专业八年级数学教案湘教版(汇总19篇)

格式:DOC 上传日期:2023-10-31 10:15:06
专业八年级数学教案湘教版(汇总19篇)
时间:2023-10-31 10:15:06     小编:雅蕊

教案的编制需要综合运用多种教学资源,如教科书、教具、多媒体等,以提高教学的效果。教案的编写要遵循学科教学的基本原则和规律。这是一份优秀教案的范文,可以帮助大家更好地了解教案的编写要点。

八年级数学教案湘教版篇一

1某公司销售部有营销人员15人,销售部为了制定某种商品的销售金额,统计了这15个人的销售量如下(单位:件)

求这15个销售员该月销量的中位数和众数。

假设销售部负责人把每位营销员的月销售定额定为320件,你认为合理吗?如果不合理,请你制定一个合理的销售定额并说明理由。

2、某商店3、4月份出售某一品牌各种规格的空调,销售台数如表所示:

1匹1.2匹1.5匹2匹

3月12台20台8台4台

4月16台30台14台8台

根据表格回答问题:

商店出售的各种规格空调中,众数是多少?

假如你是经理,现要进货,6月份在有限的资金下进货单位将如何决定?

答案:1.(1)210件、210件(2)不合理。因为15人中有13人的销售额达不到320件(320虽是原始数据的平均数,却不能反映营销人员的一般水平),销售额定为210件合适,因为它既是中位数又是众数,是大部分人能达到的额定。

2.(1)1.2匹(2)通过观察可知1.2匹的销售,所以要多进1.2匹,由于资金有限就要少进2匹空调。

八年级数学教案湘教版篇二

一、教学目标:熟练地进行分式乘除法的混合运算。

二、重点、难点

1、重点:熟练地进行分式乘除法的混合运算。

2、难点:熟练地进行分式乘除法的混合运算。

3、认知难点与突破方法:

紧紧抓住分式乘除法的混合运算先统一成为乘法运算这一点,然后利用上节课分式乘法运算的基础,达到熟练地进行分式乘除法的混合运算的目的。课堂练习以学生自己讨论为主,教师可组织学生对所做的题目作自我评价,关键是点拨运算符号问题、变号法则。

三、例、习题的意图分析

1、 p17页例4是分式乘除法的混合运算。 分式乘除法的混合运算先把除法统一成乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的结果要是最简分式或整式。

教材p17例4只把运算统一乘法,而没有把25x2-9分解因式,就得出了最后的结果,教师在见解是不要跳步太快,以免学习有困难的学生理解不了,造成新的疑点。

2, p17页例4中没有涉及到符号问题,可运算符号问题、变号法则是学生学习中重点,也是难点,故补充例题,突破符号问题。

四、课堂引入

计算

(1) (2)

五、例题讲解

(p17)例4.计算

[分析] 是分式乘除法的混合运算。 分式乘除法的混合运算先统一成为乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的计算结果要是最简的。

(补充)例。计算

(1)

= (先把除法统一成乘法运算)

= (判断运算的符号)

= (约分到最简分式)

(2)

= (先把除法统一成乘法运算)

= (分子、分母中的多项式分解因式)

=

=

六、随堂练习

计算

(1) (2)

(3) (4)

七、课后练习

计算

(1) (2)

(3) (4)

八、答案:

六。(1) (2) (3) (4)-y

七。 (1) (2) (3) (4)

八年级数学教案湘教版篇三

1.知识与技能

会应用平方差公式进行因式分解,发展学生推理能力.

2.过程与方法

经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性.

3.情感、态度与价值观

培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值.

重、难点与关键

1.重点:利用平方差公式分解因式.

2.难点:领会因式分解的解题步骤和分解因式的彻底性.

3.关键:应用逆向思维的方向,演绎出平方差公式,对公式的应用首先要注意其特征,其次要做好式的变形,把问题转化成能够应用公式的方面上来.

教学方法

采用“问题解决”的教学方法,让学生在问题的牵引下,推进自己的思维.

教学过程

一、观察探讨,体验新知

【问题牵引】

请同学们计算下列各式.

(1)(a+5)(a-5);(2)(4m+3n)(4m-3n).

【学生活动】动笔计算出上面的两道题,并踊跃上台板演.

(1)(a+5)(a-5)=a2-52=a2-25;

(2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.

【教师活动】引导学生完成下面的两道题目,并运用数学“互逆”的思想,寻找因式分解的规律.

1.分解因式:a2-25;2.分解因式16m2-9n.

【学生活动】从逆向思维入手,很快得到下面答案:

(1)a2-25=a2-52=(a+5)(a-5).

(2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).

【教师活动】引导学生完成a2-b2=(a+b)(a-b)的同时,导出课题:用平方差公式因式分解.

平方差公式:a2-b2=(a+b)(a-b).

评析:平方差公式中的字母a、b,教学中还要强调一下,可以表示数、含字母的代数式(单项式、多项式).

二、范例学习,应用所学

【例1】把下列各式分解因式:(投影显示或板书)

(1)x2-9y2;(2)16x4-y4;

(3)12a2x2-27b2y2;(4)(x+2y)2-(x-3y)2;

(5)m2(16x-y)+n2(y-16x).

【思路点拨】在观察中发现1~5题均满足平方差公式的特征,可以使用平方差公式因式分解.

【教师活动】启发学生从平方差公式的角度进行因式分解,请5位学生上讲台板演.

【学生活动】分四人小组,合作探究.

解:(1)x2-9y2=(x+3y)(x-3y);

(5)m2(16x-y)+n2(y-16x)

=(16x-y)(m2-n2)=(16x-y)(m+n)(m-n).

新人教版数学八年级上册教案

八年级数学教案湘教版篇四

1.重点:勾股定理逆定理的应用.

2.难点:勾股定理逆定理的证明.

3.疑点及分析和解决方法:勾股定理逆定理的证明方法,又是学生前所未见的,是运用代数计算方法证明几何问题,是解析几何中研究问题的方法,以后会逐步见到,这一点要让学生有所认识.

八年级数学教案湘教版篇五

一、教学目标:理解分式乘方的运算法则,熟练地进行分式乘方的运算。

二、重点、难点

1、重点:熟练地进行分式乘方的运算。

2、难点:熟练地进行分式乘、除、乘方的混合运算。

3、认知难点与突破方法

顺其自然地推导可得:

= = = ,即 = 。 (n为正整数)

归纳出分式乘方的法则:分式乘方要把分子、分母分别乘方。

三、例、习题的意图分析

1、 p17例5第(1)题是分式的乘方运算,它与整式的乘方一样应先判

断乘方的结果的符号,在分别把分子、分母乘方。第(2)题是分式的乘除与乘方的混合运算,应对学生强调运算顺序:先做乘方,再做乘除。.

2、教材p17例5中象第(1)题这样的分式的乘方运算只有一题,对于初学者来说,练习的量显然少了些,故教师应作适当的补充练习。同样象第(2)题这样的分式的乘除与乘方的混合运算,也应相应的增加几题为好。

分式的乘除与乘方的混合运算是学生学习中重点,也是难点,故补充例题,强调运算顺序,不要盲目地跳步计算,提高正确率,突破这个难点。

四、课堂引入

计算下列各题:

(1) = =( ) (2) = =( )

(3) = =( )

[提问]由以上计算的结果你能推出 (n为正整数)的结果吗?

五、例题讲解

(p17)例5.计算

[分析]第(1)题是分式的乘方运算,它与整式的乘方一样应先判断乘方的结果的符号,再分别把分子、分母乘方。第(2)题是分式的乘除与乘方的混合运算,应对学生强调运算顺序:先做乘方,再做乘除。

六、随堂练习

1、判断下列各式是否成立,并改正。

(1) = (2) =

(3) = (4) =

2、计算

(1) (2) (3)

(4) 5)

(6)

七、课后练习

计算

(1) (2)

(3) (4)

八、答案:

六、1. (1)不成立, = (2)不成立, =

(3)不成立, = (4)不成立, =

2、 (1) (2) (3) (4)

(5) (6)

七、(1) (2) (3) (4)

八年级数学教案湘教版篇六

《图形的位似》这节课内容抽象而且学生以前没接触过,对学生来说接受起来难度很大,因此在教学的过程中,首先由手影这种学生较熟悉的形式让学生感受这种位置关系,然后通过动手操作的形式进一步探究位似图形的相关性质。在教学的过程中,为了便于学生理解位似图形的特征,我在设计中特别注意让学生通过动手操作、猜想、试验等方式获得感性认识,然后通过归纳总结上升到理性认识,将形象与抽象有机结合,形成对位似图形的认识。探索知识是本节的重点,设计这一环节,通过学生的做、议、读、想、试等环节来完成,把学习的主动权充分放给学生,每一环节及时归纳总结,使学生学有所获,探索创新。

但是,这节课也存在很多不足之处:

1、学生动手操作、探究位似图形的过程都很顺利,但是很多小组在总结位似图形的性质时出项了语言表达的困难。

2、学生对于“每组对应点”认识还是不够,导致在判断位似图形时出现问题。

3、评价形式过于单调。一直是教师“很好”“太棒了”之类的评价,不能更好的调动学生的积极性。

4、小组合作时个别学生没有真正动起来。

5、没有让学生自己感受当位似图形不同时位似中心在位似图形的不同位置这一动态特点。

6、学生证明位似图形时证明过程还是不够严谨。

7、缺少了位似图形在生活中的应用。

改进措施:

1、通过小组合作交流的方式不断提高学生语言表达能力和逻辑思维能力。

2、强调“每组对应点”就是“所有的对应点”,在图上任意取几对对应点,通过连线,也经过位似中心,通过这样的动手实践,让学生印象更深刻。

3、通过各种途径评价学生,让自己的评价活泼多样。譬如:鼓励性眼神、肢体语言、同学们的掌声、定量评价、奖惩措施等等。

4、做好小组长的培训工作,让他们在小组中起到领导和协调的作用,抓住整个小组的节奏,让每个学生都参与进来,同时,多举行小组捆绑评价的活动,让后进的同学为了不拖后腿而不得不参与进来。

5、加强几何画板的学习和利用。信息技术与数学教学有机整合,有利于学生主动参与、乐于探究、勤于动手、动脑,体现了开放式的教育模式,开阔了学生的视野,推动了数学课堂现代化的发展。在这节课中,如果添加几何画板,那么位似中心和位似图形的五种位置关系就很形象的展现在我们面前。

6、加强学生几何题证明的条理性、严谨性的训练。培养学生的逻辑思维能力和语言的组织能力。

7、让学生在课下自己寻找我们生活中位似图形的影子,将数学和生活紧密联系起来。

在今后的教学中,我将牢记这些不足之处,不断改进,不断修炼自己,让自己的教学更进步,更成熟。

今天有关今天小编就为大家精心整理了一篇有关英语口语的相关内容,以便帮助大家更好的复习。

八年级数学教案湘教版篇七

部门abcdefg

人数1124225

每人创得利润2052.521.51.51.2

该公司每人所创年利润的平均数是多少万元?

年龄频数

28≤x

30≤x

32≤x

34≤x

36≤x

38≤x

40≤x

3、为调查居民生活环境质量,环保局对所辖的50个居民区进行了噪音(单位:分贝)水平的调查,结果如下图,求每个小区噪音的平均分贝数。

答案:1.约2.95万元2.约29岁3.60.54分贝

八年级数学教案湘教版篇八

学习目标:

1、巩固对整式乘法法则的理解,会用法则进行计算

2、在学生大量实践的基础上,是学生认识单项式乘以单项式法则是整式乘法的关键,“多乘多”、“单乘多”都转化为单项式相乘。

3、在通过学生练习中,体会运算律是运算的通性,感受转化思想。。

4、进一步培养学生有条理的思考和表达能力。

学习重点:整式乘法的法则运用

学习难点:整式乘法中学生思维能力的培养

学习过程

1.学习准备

1.你能写出整式乘法的法则吗?试一试。

2.谈谈在整式乘法的学习过程中,你有什么收获?有什么不足?

利用课下时间和同学交流一下,能解决吗?

2.合作探究

1.练习

(1)(-5a2b)(2a2bc)(2)(-ax)(-bx3)

(3)(2x104)(6x105)(4)(x)•2x3•(-3x2)

2、结合上面练习,谈谈在单项式乘单项式运算中怎样进行计算?要注意些什么?

3、练习

(1)(-3x)(4x2-x+1)(2)(-xy)(2x-5y-1)

(3)(2x+3)(4x+1)(4)(x+1)(x2-2x+3)

4、结合上面练习,体会单项式乘多项式、多项式乘多项式运算中,都是以单项式乘单项式为基础、运用乘法分配律进行计算。

3.自我测试

1、3x2•(-4xy)•(-xy)=

2、若(mx3)•(2xn)=-8x18,则m=

3、一个长方体的长、宽、高分别为3x-4,2x和x,它的体积是

4、若m2-2m=1,则2m2-4m+的值是

5、解方程:1-(2x+1)(x-2)=x2-(3x-1)(x+3)-11

6、当(x2+mx+8)(x2-3x+n)展开后,如果不含x2和x3的项,求(-m)3n的值.

7、计算:(y+1)(y2-y+1)+y(1+y)(1-y),其中y=-.

8、(北京)已知x2-5x=14,(x-1)(2x-1)-(x+1)2+1的值。

9、某公园要建如图所示的形状的草坪(阴影部分),求铺设草坪多少m2?若每平

方米草坪260元,则为修建该草坪需投资多少元?

八年级数学教案湘教版篇九

加强学习,提高思想认识,树立新的理念.坚持每周的政治学习和业务学习,紧紧围绕学习新课程,构建新课程,尝试新教法的目标,不断更新教学观念。注重把学习新课程标准与构建新理念有机的结合起来。通过学习新的《课程标准》,认识到新课程改革既是挑战,又是机遇。将理论联系到实际教学工作中,解放思想,更新观念,丰富知识,提高能力,以全新的素质结构接受新一轮课程改革浪潮的“洗礼”。另外,抽时间学习,并作学习笔记,以丰富自己的头脑,提高业务水平。

教学工作是学校各项工作的中心,一学期来,在坚持抓好新课程理念学习和应用的同时,我积极探索教育教学规律,充分运用学校现有的教育教学资源,大胆改革课堂教学,加大新型教学方法使用力度,取得了明显效果,具体表现在:

1、备课深入细致。平时认真研究教材,多方参阅各种资料,力求深入理解教材,准确把握难重点。在制定教学目的时,非常注意学生的实际情况。

2、注重课堂教学效果。针对初一年级学生特点,坚持学生为主体,教师为主导、教学为主线,注重讲练结合。在教学中注意抓住重点,突破难点。注意和学生一起探索各种题型,我发现学生都有探求未知的特点,只要勾起他们的求知欲与兴趣,学习劲头就上来了,如每节课后如有时间,我都出几题有新意,又不难的相关题型,与学生一起研究。

3、要进行一定数量的练习,相当数量的练习是必要的,练习时要有目的,抓基础与重难点,渗透数学思维,在练习时注重学生数学思维的形成与锻炼,有了一定的思维能力与打好基础,可以做到用一把钥匙开多道门。

4、考前复习中要认真研究与整理出考试要考的知识点,重难点,要重点复习的题目类型,难度,深度。这样复习时才有的放矢,复习中什么要多抓多练,什么可暂时忽略,这一点很重要,会直接影响复习效果与成绩。另外还要抓好后进生工作,后进生会影响全班成绩与平均分,所以要花力气使大部分有希望的后进生跟得上。例如在课堂上,多到他们身边站一站,多问一句:会不会,懂不懂,课后,对他们的不足及时帮助,使他们感受到老师的关心,从而能够主动学习。

5、坚持参加校内外教学研讨活动,不断汲取他人的宝贵经验,提高自己的教学水平。向经验丰富的教师请教并经常在一起讨论教学问题。听公开课多次,学习他人的先进教学方法。

6、在作业批改上,认真及时,力求做到全批全改,重在订正,及时了解学生的学习情况,以便在辅导中做到有的放矢。

1、教材挖掘不深入。

2、教法不够灵活,不能总是吸引学生学习,对学生的引导、启发不足。

3、新课标下新的教学思想学习不深入。对学生的.自主学习,合作学习,缺乏理论指导.

4、后进生的辅导不够,由于对学生的基础知识掌握情况了解不够,对学生的学习态度、思维能力不太清楚。上课和复习时该讲的都讲了,学生掌握的情况怎样,教师心中也知道,有的学生只是做表面文章,“出工不出力”

5、教学反思不够。

1、加强学习,学习新课标下新的教学思想。

2、学习新课标,挖掘教材,进一步把握知识点和考点。

3、多听课,学习同科目教师先进的教学方法和教学理念。

4、加强转差培优力度。

5、加强教学反思,加大教学投入。

八年级数学教案湘教版篇十

(1)知识结构

本节内容的重点是线段垂直平分线定理及其逆定理.定理反映了线段垂直平分线的性质,是证明两条线段相等的依据;逆定理反映了线段垂直平分线的判定,是证明某点在某条直线上及一条直线是已知线段的垂直平分线的依据.

本节内容的难点是定理及逆定理的关系.垂直平分线定理和其逆定理,题设与结论正好相反.学生在应用它们的时候,容易混淆,帮助学生认识定理及其逆定理的区别,这是本节的难点.

本节课教学模式主要采用“学生主体性学习”的教学模式.提出问题让学生想,设计问题让学生做,错误原因让学生说,方法与规律让学生归纳.教师的作用在于组织、点拨、引导,促进学生主动探索,积极思考,大胆想象,总结规律,充分发挥学生的主体作用,让学生真正成为教学活动的主人.具体说明如下:

学生前面,学习过线段垂直平分线的概念,这样由复习概念入手,顺其自然提出问题:在垂直平分线上任取一点p,它到线段两端的距离有何关系?学生会很容易得出“相等”.然后学生完成证明,找一名学生的证明过程,进行投影总结.最后,由学生将上述问题,用文字的形式进行归纳,即得线段垂直平分线定理.这样让学生亲自动手实践,积极参与发现,激发了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会.

线段垂直平分线的定理及逆定理的证明都比较简单,学生学习一般没有什么困难,这一节的难点仍然的定理及逆定理的关系,为了很好的突破这一难点,教学时采用与角的平分线的性质定理和逆定理对照,类比的方法进行教学,使学生进一步认识这两个定理的区别和联系.

八年级数学教案湘教版篇十一

1、理解极差的定义,知道极差是用来反映数据波动范围的一个量。

2、会求一组数据的极差。

1、重点:会求一组数据的极差。

2、难点:本节课内容较容易接受,不存在难点。

从表中你能得到哪些信息?

比较两段时间气温的高低,求平均气温是一种常用的方法。

经计算可以看出,对于2月下旬的这段时间而言,2001年和2002年上海地区的平均气温相等,都是12度。

这是不是说,两个时段的气温情况没有什么差异呢?

根据两段时间的气温情况可绘成的折线图。

观察一下,它们有区别吗?说说你观察得到的结果。

用一组数据中的最大值减去最小值所得到的差来反映这组数据的变化范围,用这种方法得到的差称为极差。

本节课在教材中没有相应的例题,教材p152习题分析

问题1可由极差计算公式直接得出,由于差值较大,结合本题背景可以说明该村贫富差距较大,问题2涉及前一个学期统计知识首先应回忆复习已学知识,问题3答案并不唯一,合理即可。

八年级数学教案湘教版篇十二

教学目标:

1、知识目标:了解图案最常见的构图方式:轴对称、平移、旋转……,理解简单图案设计的意图。认识和欣赏平移,旋转在现实生活中的应用,能够灵活运用轴对称、平移、旋转的组合,设计出简单的图案。

2、能力目标:经历收集、欣赏、分析、操作和设计的过程,培养学生收集和整理信息的能力,分析和解决问题的能力,合作和交流的能力以及创新能力。

3、情感体验点:经历对典型图案设计意图的分析,进一步发展学生的空间观念,增强审美意识,培养学生积极进取的生活态度。

重点与难点:

重点:灵活运用轴对称、平移、旋转……等方法及它们的组合进行的图案设计。

难点:分析典型图案的设计意图。

疑点:在设计的图案中清晰地表现自己的设计意图

教具学具准备:

提前一周布置学生以小组为单位,通过各种渠道收集到的图案、图标的剪贴、临摹以及。多种常见的图案及其形成过程的动画演示。

教学过程设计:

1、情境导入:在优美的音乐中,逐个展示生活中常见的典型图案,并让学生试着说一说每种图案标志的对象。(展示课本图3—23)

明确在欣赏了图案后,简单地复习旋转的概念,为下面图案的设计作好理论准备。对教材给出的六个图案通过观察、分析进行议论交流,让学生初步了解图案的设计中常常运用图形变换的思想方法,为学生自己设计图案指明方向。其中图(1)、(2)、(3)、(4)、(5)、(6)都可以通过旋转适合角度形成(可以让学生自己说说每个旋转的角度和旋转的次数及旋转中心的位置),另外图(2)、(3)、(5)也可以通过轴对称变换形成(可以让学生指出对轴对称及对称轴的条数),而图(2)可以通过平移形成。

2、课本

1欣赏课本75页图3—24的图案,并分析这个图案形成过程。

评注:图案是密铺图案的代表,旨在通过对典型图案的分析欣赏,使学生逐步能够进行图案设计,同时了解轴对称、平移、旋转变换是图案制作的基本手段。例题解答的关键是确定“基本图案”,然后再运用平移、旋转关系加以说明,注意旋转中心可以为图形上某一特征的点。

评注:可以取其中的任何一个为基本图案,然后通过变换得到。而且变化方式也可以是:左下角的图案通过轴对称变换得到左上图和右下图。

(二)课内练习

(1)以小组为单位,由每组指定一个同学展示该组搜集得到的图案,并在全班交流。

(2)利用下面提供的基本图形,用平移、旋转、轴对称、中心对称等方法进行图案设计,并简要说明自己的设计意图。

(三)议一议

生活中还有那些图案用到了平移或旋转?分析其中的一个,并与同伴进行交流。

(四)课时小结

本课时的重点是了解平移、旋转和轴对称变换是图案设计的基本方法,并能运用这些变换设计出一些简单的图案。

通过今天的学习,你对图案的设计又增加了哪些新的认识?(可以利用平移、旋转、轴对称等多种方法来设计,而且设计的图案要能表达自己的创作意图,再就是图案的设计一定要新颖,独特,这样才能使人过目不忘,达到标志的效果。)

八年级数学上册教案(五)延伸拓展

进一步搜集身边的各种标志性图案,尝试着重新设计它,并结合实际背景分析它的设计意图。

八年级数学教案湘教版篇十三

1.经历分式方程的概念,能将实际问题中的等量关系用分式方程 表示,体会分式方程的模型作用.

2.经历实际问题-分式方程方程模型的过程,发展学生分析问题、解决问题的能力,渗透数学的转化思想人体,培养学生的应用意识。

3.在活动中培养学生乐于探究、合作学习的习惯,培养学 生努力寻找 解决问题的进取心,体会数学的应用价值.

将实际问题中的等量 关系用分式方程表示

找实际问题中的等量关系

有两块面积相同的小麦试验田,第一块使用原品种,第二 块使用新品种,分别收获小麦9000 kg和15000 kg。已知第一块试验田每公顷的产量比第二块少3000 kg,分别求这两块试验田每 公顷 的产量。你能找出这一问题中的所有等量关系吗?(分组交流)

如果设第一块试验田 每公顷的产量为 kg,那么第二块试验田每公顷的产量是________kg。

根据题意,可得方程___________________

从甲地到乙地有两条公路:一条是全长600 km的普通 公路,另一条是全长480 km的高速公路。某客 车在 高速公路上行驶的平均速度比在普通公路上快45 km/h,由高速 公路从甲地到乙地所需的时间 是由普通公路从甲地到乙地所需时间的一半。求该客车由高速公路从 甲地到乙地所需的时间。

这 一问题中有哪些等量关系?

如果设客车由高速公路从甲地到乙地 所需的时间为 h,那么它由普通公路从甲地到乙地所需的时间为_________h。

根据题意,可得方程_ _____________________。

学生分组探讨、交流,列出方程.

上面所得到的方程有什么共同特点?

分母中含有未知数的方程叫做分式方程

分式方程与整式方程有什么区别?

(3)根据分式方程 编一道应用题,然后同组交流,看谁编得好

本节课你学到了哪些知识?有什么感想?

八年级数学教案湘教版篇十四

1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性。

2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根。

算术平方根的概念。

根据算术平方根的概念正确求出非负数的算术平方根。

这就要用到平方根的概念,也就是本章的主要学习内容.这节课我们先学习有关算术平方根的概念.

1、提出问题:(书p68页的问题)

你是怎样算出画框的边长等于5dm的呢?(学生思考并交流解法)

这个问题相当于在等式扩=25中求出正数x的值.

一般地,如果一个正数x的平方等于a,即=a,那么这个正数x叫做a的算术平方根.a的算术平方根记为,读作根号a,a叫做被开方数.规定:0的算术平方根是0.

也就是,在等式=a (x0)中,规定x = .

2、试一试:你能根据等式:=144说出144的算术平方根是多少吗?并用等式表示出来.

3、想一想:下列式子表示什么意思?你能求出它们的值吗?

建议:求值时,要按照算术平方根的意义,写出应该满足的关系式,然后按照算术平方根的记法写出对应的值.例如表示25的算术平方根。

4、例1求下列各数的算术平方根:

(1)100;(2)1;(3) ;(4)0.0001

p69练习1、2

怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?

方法1:课本中的方法,略;

方法2:

可还有其他方法,鼓励学生探究。

问题:这个大正方形的边长应该是多少呢?

大正方形的边长是,表示2的算术平方根,它到底是个多大的数?你能求出它的值吗?

建议学生观察图形感受的大小.小正方形的对角线的长是多少呢?(用刻度尺测量它与大正方形的边长的大小)它的近似值我们将在下节课探究.

1、这节课学习了什么呢?

2、算术平方根的具体意义是怎么样的?

3、怎样求一个正数的算术平方根

p75习题13.1活动第1、2、3题

八年级数学教案湘教版篇十五

《基础教育课程改革纲要(试行)》指出:“大力推进多媒体信息技术在教学过程中的普遍应用,促进信息技术与学科课程的整合,逐步实现教学内容的呈现方式、学生的学习方式、教师的教学方式和师生互动方式的变革,充分发挥信息技术的优势,为学生的学习和发展提供丰富多彩的教育环境和有力的学习工具。”教师运用现代多媒体信息技术对教学活动进行创造性设计,发挥计算机辅助教学的特有功能,把信息技术和数学教学的学科特点结合起来,可以使教学的表现形式更加形象化、多样化、视觉化,有利于充分揭示数学概念的形成与发展,数学思维的过程和实质,展示数学思维的形成过程,使数学课堂教学收到事半功倍的效果。

本节课内容是学生在小学阶段初步了解特殊四边形以及学过《三角形》这章的基础上进行的,在知识结构上打破了教材的编写顺序,从整体的角度探究特殊四边形性质。运用多媒体教学体现出直观、课容量大、容易接受的特点,为进一步的理论证明及应用起着提供数据和宏观指导作用,使学生学习本章具体内容时知道身在何处,使知识体系更加系统。本节课内容是四边形这章的理论基础,在该章占有非常重要的地位。

本班经历了一年多课改实践,学生对运用现代多媒体信息技术的教学方式有浓厚的兴趣,能运用《几何画板》这一工具进行简单的操作,形成自主探索和合作交流的学风,从而乐于在教师的指导下主动与同学探索、发现、归纳、经历数学知识于实践的过程。

本节课充分利用现有的先进教学设备(两名学生一台电脑),利用笔者自制,借助《几何画板》把学生带入数学模拟实验室,以研究电动门的机械原理为切入点,从学生已有的生活经验出发,让学生亲身经历数学知识的形成并进行解释与应用过程。组员相互配合分别测量、搜集、分析、整理特殊四边形的边长、角度、对角线长度等数据,并总结其性质,通过人机对话方式把静态、抽象的几何图形变为动态、直观地演示出来。在此过程中教师当好课堂教学的组织者、决策者、创造者和参与者,教给学生自觉主动地探究新知识的方法,激发学生的思维,培养学生的科学精神和创新思维习惯,使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到发展。

1、初步理解特殊四边形性质;

2、培养学生自主收集、描述和分析数据的能力;

1、了解特殊四边形性质的形成过程;

2、初步了解探究新知识的一些方法;

1、了解特殊四边形在日常生活中的应用;

2、学生在观察、归纳、类比及实验教学活动中,体会成功后的喜悦;

3、初步具有感性认识上升到理性认识的辩证唯物主义思想。

教学环境:

多媒体计算机网络教室

教学课型:

试验探究式

教学重点:

特殊四边形性质

教学难点:

特殊四边形性质的发现

一、设置情景,提出问题

提出问题:

1、电动门的网格和结点能组成哪些四边形?

2、在开(关)门过程中这些四边形是如何变化的?

3、你还发现了什么?

解决问题:

学生猜想:包括平行四边形、矩形、菱形、等腰梯形、直角梯形……;

当我们学习完本节知识后,其他问题就容易解决了。

(意图:用《几何画板》的动态演示生活事例,充分展示了数学的美妙,可以使学生容易进入情境和保持积极学习状态,激起学生探究解决问题的求知欲望。)

二、整体了解,形成系统

本节课从整体角度研究特殊四边形性质,为今后的个体研究打下良好的基础。我们先研究四边形中的特殊与一般的关系。

提出问题:

1、本章主要研究哪些特殊四边形?

2、从哪几方面研究这些特殊四边形?

解决问题:

学生操作电脑(用几何画板),了解本章研究的主要图形;教师个别指导。

1、包括:平行四边形、矩形、菱形、梯形、等腰梯形、直角梯形

3、等腰梯形和直角梯形后面应该是矩形,但不符合梯形定义,所以没有图形。

(意图:学生自主观察、分组讨论了解本章知识结构,从而形成系统;通过假设、猜想、推理、论证、否定假设获得新知识)

三、个体研究、总结性质

1、平行四边形性质

提出问题:

在平行四边形的形状、位置、大小变化过程中,请观察数据并找出边长、角度、对角线长度相对不变的性质。

解决问题:

教师引导学生拖动b点(学生操作电脑),改变平行四边形的形状、位置、大小,并观察数据的变化,从中找出相对不变的要素。

在图形变化过程中,

(1)对边相等;

(2)对角相等;

(3)通过ao=co、bo=do,可得对角线互相平分;

(4)通过邻角互补,可得对边平行;

(5)内外角和都等于360度;

(6)邻角互补;

……

指导学生填表:

平行四边形性质矩形性质正方形性质

菱形性质

梯形性质等腰梯形性质

直角梯形性质

(既属于平行四边形性质又属于矩形性质可以画箭头)

按照平行四边形性质的探索思路,分别研究:

2、矩形性质;

3、菱形性质;

4、正方形性质;

5、梯形性质;

6、等腰梯形性质;

7、直角梯形的性质。

(意图:学生运用电脑自主收集、描述、分析数据,把抽象的性质变为直观化、形象化,培养独立探究,自主自信,使学生体验到科学探索的乐趣。)

教师总结:

(意图:掌握画箭头的方法,使学生了解事物个体既有该事物一般性质,又有自己的特点。既清楚地表达,又节省时间。)

四、联系生活,解决问题

解决问题:

学生操作电脑,观察图形、分组讨论,教师个别指导。

学生在分别演示开(关)门过程中,观察数据并总结:边长、角度、对角线长度的变化引起四边形的形状、大小、位置的变化。

四边形具有不稳定性,而三角形没有这个特点……

(意图:使学生体会到数学于生活、又服务于生活,更重要的是培养学生应用知识解决实际问题的能力,体会成功后的喜悦。)

五、小结

1.研究问题从整体到局部的方法;

2.主要从边长、角度、对角线长度三方面研究特殊四边形性质。

六、作业

1.平行四边形内角中,既有两个相邻的角相等,又有一组邻边相等,试判断它是什么图形。

2.观察实际生活中的电动门,在开(关)门过程中特殊四边形的变化。

针对教学内容、学生特点及设计方案,预计下列学习效果:

利用多媒体信息技术图文并茂、形象直观的特点,通过学生自主测量、分析、整理数据并总结其性质,培养学生收集、描述和分析数据的能力,并达到初步理解特殊四边形性质的目标。

在问题引入、了解整体、测量个体、总结性质的过程中,符合事物的认识规律及探究新知识的一般方法,初步形成感性认识上升到理性认识的辩证唯物主义思想。

由于个体差异,针对教学目标难以达到的个别学生,根据教学的进展,通过师生之间、学生之间的对话交流及时指导,使教学目标得以实现。

八年级数学教案湘教版篇十六

1、了解方差的定义和计算公式。

2、理解方差概念产生和形成过程。

3、会用方差计算公式比较两组数据波动大小。

重点:掌握方差产生的必要性和应用方差公式解决实际问题。

难点:理解方差公式。

(一)知识详解:

方差:设有n个数据,各数据与它们的平均数的差的平方分别为

用它们的平均数表示这组数据的方差,即

给力小贴士:方差越小说明这组数据越稳定,波动性越低。

(二)自主检测小练习:

1、已知一组数据为2.0、-1.3、-4,则这组数据的方差为。

2、甲、乙两组数据如下:

甲组:1091181213107;

乙组:7891011121112。

分别计算出这两组数据的极差和方差,并说明哪一组数据波动较小。

引例:问题:从甲、乙两种农作物中各抽取10株苗,分别测得它的苗高如下(单位:cm):

甲:9.10.10.13.7.13.10.8.11.8;

乙:8.13.12.11.10.12.7.7.10.10;

问:(1)哪种农作物的苗长较高(可以计算它们的平均数:=)?

(2)哪种农作物的苗长较整齐?(可以计算它们的极差,你可以发现)

归纳:方差:设有n个数据,各数据与它们的平均数的差的平方分别为

用它们的平均数表示这组数据的方差,即用来表示。

(一)例题讲解:

金志强1013161412

提示:先求平均数,然后使用公式计算方差。

(二)小试身手

1、甲、乙两名学生在相同条件下各射击靶10次,命中的环数如下:

甲:7.8.6.8.6.5.9.10.7.4

乙:9.5.7.8.7.6.8.6.7.7

经过计算,两人射击环数的平均数是,但s=,s=,则ss,所以确定去参加比赛。

1、求下列数据的众数:

(1)3.2.5.3.1.2.3(2)5.2.1.5.3.5.2.2

方差公式:

提示:方差越小,说明这组数据越集中。波动性越小。

每课一首诗:求方差,有公式;先平均,再求差;求平方,再平均;所得数,是方差。

1、小爽和小兵在10次百米跑步练习中的成绩如下表所示:(单位:秒)

如果根据这些成绩选拔一人参加比赛,你会选谁呢?

必做题:教材141页练习1.2;选做题:练习册对应部分习题。

写下你的收获,交流你的经验,分享你的成果,你会感到无比的快乐!

八年级数学教案湘教版篇十七

1.什么叫平行四边形?平行四边形有什么性质?

2.将以上的性质定理,分别用命题形式叙述出来。

平行四边形的判定方法:

证明:两组对边分别相等的四边形是平行四边形

已知:

求证:

学生交流:把你做的四边形和其他同学做的进行比较,看看是否都是平行四边形。

观察发现:尽管每个人取的边长不一样,但只要对边分别相等,所作的都是平行四边形

八年级数学教案湘教版篇十八

1.掌握三角形内角和定理及其推论;

2.弄清三角形按角的'分类,会按角的大小对三角形进行分类;

3.通过对三角形分类的学习,使学生了解数学分类的基本思想,并会用方程思想去解决一些图形中求角的问题。

4.通过三角形内角和定理的证明,提高学生的逻辑思维能力,同时培养学生严谨的科学态

5.通过对定理及推论的分析与讨论,发展学生的求同和求异的思维能力,培养学生联系与转化的辩证思想。

三角形内角和定理及其推论。

三角形内角和定理的证明

直尺、微机

互动式,谈话法

1、创设情境,自然引入

把问题作为教学的出发点,创设问题情境,激发学生学习兴趣和求知欲,为发现新知识创造一个最佳的心理和认知环境。

问题2你能用几何推理来论证得到的关系吗?

对于问题1绝大多数学生都能回答出来(小学学过的),问题2学生会感到困难,因为这个证明需添加辅助线,这是同学们第一次接触的新知识―――“辅助线”。教师可以趁机告诉学生这节课将要学习的一个重要内容(板书课题)

新课引入的好坏在某种程度上关系到课堂教学的成败,本节课从旧知识切入,特别是从知识体系考虑引入,“学习了三角形边的关系,自然想到三角形角的关系怎样呢?”使学生感觉本节课学习的内容自然合理。

2、设问质疑,探究尝试

(1)求证:三角形三个内角的和等于

让学生剪一个三角形,并把它的三个内角分别剪下来,再拼成一个平面图形。这里教师设计了电脑动画显示具体情景。然后,围绕问题设计以下几个问题让学生思考,教师进行学法指导。

问题1观察:三个内角拼成了一个

什么角?问题2此实验给我们一个什么启示?

(把三角形的三个内角之和转化为一个平角)

问题3由图中ab与cd的关系,启发我们画一条什么样的线,作为解决问题的桥梁?

其中问题2是解决本题的关键,教师可引导学生分析。对于问题3学生经过思考会画出此线的。这里教师要重点讲解“辅助线”的有关知识。比如:为什么要画这条线?画这条线有什么作用?要让学生知道“辅助线”是以后解决几何问题有力的工具。它的作用在于充分利用条件;恰当转化条件;恰当转化结论;充分提示题目中各元素间的一些不明显的关系,达到化难为易解决问题的目的。

(2)通过类比“三角形按边分类”,三角形按角怎样分类呢?

学生回答后,电脑显示图表。

(3)三角形中三个内角之和为定值

问题2三角形一个外角与它不相邻的两个内角有何关系?

问题3三角形一个外角与其中的一个不相邻内角有何关系?

其中问题1学生很容易得出,提出问题2之后,先给出三角形外角的定义,然后让学生经过分析讨论,得出结论并书写证明过程。

这样安排的目的有三点:第一,理解定理之后的延伸――推论,培养学生良好的学习习惯。第二,模仿定理的证明书写格式,加强学生书写能力。第三,提高学生灵活运用所学知识的能力。

3、三角形三个内角关系的定理及推论

引导学生分析并严格书写解题过程

八年级数学教案湘教版篇十九

(一)、知识与技能:

(1)使学生了解因式分解的意义,理解因式分解的概念。

(2)认识因式分解与整式乘法的相互关系——互逆关系,并能运用这种关系寻求因式分解的方法。

(二)、过程与方法:

(1)由学生自主探索解题途径,在此过程中,通过观察、类比等手段,寻求因式分解与因数分解之间的关系,培养学生的观察能力,进一步发展学生的类比思想。

(2)由整式乘法的逆运算过渡到因式分解,发展学生的逆向思维能力。

(3)通过对分解因式与整式的乘法的观察与比较,培养学生的分析问题能力与综合应用能力。

(三)、情感态度与价值观:让学生初步感受对立统一的辨证观点以及实事求是的科学态度。

重点:因式分解的概念及提公因式法。

难点:正确找出多项式各项的公因式及分解因式与整式乘法的区别和联系。

教学环节:

活动1:复习引入

看谁算得快:用简便方法计算:

(1)7/9×13-7/9×6+7/9×2=;

(2)-2.67×132+25×2.67+7×2.67=;

(3)992–1=。

设计意图:

注意事项:学生对于(1)(2)两小题逆向利用乘法的分配律进行运算的方法是很熟悉,对于第(3)小题的逆向利用平方差公式的运算则有一定的困难,因此,有必要引导学生复习七年级所学过的整式的乘法运算中的平方差公式,帮助他们顺利地逆向运用平方差公式。

活动2:导入课题

p165的探究(略);

2.看谁想得快:993–99能被哪些数整除?你是怎么得出来的?

设计意图:

引导学生把这个式子分解成几个数的积的形式,继续强化学生对因数分解的理解,为学生类比因式分解提供必要的精神准备。

活动3:探究新知

看谁算得准:

计算下列式子:

(1)3x(x-1)=;

(2)(a+b+c)=;

(3)(+4)(-4)=;

(4)(-3)2=;

(5)a(a+1)(a-1)=;

根据上面的算式填空:

(1)a+b+c=;

(2)3x2-3x=;

(3)2-16=;

(4)a3-a=;

(5)2-6+9=。

在第一组的整式乘法的计算上,学生通过对第一组式子的观察得出第二组式子的结果,然后通过对这两组式子的结果的比较,使学生对因式分解有一个初步的意识,由整式乘法的逆运算逐步过渡到因式分解,发展学生的逆向思维能力。

活动4:归纳、得出新知

比较以下两种运算的联系与区别:

a(a+1)(a-1)=a3-a

a3-a=a(a+1)(a-1)

在第三环节的.运算中还有其它类似的例子吗?除此之外,你还能找到类似的例子吗?

【本文地址:http://www.xuefen.com.cn/zuowen/5710160.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档