭证、记录明细账户以及生成总账和各类报表。作业过程中系统按时间顺序记录每笔业务,对每一笔账务进行核实和验证。财务机器人还实现了信息的语音、扫描录入,财务软件可自动生成证、帐、表,这将更加高效准确地完成基础会计核算工作,提高此项工作的效率,会计人员因此节省了大量用于基础核算工作的时间,从而能将更多的精力投入在企业内部管理型的工作上,同时又提高了管理工作的效率。
(二)会计信息质量提高了。受自身能力、专业素质以及外部环境等因素的影响,会计信息数据的滞后性和人为失误在所难免。人工智能将会计模型和方法程序化,它既减少了人为失误又极大地提升了数据处理能力,工作重心逐渐转向数据的挖掘、分析等重要环节和高附加值工作中,同时,会计档案由纸质变成电子档案更便于信息系统的管理、流程化的管理和监控,避免了人工作业的失误以及造假的可能,数据信息和记录的真实性和精准度得到保证。
(三)会计职能重心转移了。人工智能虽然可以替人做一些简单、繁冗、重复性的基础会计工作,但并不能完全替代会计人员,随着人工智能与会计信息系统的不断结合,从事简单记账工作的初级会计人员将会越来越少,而中高级会计人员将会集中于行业中涉及分析、预测和统筹的领域。因而会计职能的重心将向预测、决策、规划、控制、评价等目前人工智能无法取代的管理会计的职能转移。
(四)会计人员从业压力加大了。随着人工智能被引入到会计行业中,一方面,简单的会计核算工作将被智能化财务软件逐步替代,普通核算类型工作的岗位势必减少,基层会计人员面临失业的压力:另一方面,由于财务软件能够高效完成基础财务工作,企业更需要财会人员发挥管理会计的职能,会计从业人员需要将工作重心转移到决策分析和经营管理上,使其有从财务会计到管理会计转型的压力。
人工智能的发展与应用是社会经济发展过程中的必然产物,它的到来就像一把双刃剑,虽然可以对会计行业整体工作效率与工作方式带来提升,但是人工智是不能完全代替会计人员的工作的。比如,智能化的设备无法完全替代充满人情味的服务。李开复也指出,社交能力强、应变能力强、协商能力强的人,永远不会被人工智能取代。人类的感情,想象、创造等特质也是人工智能所无法企及的。所以,对于会计从业人员而言,人工智能只是一种行业对于自身的探索以及进步,顺应这种变化,会计人员应当认清挑战,抓住机遇。
一方面,会计从业人员应调整好心态,快速适应行业的变革,重新找回自己的价值。努力提升自己的专业分析能力和管理能力,成为人工智能代替不了的高级会计工作者。比如:财务战略制定,纳税筹划,风险控制,合理避税、财务分析等。同时,向复合型人才发展。正如任正非所说,称职的cfo应随时可以接任ceo。会计人员应当开阔眼界,放大格局,不能只着眼于本职工作,还应该了解工作其他岗位的工作内容,比如销售类、生产类等部门的业务,提高自己的企业价值以及行业地位,做一名复合型人才。
另一方面,人工智能技术在财会领域的突破离不开懂会计知识的专业人员的配合,财务人员要努力学习新技能,加强计算机、信息技术的知识储备,协助人工智能会计信息系统的研发,担当人工智能会计系统的设计者和监督者。
参考文献:
[1]闰钰.企业人工智能时代下对会计行业的思考[j].商场现代化.2018(1z)
[2]杨秀琴.浅议人工智能时代财务会计与管理会计的融合发展趋势[j].现代商业.2018(18)
[3]李牧阳,运用给会计行业带来的问题和思考[j],中国管理信息化.2019(42)
【本文地址:http://www.xuefen.com.cn/zuowen/5957057.html】